mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-13 20:32:21 +00:00
61dfa77fce
code that will be relocated into another memory space. Now when relocations are resolved, the address of the relocation in the host memory (where the JIT is) is passed separately from the address that the relocation will be at in the target memory (where the code will run). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152264 91177308-0d34-0410-b5e6-96231b3b80d8
629 lines
24 KiB
C++
629 lines
24 KiB
C++
//===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-=//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementation of the MC-JIT runtime dynamic linker.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "dyld"
|
|
#include "llvm/ADT/OwningPtr.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "RuntimeDyldMachO.h"
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
|
|
namespace llvm {
|
|
|
|
bool RuntimeDyldMachO::
|
|
resolveRelocation(uint8_t *LocalAddress,
|
|
uint64_t FinalAddress,
|
|
uint64_t Value,
|
|
bool isPCRel,
|
|
unsigned Type,
|
|
unsigned Size,
|
|
int64_t Addend) {
|
|
// This just dispatches to the proper target specific routine.
|
|
switch (CPUType) {
|
|
default: llvm_unreachable("Unsupported CPU type!");
|
|
case mach::CTM_x86_64:
|
|
return resolveX86_64Relocation(LocalAddress,
|
|
FinalAddress,
|
|
(uintptr_t)Value,
|
|
isPCRel,
|
|
Type,
|
|
Size,
|
|
Addend);
|
|
case mach::CTM_ARM:
|
|
return resolveARMRelocation(LocalAddress,
|
|
FinalAddress,
|
|
(uintptr_t)Value,
|
|
isPCRel,
|
|
Type,
|
|
Size,
|
|
Addend);
|
|
}
|
|
}
|
|
|
|
bool RuntimeDyldMachO::
|
|
resolveX86_64Relocation(uint8_t *LocalAddress,
|
|
uint64_t FinalAddress,
|
|
uint64_t Value,
|
|
bool isPCRel,
|
|
unsigned Type,
|
|
unsigned Size,
|
|
int64_t Addend) {
|
|
// If the relocation is PC-relative, the value to be encoded is the
|
|
// pointer difference.
|
|
if (isPCRel)
|
|
// FIXME: It seems this value needs to be adjusted by 4 for an effective PC
|
|
// address. Is that expected? Only for branches, perhaps?
|
|
Value -= FinalAddress + 4;
|
|
|
|
switch(Type) {
|
|
default:
|
|
llvm_unreachable("Invalid relocation type!");
|
|
case macho::RIT_X86_64_Signed1:
|
|
case macho::RIT_X86_64_Signed2:
|
|
case macho::RIT_X86_64_Signed4:
|
|
case macho::RIT_X86_64_Signed:
|
|
case macho::RIT_X86_64_Unsigned:
|
|
case macho::RIT_X86_64_Branch: {
|
|
Value += Addend;
|
|
// Mask in the target value a byte at a time (we don't have an alignment
|
|
// guarantee for the target address, so this is safest).
|
|
uint8_t *p = (uint8_t*)LocalAddress;
|
|
for (unsigned i = 0; i < Size; ++i) {
|
|
*p++ = (uint8_t)Value;
|
|
Value >>= 8;
|
|
}
|
|
return false;
|
|
}
|
|
case macho::RIT_X86_64_GOTLoad:
|
|
case macho::RIT_X86_64_GOT:
|
|
case macho::RIT_X86_64_Subtractor:
|
|
case macho::RIT_X86_64_TLV:
|
|
return Error("Relocation type not implemented yet!");
|
|
}
|
|
}
|
|
|
|
bool RuntimeDyldMachO::
|
|
resolveARMRelocation(uint8_t *LocalAddress,
|
|
uint64_t FinalAddress,
|
|
uint64_t Value,
|
|
bool isPCRel,
|
|
unsigned Type,
|
|
unsigned Size,
|
|
int64_t Addend) {
|
|
// If the relocation is PC-relative, the value to be encoded is the
|
|
// pointer difference.
