mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-02-18 14:31:27 +00:00
able to constant fold load instructions where the argument is a constant. Second, we should be able to watch multiple PHI nodes through the loop; this patch only supports PHIs in loop headers, more can be done here. With this patch, we now constant evaluate: static const int arr[] = {1, 2, 3, 4, 5}; int test() { int sum = 0; for (int i = 0; i < 5; ++i) sum += arr[i]; return sum; } git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142731 91177308-0d34-0410-b5e6-96231b3b80d8
Analysis Opportunities: //===---------------------------------------------------------------------===// In test/Transforms/LoopStrengthReduce/quadradic-exit-value.ll, the ScalarEvolution expression for %r is this: {1,+,3,+,2}<loop> Outside the loop, this could be evaluated simply as (%n * %n), however ScalarEvolution currently evaluates it as (-2 + (2 * (trunc i65 (((zext i64 (-2 + %n) to i65) * (zext i64 (-1 + %n) to i65)) /u 2) to i64)) + (3 * %n)) In addition to being much more complicated, it involves i65 arithmetic, which is very inefficient when expanded into code. //===---------------------------------------------------------------------===// In formatValue in test/CodeGen/X86/lsr-delayed-fold.ll, ScalarEvolution is forming this expression: ((trunc i64 (-1 * %arg5) to i32) + (trunc i64 %arg5 to i32) + (-1 * (trunc i64 undef to i32))) This could be folded to (-1 * (trunc i64 undef to i32)) //===---------------------------------------------------------------------===//