llvm-6502/lib/Target/R600/R600EmitClauseMarkers.cpp
Tom Stellard 19a99df130 R600: Fix scheduling of instructions that use the LDS output queue
The LDS output queue is accessed via the OQAP register.  The OQAP
register cannot be live across clauses, so if value is written to the
output queue, it must be retrieved before the end of the clause.
With the machine scheduler, we cannot statisfy this constraint, because
it lacks proper alias analysis and it will mark some LDS accesses as
having a chain dependency on vertex fetches.  Since vertex fetches
require a new clauses, the dependency may end up spiltting OQAP uses and
defs so the end up in different clauses.  See the lds-output-queue.ll
test for a more detailed explanation.

To work around this issue, we now combine the LDS read and the OQAP
copy into one instruction and expand it after register allocation.

This patch also adds some checks to the EmitClauseMarker pass, so that
it doesn't end a clause with a value still in the output queue and
removes AR.X and OQAP handling from the scheduler (AR.X uses and defs
were already being expanded post-RA, so the scheduler will never see
them).

Reviewed-by: Vincent Lejeune <vljn at ovi.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194755 91177308-0d34-0410-b5e6-96231b3b80d8
2013-11-15 00:12:45 +00:00

326 lines
11 KiB
C++

//===-- R600EmitClauseMarkers.cpp - Emit CF_ALU ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Add CF_ALU. R600 Alu instructions are grouped in clause which can hold
/// 128 Alu instructions ; these instructions can access up to 4 prefetched
/// 4 lines of 16 registers from constant buffers. Such ALU clauses are
/// initiated by CF_ALU instructions.
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "R600Defines.h"
#include "R600InstrInfo.h"
#include "R600MachineFunctionInfo.h"
#include "R600RegisterInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
namespace {
class R600EmitClauseMarkersPass : public MachineFunctionPass {
private:
static char ID;
const R600InstrInfo *TII;
int Address;
unsigned OccupiedDwords(MachineInstr *MI) const {
switch (MI->getOpcode()) {
case AMDGPU::INTERP_PAIR_XY:
case AMDGPU::INTERP_PAIR_ZW:
case AMDGPU::INTERP_VEC_LOAD:
case AMDGPU::DOT_4:
return 4;
case AMDGPU::KILL:
return 0;
default:
break;
}
// These will be expanded to two ALU instructions in the
// ExpandSpecialInstructions pass.
if (TII->isLDSRetInstr(MI->getOpcode()))
return 2;
if(TII->isVector(*MI) ||
TII->isCubeOp(MI->getOpcode()) ||
TII->isReductionOp(MI->getOpcode()))
return 4;
unsigned NumLiteral = 0;
for (MachineInstr::mop_iterator It = MI->operands_begin(),
E = MI->operands_end(); It != E; ++It) {
MachineOperand &MO = *It;
if (MO.isReg() && MO.getReg() == AMDGPU::ALU_LITERAL_X)
++NumLiteral;
}
return 1 + NumLiteral;
}
bool isALU(const MachineInstr *MI) const {
if (TII->isALUInstr(MI->getOpcode()))
return true;
if (TII->isVector(*MI) || TII->isCubeOp(MI->getOpcode()))
return true;
switch (MI->getOpcode()) {
case AMDGPU::PRED_X:
case AMDGPU::INTERP_PAIR_XY:
case AMDGPU::INTERP_PAIR_ZW:
case AMDGPU::INTERP_VEC_LOAD:
case AMDGPU::COPY:
case AMDGPU::DOT_4:
return true;
default:
return false;
}
}
bool IsTrivialInst(MachineInstr *MI) const {
switch (MI->getOpcode()) {
case AMDGPU::KILL:
case AMDGPU::RETURN:
case AMDGPU::IMPLICIT_DEF:
return true;
default:
return false;
}
}
std::pair<unsigned, unsigned> getAccessedBankLine(unsigned Sel) const {
// Sel is (512 + (kc_bank << 12) + ConstIndex) << 2
// (See also R600ISelLowering.cpp)
// ConstIndex value is in [0, 4095];