|
|
if (isPCRel) {
|
|
Value -= FinalAddress;
|
|
// ARM PCRel relocations have an effective-PC offset of two instructions
|
|
// (four bytes in Thumb mode, 8 bytes in ARM mode).
|
|
// FIXME: For now, assume ARM mode.
|
|
Value -= 8;
|
|
}
|
|
|
|
switch(Type) {
|
|
default:
|
|
llvm_unreachable("Invalid relocation type!");
|
|
case macho::RIT_Vanilla: {
|
|
// Mask in the target value a byte at a time (we don't have an alignment
|
|
// guarantee for the target address, so this is safest).
|
|
uint8_t *p = (uint8_t*)LocalAddress;
|
|
for (unsigned i = 0; i < Size; ++i) {
|
|
*p++ = (uint8_t)Value;
|
|
Value >>= 8;
|
|
}
|
|
break;
|
|
}
|
|
case macho::RIT_ARM_Branch24Bit: {
|
|
// Mask the value into the target address. We know instructions are
|
|
// 32-bit aligned, so we can do it all at once.
|
|
uint32_t *p = (uint32_t*)LocalAddress;
|
|
// The low two bits of the value are not encoded.
|
|
Value >>= 2;
|
|
// Mask the value to 24 bits.
|
|
Value &= 0xffffff;
|
|
// FIXME: If the destination is a Thumb function (and the instruction
|
|
// is a non-predicated BL instruction), we need to change it to a BLX
|
|
// instruction instead.
|
|
|
|
// Insert the value into the instruction.
|
|
*p = (*p & ~0xffffff) | Value;
|
|
break;
|
|
}
|
|
case macho::RIT_ARM_ThumbBranch22Bit:
|
|
case macho::RIT_ARM_ThumbBranch32Bit:
|
|
case macho::RIT_ARM_Half:
|
|
case macho::RIT_ARM_HalfDifference:
|
|
case macho::RIT_Pair:
|
|
case macho::RIT_Difference:
|
|
case macho::RIT_ARM_LocalDifference:
|
|
case macho::RIT_ARM_PreboundLazyPointer:
|
|
return Error("Relocation type not implemented yet!");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool RuntimeDyldMachO::
|
|
loadSegment32(const MachOObject *Obj,
|
|
const MachOObject::LoadCommandInfo *SegmentLCI,
|
|
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
|
|
// FIXME: This should really be combined w/ loadSegment64. Templatized
|
|
// function on the 32/64 datatypes maybe?
|
|
InMemoryStruct<macho::SegmentLoadCommand> SegmentLC;
|
|
Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC);
|
|
if (!SegmentLC)
|
|
return Error("unable to load segment load command");
|
|
|
|
|
|
SmallVector<unsigned, 16> SectionMap;
|
|
for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
|
|
InMemoryStruct<macho::Section> Sect;
|
|
Obj->ReadSection(*SegmentLCI, SectNum, Sect);
|
|
if (!Sect)
|
|
return Error("unable to load section: '" + Twine(SectNum) + "'");
|
|
|
|
// Allocate memory via the MM for the section.
|
|
uint8_t *Buffer;
|
|
uint32_t SectionID = Sections.size();
|
|
if (Sect->Flags == 0x80000400)
|
|
Buffer = MemMgr->allocateCodeSection(Sect->Size, Sect->Align, SectionID);
|
|
else
|
|
Buffer = MemMgr->allocateDataSection(Sect->Size, Sect->Align, SectionID);
|
|
|
|
DEBUG(dbgs() << "Loading "
|
|
<< ((Sect->Flags == 0x80000400) ? "text" : "data")
|
|
<< " (ID #" << SectionID << ")"
|
|
<< " '" << Sect->SegmentName << ","
|
|
<< Sect->Name << "' of size " << Sect->Size
|
|
<< " to address " << Buffer << ".\n");
|
|
|
|
// Copy the payload from the object file into the allocated buffer.
