Andrew Trick 6a7770b7ae Enable MI Sched for x86.
This changes the SelectionDAG scheduling preference to source
order. Soon, the SelectionDAG scheduler can be bypassed saving
a nice chunk of compile time.

Performance differences that result from this change are often a
consequence of register coalescing. The register coalescer is far from
perfect. Bugs can be filed for deficiencies.

On x86 SandyBridge/Haswell, the source order schedule is often
preserved, particularly for small blocks.

Register pressure is generally improved over the SD scheduler's ILP
mode. However, we are still able to handle large blocks that require
latency hiding, unlike the SD scheduler's BURR mode. MI scheduler also
attempts to discover the critical path in single-block loops and
adjust heuristics accordingly.

The MI scheduler relies on the new machine model. This is currently
unimplemented for AVX, so we may not be generating the best code yet.

Unit tests are updated so they don't depend on SD scheduling heuristics.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192750 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-15 23:33:07 +00:00

45 lines
1.1 KiB
LLVM

; RUN: llc < %s -tailcallopt -mtriple=i686-linux-gnu | FileCheck %s
; Test the GHC call convention works (x86-32)
@base = external global i32 ; assigned to register: EBX
@sp = external global i32 ; assigned to register: EBP
@hp = external global i32 ; assigned to register: EDI
@r1 = external global i32 ; assigned to register: ESI
define void @zap(i32 %a, i32 %b) nounwind {
entry:
; CHECK: movl {{[0-9]*}}(%esp), %ebx
; CHECK-NEXT: movl {{[0-9]*}}(%esp), %ebp
; CHECK-NEXT: calll addtwo
%0 = call cc 10 i32 @addtwo(i32 %a, i32 %b)
; CHECK: calll foo
call void @foo() nounwind
ret void
}
define cc 10 i32 @addtwo(i32 %x, i32 %y) nounwind {
entry:
; CHECK: leal (%ebx,%ebp), %eax
%0 = add i32 %x, %y
; CHECK-NEXT: ret
ret i32 %0
}
define cc 10 void @foo() nounwind {
entry:
; CHECK: movl r1, %esi
; CHECK-NEXT: movl hp, %edi
; CHECK-NEXT: movl sp, %ebp
; CHECK-NEXT: movl base, %ebx
%0 = load i32* @r1
%1 = load i32* @hp
%2 = load i32* @sp
%3 = load i32* @base
; CHECK: jmp bar
tail call cc 10 void @bar( i32 %3, i32 %2, i32 %1, i32 %0 ) nounwind
ret void
}
declare cc 10 void @bar(i32, i32, i32, i32)