return std::pair<unsigned, unsigned>(
((Sel >> 2) - 512) >> 12, // KC_BANK
// Line Number of ConstIndex
// A line contains 16 constant registers however KCX bank can lock
// two line at the same time ; thus we want to get an even line number.
// Line number can be retrieved with (>>4), using (>>5) <<1 generates
// an even number.
((((Sel >> 2) - 512) & 4095) >> 5) << 1);
}
bool SubstituteKCacheBank(MachineInstr *MI,
std::vector<std::pair<unsigned, unsigned> > &CachedConsts,
bool UpdateInstr = true) const {
std::vector<std::pair<unsigned, unsigned> > UsedKCache;
if (!TII->isALUInstr(MI->getOpcode()) && MI->getOpcode() != AMDGPU::DOT_4)
return true;
const SmallVectorImpl<std::pair<MachineOperand *, int64_t> > &Consts =
TII->getSrcs(MI);
assert((TII->isALUInstr(MI->getOpcode()) ||
MI->getOpcode() == AMDGPU::DOT_4) && "Can't assign Const");
for (unsigned i = 0, n = Consts.size(); i < n; ++i) {
if (Consts[i].first->getReg() != AMDGPU::ALU_CONST)
continue;
unsigned Sel = Consts[i].second;
unsigned Chan = Sel & 3, Index = ((Sel >> 2) - 512) & 31;
unsigned KCacheIndex = Index * 4 + Chan;
const std::pair<unsigned, unsigned> &BankLine = getAccessedBankLine(Sel);
if (CachedConsts.empty()) {
CachedConsts.push_back(BankLine);
UsedKCache.push_back(std::pair<unsigned, unsigned>(0, KCacheIndex));
continue;
}
if (CachedConsts[0] == BankLine) {
UsedKCache.push_back(std::pair<unsigned, unsigned>(0, KCacheIndex));
continue;
}
if (CachedConsts.size() == 1) {
CachedConsts.push_back(BankLine);
UsedKCache.push_back(std::pair<unsigned, unsigned>(1, KCacheIndex));
continue;
}
if (CachedConsts[1] == BankLine) {
UsedKCache.push_back(std::pair<unsigned, unsigned>(1, KCacheIndex));
continue;
}
return false;
}
if (!UpdateInstr)
return true;
for (unsigned i = 0, j = 0, n = Consts.size(); i < n; ++i) {
if (Consts[i].first->getReg() != AMDGPU::ALU_CONST)
continue;
switch(UsedKCache[j].first) {
case 0:
Consts[i].first->setReg(
AMDGPU::R600_KC0RegClass.getRegister(UsedKCache[j].second));
break;
case 1:
Consts[i].first->setReg(
AMDGPU::R600_KC1RegClass.getRegister(UsedKCache[j].second));
break;
default:
llvm_unreachable("Wrong Cache Line");
}
j++;
}
return true;
}
bool canClauseLocalKillFitInClause(
unsigned AluInstCount,
std::vector<std::pair<unsigned, unsigned> > KCacheBanks,
MachineBasicBlock::iterator Def,
MachineBasicBlock::iterator BBEnd) {
const R600RegisterInfo &TRI = TII->getRegisterInfo();
for (MachineInstr::const_mop_iterator
MOI = Def->operands_begin(),
MOE = Def->operands_end(); MOI != MOE; ++MOI) {
if (!MOI->isReg() || !MOI->isDef() ||
TRI.isPhysRegLiveAcrossClauses(MOI->getReg()))
continue;
// Def defines a clause local register, so check that its use will fit
// in the clause.
unsigned LastUseCount = 0;
for (MachineBasicBlock::iterator UseI = Def; UseI != BBEnd; ++UseI) {
AluInstCount += OccupiedDwords(UseI);
// Make sure we won't need to end the clause due to KCache limitations.
if (!SubstituteKCacheBank(UseI, KCacheBanks, false))
return false;
// We have reached the maximum instruction limit before finding the
// use that kills this register, so we cannot use this def in the
// current clause.
if (AluInstCount >= TII->getMaxAlusPerClause())
return false;
// Register kill flags have been cleared by the time we get to this
// pass, but it is safe to assume that all uses of this register
// occur in the same basic block as its definition, because
// it is illegal for the scheduler to schedule them in
// different blocks.
if (UseI->findRegisterUseOperandIdx(MOI->getReg()))