|
|
uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset,
|
|
SegmentLC->FileSize).data();
|
|
memcpy(Buffer, Base + Sect->Address, Sect->Size);
|
|
|
|
// Remember what got allocated for this SectionID.
|
|
Sections.push_back(sys::MemoryBlock(Buffer, Sect->Size));
|
|
SectionLocalMemToID[Buffer] = SectionID;
|
|
|
|
// By default, the load address of a section is its memory buffer.
|
|
SectionLoadAddress.push_back((uint64_t)Buffer);
|
|
|
|
// Keep a map of object file section numbers to corresponding SectionIDs
|
|
// while processing the file.
|
|
SectionMap.push_back(SectionID);
|
|
}
|
|
|
|
// Process the symbol table.
|
|
SmallVector<StringRef, 64> SymbolNames;
|
|
processSymbols32(Obj, SectionMap, SymbolNames, SymtabLC);
|
|
|
|
// Process the relocations for each section we're loading.
|
|
Relocations.grow(Relocations.size() + SegmentLC->NumSections);
|
|
for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
|
|
InMemoryStruct<macho::Section> Sect;
|
|
Obj->ReadSection(*SegmentLCI, SectNum, Sect);
|
|
if (!Sect)
|
|
return Error("unable to load section: '" + Twine(SectNum) + "'");
|
|
for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
|
|
InMemoryStruct<macho::RelocationEntry> RE;
|
|
Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
|
|
if (RE->Word0 & macho::RF_Scattered)
|
|
return Error("NOT YET IMPLEMENTED: scattered relocations.");
|
|
// Word0 of the relocation is the offset into the section where the
|
|
// relocation should be applied. We need to translate that into an
|
|
// offset into a function since that's our atom.
|
|
uint32_t Offset = RE->Word0;
|
|
bool isExtern = (RE->Word1 >> 27) & 1;
|
|
|
|
// FIXME: Get the relocation addend from the target address.
|
|
// FIXME: VERY imporant for internal relocations.
|
|
|
|
// Figure out the source symbol of the relocation. If isExtern is true,
|
|
// this relocation references the symbol table, otherwise it references
|
|
// a section in the same object, numbered from 1 through NumSections
|
|
// (SectionBases is [0, NumSections-1]).
|
|
uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
|
|
if (!isExtern) {
|
|
assert(SourceNum > 0 && "Invalid relocation section number!");
|
|
unsigned SectionID = SectionMap[SourceNum - 1];
|
|
unsigned TargetID = SectionMap[SectNum];
|
|
DEBUG(dbgs() << "Internal relocation at Section #"
|
|
<< TargetID << " + " << Offset
|
|
<< " from Section #"
|
|
<< SectionID << " (Word1: "
|
|
<< format("0x%x", RE->Word1) << ")\n");
|
|
|
|
// Store the relocation information. It will get resolved when
|
|
// the section addresses are assigned.
|
|
Relocations[SectionID].push_back(RelocationEntry(TargetID,
|
|
Offset,
|
|
RE->Word1,
|
|
0 /*Addend*/));
|
|
} else {
|
|
StringRef SourceName = SymbolNames[SourceNum];
|
|
|
|
// Now store the relocation information. Associate it with the source
|
|
// symbol. Just add it to the unresolved list and let the general
|
|
// path post-load resolve it if we know where the symbol is.
|
|
UnresolvedRelocations[SourceName].push_back(RelocationEntry(SectNum,
|
|
Offset,
|
|
RE->Word1,
|
|
0 /*Addend*/));
|
|
DEBUG(dbgs() << "Relocation at Section #" << SectNum << " + " << Offset
|
|
<< " from '" << SourceName << "(Word1: "
|
|
<< format("0x%x", RE->Word1) << ")\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Resolve the addresses of any symbols that were defined in this segment.
|
|
for (int i = 0, e = SymbolNames.size(); i != e; ++i)
|
|
resolveSymbol(SymbolNames[i]);
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool RuntimeDyldMachO::
|
|
loadSegment64(const MachOObject *Obj,
|
|
const MachOObject::LoadCommandInfo *SegmentLCI,
|
|
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
|
|
InMemoryStruct<macho::Segment64LoadCommand> Segment64LC;
|
|
Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC);
|
|
if (!Segment64LC)
|
|
return Error("unable to load segment load command");
|
|
|
|
|
|
SmallVector<unsigned, 16> SectionMap;
|
|
for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
|
|
InMemoryStruct<macho::Section64> Sect;
|
|
Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
|
|
if (!Sect)
|
|
return Error("unable to load section: '" + Twine(SectNum) + "'");
|
|
|
|
// Allocate memory via the MM for the section.
|
|
uint8_t *Buffer;
|
|
uint32_t SectionID = Sections.size();
|
|
unsigned Align = 1 << Sect->Align; // .o file has log2 alignment.
|
|
if (Sect->Flags == 0x80000400)
|
|
Buffer = MemMgr->allocateCodeSection(Sect->Size, Align, SectionID);
|
|
else
|
|
Buffer = MemMgr->allocateDataSection(Sect->Size, Align, SectionID);
|
|
|
|
DEBUG(dbgs() << "Loading "
|
|
<< ((Sect->Flags == 0x80000400) ? "text" : "data")
|
|
<< " (ID #" << SectionID << ")"
|
|
<< " '" << Sect->SegmentName << ","
|
|
<< Sect->Name << "' of size " << Sect->Size
|
|
<< " (align " << Align << ")"
|
|
<< " to address " << Buffer << ".\n");
|
|
|
|
// Copy the payload from the object file into the allocated buffer.
|
|
uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset,
|
|
Segment64LC->FileSize).data();
|
|
memcpy(Buffer, Base + Sect->Address, Sect->Size);
|
|
|
|
// Remember what got allocated for this SectionID.
|
|
Sections.push_back(sys::MemoryBlock(Buffer, Sect->Size));
|
|
SectionLocalMemToID[Buffer] = SectionID;
|
|
|
|
// By default, the load address of a section is its memory buffer.
|
|
SectionLoadAddress.push_back((uint64_t)Buffer);
|
|
|
|
// Keep a map of object file section numbers to corresponding SectionIDs
|
|
// while processing the file.
|
|
SectionMap.push_back(SectionID);
|
|
}
|
|
|
|
// Process the symbol table.
|
|
SmallVector<StringRef, 64> SymbolNames;
|
|
processSymbols64(Obj, SectionMap, SymbolNames, SymtabLC);
|
|
|
|
// Process the relocations for each section we're loading.
|
|
Relocations.grow(Relocations.size() + Segment64LC->NumSections);
|
|
for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
|
|
InMemoryStruct<macho::Section64> Sect;
|
|
Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
|
|
if (!Sect)
|
|
return Error("unable to load section: '" + Twine(SectNum) + "'");
|
|
for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
|
|
InMemoryStruct<macho::RelocationEntry> RE;
|
|
Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
|
|
if (RE->Word0 & macho::RF_Scattered)
|
|
return Error("NOT YET IMPLEMENTED: scattered relocations.");
|
|
// Word0 of the relocation is the offset into the section where the
|
|
// relocation should be applied. We need to translate that into an
|
|
// offset into a function since that's our atom.
|
|
uint32_t Offset = RE->Word0;
|
|
bool isExtern = (RE->Word1 >> 27) & 1;
|
|
|
|
// FIXME: Get the relocation addend from the target address.
|
|
// FIXME: VERY imporant for internal relocations.
|
|
|
|
// Figure out the source symbol of the relocation. If isExtern is true,
|
|
// this relocation references the symbol table, otherwise it references
|
|
// a section in the same object, numbered from 1 through NumSections
|
|
// (SectionBases is [0, NumSections-1]).