LastUseCount = AluInstCount;
if (UseI != Def && UseI->findRegisterDefOperandIdx(MOI->getReg()) != -1)
break;
}
if (LastUseCount)
return LastUseCount <= TII->getMaxAlusPerClause();
llvm_unreachable("Clause local register live at end of clause.");
}
return true;
}
MachineBasicBlock::iterator
MakeALUClause(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) {
MachineBasicBlock::iterator ClauseHead = I;
std::vector<std::pair<unsigned, unsigned> > KCacheBanks;
bool PushBeforeModifier = false;
unsigned AluInstCount = 0;
for (MachineBasicBlock::iterator E = MBB.end(); I != E; ++I) {
if (IsTrivialInst(I))
continue;
if (!isALU(I))
break;
if (AluInstCount > TII->getMaxAlusPerClause())
break;
if (I->getOpcode() == AMDGPU::PRED_X) {
// We put PRED_X in its own clause to ensure that ifcvt won't create
// clauses with more than 128 insts.
// IfCvt is indeed checking that "then" and "else" branches of an if
// statement have less than ~60 insts thus converted clauses can't be
// bigger than ~121 insts (predicate setter needs to be in the same
// clause as predicated alus).
if (AluInstCount > 0)
break;
if (TII->getFlagOp(I).getImm() & MO_FLAG_PUSH)
PushBeforeModifier = true;
AluInstCount ++;
continue;
}
// XXX: GROUP_BARRIER instructions cannot be in the same ALU clause as:
//
// * KILL or INTERP instructions
// * Any instruction that sets UPDATE_EXEC_MASK or UPDATE_PRED bits
// * Uses waterfalling (i.e. INDEX_MODE = AR.X)
//
// XXX: These checks have not been implemented yet.
if (TII->mustBeLastInClause(I->getOpcode())) {
I++;
break;
}
// If this instruction defines a clause local register, make sure
// its use can fit in this clause.
if (!canClauseLocalKillFitInClause(AluInstCount, KCacheBanks, I, E))
break;
if (!SubstituteKCacheBank(I, KCacheBanks))
break;
AluInstCount += OccupiedDwords(I);
}
unsigned Opcode = PushBeforeModifier ?
AMDGPU::CF_ALU_PUSH_BEFORE : AMDGPU::CF_ALU;
BuildMI(MBB, ClauseHead, MBB.findDebugLoc(ClauseHead), TII->get(Opcode))
// We don't use the ADDR field until R600ControlFlowFinalizer pass, where
// it is safe to assume it is 0. However if we always put 0 here, the ifcvt
// pass may assume that identical ALU clause starter at the beginning of a
// true and false branch can be factorized which is not the case.
.addImm(Address++) // ADDR
.addImm(KCacheBanks.empty()?0:KCacheBanks[0].first) // KB0
.addImm((KCacheBanks.size() < 2)?0:KCacheBanks[1].first) // KB1
.addImm(KCacheBanks.empty()?0:2) // KM0
.addImm((KCacheBanks.size() < 2)?0:2) // KM1
.addImm(KCacheBanks.empty()?0:KCacheBanks[0].second) // KLINE0
.addImm((KCacheBanks.size() < 2)?0:KCacheBanks[1].second) // KLINE1
.addImm(AluInstCount) // COUNT
.addImm(1); // Enabled
return I;
}
public:
R600EmitClauseMarkersPass(TargetMachine &tm) : MachineFunctionPass(ID),
TII(0), Address(0) { }
virtual bool runOnMachineFunction(MachineFunction &MF) {
TII = static_cast<const R600InstrInfo *>(MF.getTarget().getInstrInfo());
for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
BB != BB_E; ++BB) {
MachineBasicBlock &MBB = *BB;
MachineBasicBlock::iterator I = MBB.begin();
if (I->getOpcode() == AMDGPU::CF_ALU)
continue; // BB was already parsed
for (MachineBasicBlock::iterator E = MBB.end(); I != E;) {
if (isALU(I))
I = MakeALUClause(MBB, I);
else
++I;
}
}
return false;
}
const char *getPassName() const {
return "R600 Emit Clause Markers Pass";
}
};
char R600EmitClauseMarkersPass::ID = 0;
} // end anonymous namespace
llvm::FunctionPass *llvm::createR600EmitClauseMarkers(TargetMachine &TM) {
return new R600EmitClauseMarkersPass(TM);
}