|
|
uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
|
|
if (!isExtern) {
|
|
assert(SourceNum > 0 && "Invalid relocation section number!");
|
|
unsigned SectionID = SectionMap[SourceNum - 1];
|
|
unsigned TargetID = SectionMap[SectNum];
|
|
DEBUG(dbgs() << "Internal relocation at Section #"
|
|
<< TargetID << " + " << Offset
|
|
<< " from Section #"
|
|
<< SectionID << " (Word1: "
|
|
<< format("0x%x", RE->Word1) << ")\n");
|
|
|
|
// Store the relocation information. It will get resolved when
|
|
// the section addresses are assigned.
|
|
Relocations[SectionID].push_back(RelocationEntry(TargetID,
|
|
Offset,
|
|
RE->Word1,
|
|
0 /*Addend*/));
|
|
} else {
|
|
StringRef SourceName = SymbolNames[SourceNum];
|
|
|
|
// Now store the relocation information. Associate it with the source
|
|
// symbol. Just add it to the unresolved list and let the general
|
|
// path post-load resolve it if we know where the symbol is.
|
|
UnresolvedRelocations[SourceName].push_back(RelocationEntry(SectNum,
|
|
Offset,
|
|
RE->Word1,
|
|
0 /*Addend*/));
|
|
DEBUG(dbgs() << "Relocation at Section #" << SectNum << " + " << Offset
|
|
<< " from '" << SourceName << "(Word1: "
|
|
<< format("0x%x", RE->Word1) << ")\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Resolve the addresses of any symbols that were defined in this segment.
|
|
for (int i = 0, e = SymbolNames.size(); i != e; ++i)
|
|
resolveSymbol(SymbolNames[i]);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool RuntimeDyldMachO::
|
|
processSymbols32(const MachOObject *Obj,
|
|
SmallVectorImpl<unsigned> &SectionMap,
|
|
SmallVectorImpl<StringRef> &SymbolNames,
|
|
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
|
|
// FIXME: Combine w/ processSymbols64. Factor 64/32 datatype and such.
|
|
for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
|
|
InMemoryStruct<macho::SymbolTableEntry> STE;
|
|
Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE);
|
|
if (!STE)
|
|
return Error("unable to read symbol: '" + Twine(i) + "'");
|
|
// Get the symbol name.
|
|
StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
|
|
SymbolNames.push_back(Name);
|
|
|
|
// FIXME: Check the symbol type and flags.
|
|
if (STE->Type != 0xF) // external, defined in this segment.
|
|
continue;
|
|
// Flags in the upper nibble we don't care about.
|
|
if ((STE->Flags & 0xf) != 0x0)
|
|
continue;
|
|
|
|
// Remember the symbol.
|
|
uint32_t SectionID = SectionMap[STE->SectionIndex - 1];
|
|
SymbolTable[Name] = SymbolLoc(SectionID, STE->Value);
|
|
|
|
DEBUG(dbgs() << "Symbol: '" << Name << "' @ "
|
|
<< (getSectionAddress(SectionID) + STE->Value)
|
|
<< "\n");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool RuntimeDyldMachO::
|
|
processSymbols64(const MachOObject *Obj,
|
|
SmallVectorImpl<unsigned> &SectionMap,
|
|
SmallVectorImpl<StringRef> &SymbolNames,
|
|
const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
|
|
for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
|
|
InMemoryStruct<macho::Symbol64TableEntry> STE;
|
|
Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE);
|
|
if (!STE)
|
|
return Error("unable to read symbol: '" + Twine(i) + "'");
|
|
// Get the symbol name.
|
|
StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
|
|
SymbolNames.push_back(Name);
|
|
|
|
// FIXME: Check the symbol type and flags.
|
|
if (STE->Type != 0xF) // external, defined in this segment.
|
|
continue;
|
|
// Flags in the upper nibble we don't care about.
|
|
if ((STE->Flags & 0xf) != 0x0)
|
|
continue;
|
|
|
|
// Remember the symbol.
|
|
uint32_t SectionID = SectionMap[STE->SectionIndex - 1];
|
|
SymbolTable[Name] = SymbolLoc(SectionID, STE->Value);
|
|
|
|
DEBUG(dbgs() << "Symbol: '" << Name << "' @ "
|
|
<< (getSectionAddress(SectionID) + STE->Value)
|
|
<< "\n");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// resolveSymbol - Resolve any relocations to the specified symbol if
|
|
// we know where it lives.
|
|
void RuntimeDyldMachO::resolveSymbol(StringRef Name) {
|
|
StringMap<SymbolLoc>::const_iterator Loc = SymbolTable.find(Name);
|
|
if (Loc == SymbolTable.end())
|
|
return;
|
|
|
|
RelocationList &Relocs = UnresolvedRelocations[Name];
|
|
DEBUG(dbgs() << "Resolving symbol '" << Name << "'\n");
|
|
for (int i = 0, e = Relocs.size(); i != e; ++i) {
|
|
// Change the relocation to be section relative rather than symbol
|
|
// relative and move it to the resolved relocation list.
|
|
RelocationEntry Entry = Relocs[i];
|
|
Entry.Addend += Loc->second.second;
|
|
Relocations[Loc->second.first].push_back(Entry);
|
|
}
|
|
// FIXME: Keep a worklist of the relocations we've added so that we can
|
|
// resolve more selectively later.
|
|
Relocs.clear();
|
|
}
|
|
|
|
bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) {
|
|
// If the linker is in an error state, don't do anything.
|
|
if (hasError())
|
|
return true;
|
|
// Load the Mach-O wrapper object.
|
|
std::string ErrorStr;
|
|
OwningPtr<MachOObject> Obj(
|
|
MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr));
|
|
if (!Obj)
|
|
return Error("unable to load object: '" + ErrorStr + "'");
|
|
|
|
// Get the CPU type information from the header.
|
|
const macho::Header &Header = Obj->getHeader();
|
|
|
|
// FIXME: Error checking that the loaded object is compatible with
|
|
// the system we're running on.
|
|
CPUType = Header.CPUType;
|
|
CPUSubtype = Header.CPUSubtype;
|
|
|
|
// Validate that the load commands match what we expect.
|
|
const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0,
|
|
*DysymtabLCI = 0;
|
|
for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
|
|
const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i);
|
|
switch (LCI.Command.Type) {
|
|
case macho::LCT_Segment:
|
|
case macho::LCT_Segment64:
|
|
if (SegmentLCI)
|
|
return Error("unexpected input object (multiple segments)");
|
|
SegmentLCI = &LCI;
|
|
break;
|
|
case macho::LCT_Symtab:
|
|
if (SymtabLCI)
|
|
return Error("unexpected input object (multiple symbol tables)");
|
|
SymtabLCI = &LCI;
|
|
break;
|
|
case macho::LCT_Dysymtab:
|
|
if (DysymtabLCI)
|
|
return Error("unexpected input object (multiple symbol tables)");
|
|
DysymtabLCI = &LCI;
|
|
break;
|
|
default:
|
|
return Error("unexpected input object (unexpected load command");
|
|
}
|
|
}
|
|
|
|
if (!SymtabLCI)
|
|
return Error("no symbol table found in object");
|
|
if (!SegmentLCI)
|
|
return Error("no segments found in object");
|
|
|
|
// Read and register the symbol table data.
|
|
InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
|
|
Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
|
|
if (!SymtabLC)
|
|
return Error("unable to load symbol table load command");
|
|
Obj->RegisterStringTable(*SymtabLC);
|
|
|
|
// Read the dynamic link-edit information, if present (not present in static
|
|
// objects).
|
|
if (DysymtabLCI) {
|
|
InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC;
|
|
Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC);
|
|
if (!DysymtabLC)
|
|
return Error("unable to load dynamic link-exit load command");
|
|
|
|
// FIXME: We don't support anything interesting yet.
|
|
// if (DysymtabLC->LocalSymbolsIndex != 0)
|
|
// return Error("NOT YET IMPLEMENTED: local symbol entries");
|
|
// if (DysymtabLC->ExternalSymbolsIndex != 0)
|
|
// return Error("NOT YET IMPLEMENTED: non-external symbol entries");
|
|
// if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries)
|
|
// return Error("NOT YET IMPLEMENTED: undefined symbol entries");
|
|
}
|
|
|
|
// Load the segment load command.
|
|
if (SegmentLCI->Command.Type == macho::LCT_Segment) {
|
|
if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC))
|
|
return true;
|
|
} else {
|
|
if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC))
|
|
return true;
|
|
}
|
|
|
|
// Assign the addresses of the sections from the object so that any
|
|
// relocations to them get set properly.
|
|
// FIXME: This is done directly from the client at the moment. We should
|
|
// default the values to the local storage, at least when the target arch
|
|
// is the same as the host arch.
|
|
|
|
return false;
|
|
}
|
|
|
|
// Assign an address to a symbol name and resolve all the relocations
|
|
// associated with it.
|
|
void RuntimeDyldMachO::reassignSectionAddress(unsigned SectionID,
|
|
uint64_t Addr) {
|
|
// The address to use for relocation resolution is not
|
|
// the address of the local section buffer. We must be doing
|
|
// a remote execution environment of some sort. Re-apply any
|
|
// relocations referencing this section with the given address.
|
|
//
|
|
// Addr is a uint64_t because we can't assume the pointer width
|
|
// of the target is the same as that of the host. Just use a generic
|
|
// "big enough" type.
|
|
|
|
SectionLoadAddress[SectionID] = Addr;
|
|
|
|
RelocationList &Relocs = Relocations[SectionID];
|
|
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
|
|
RelocationEntry &RE = Relocs[i];
|
|
uint8_t *Target = (uint8_t*)Sections[RE.SectionID].base() + RE.Offset;
|
|
uint64_t FinalTarget = (uint64_t)SectionLoadAddress[RE.SectionID] + RE.Offset;
|
|
bool isPCRel = (RE.Data >> 24) & 1;
|
|
unsigned Type = (RE.Data >> 28) & 0xf;
|
|
unsigned Size = 1 << ((RE.Data >> 25) & 3);
|
|
|
|
DEBUG(dbgs() << "Resolving relocation at Section #" << RE.SectionID
|
|
<< " + " << RE.Offset << " (" << format("%p", Target) << ")"
|
|
<< " from Section #" << SectionID << " (" << format("%p", Addr) << ")"
|
|
<< "(" << (isPCRel ? "pcrel" : "absolute")
|
|
<< ", type: " << Type << ", Size: " << Size << ", Addend: "
|
|
<< RE.Addend << ").\n");
|
|
|
|
resolveRelocation(Target,
|
|
FinalTarget,
|
|
Addr,
|
|
isPCRel,
|
|
Type,
|
|
Size,
|
|
RE.Addend);
|
|
}
|
|
}
|
|
|
|
bool RuntimeDyldMachO::isKnownFormat(const MemoryBuffer *InputBuffer) {
|
|
StringRef Magic = InputBuffer->getBuffer().slice(0, 4);
|
|
if (Magic == "\xFE\xED\xFA\xCE") return true;
|
|
if (Magic == "\xCE\xFA\xED\xFE") return true;
|
|
if (Magic == "\xFE\xED\xFA\xCF") return true;
|
|
if (Magic == "\xCF\xFA\xED\xFE") return true;
|
|
return false;
|
|
}
|
|
|
|
} // end namespace llvm
|