mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-17 06:33:21 +00:00
9c461083e1
* Switch to new MachineCodeForInstruction model git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1655 91177308-0d34-0410-b5e6-96231b3b80d8
2056 lines
77 KiB
C++
2056 lines
77 KiB
C++
// $Id$
|
|
//***************************************************************************
|
|
// File:
|
|
// SparcInstrSelection.cpp
|
|
//
|
|
// Purpose:
|
|
// BURS instruction selection for SPARC V9 architecture.
|
|
//
|
|
// History:
|
|
// 7/02/01 - Vikram Adve - Created
|
|
//**************************************************************************/
|
|
|
|
#include "SparcInternals.h"
|
|
#include "SparcInstrSelectionSupport.h"
|
|
#include "llvm/CodeGen/InstrSelectionSupport.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/InstrForest.h"
|
|
#include "llvm/CodeGen/InstrSelection.h"
|
|
#include "llvm/CodeGen/MachineCodeForMethod.h"
|
|
#include "llvm/CodeGen/MachineCodeForInstruction.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/Method.h"
|
|
#include "llvm/ConstantVals.h"
|
|
#include "Support/MathExtras.h"
|
|
#include <math.h>
|
|
using std::vector;
|
|
|
|
//************************* Forward Declarations ***************************/
|
|
|
|
|
|
static void SetMemOperands_Internal (MachineInstr* minstr,
|
|
const InstructionNode* vmInstrNode,
|
|
Value* ptrVal,
|
|
Value* arrayOffsetVal,
|
|
const std::vector<Value*>& idxVec,
|
|
const TargetMachine& target);
|
|
|
|
|
|
//************************ Internal Functions ******************************/
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseBprInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineOpCode opCode;
|
|
|
|
Instruction* setCCInstr =
|
|
((InstructionNode*) instrNode->leftChild())->getInstruction();
|
|
|
|
switch(setCCInstr->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = BRZ; break;
|
|
case Instruction::SetNE: opCode = BRNZ; break;
|
|
case Instruction::SetLE: opCode = BRLEZ; break;
|
|
case Instruction::SetGE: opCode = BRGEZ; break;
|
|
case Instruction::SetLT: opCode = BRLZ; break;
|
|
case Instruction::SetGT: opCode = BRGZ; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
opCode = INVALID_OPCODE;
|
|
break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseBpccInstruction(const InstructionNode* instrNode,
|
|
const BinaryOperator* setCCInstr)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
|
|
|
|
if (isSigned)
|
|
{
|
|
switch(setCCInstr->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = BE; break;
|
|
case Instruction::SetNE: opCode = BNE; break;
|
|
case Instruction::SetLE: opCode = BLE; break;
|
|
case Instruction::SetGE: opCode = BGE; break;
|
|
case Instruction::SetLT: opCode = BL; break;
|
|
case Instruction::SetGT: opCode = BG; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch(setCCInstr->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = BE; break;
|
|
case Instruction::SetNE: opCode = BNE; break;
|
|
case Instruction::SetLE: opCode = BLEU; break;
|
|
case Instruction::SetGE: opCode = BCC; break;
|
|
case Instruction::SetLT: opCode = BCS; break;
|
|
case Instruction::SetGT: opCode = BGU; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
break;
|
|
}
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
static inline MachineOpCode
|
|
ChooseBFpccInstruction(const InstructionNode* instrNode,
|
|
const BinaryOperator* setCCInstr)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
switch(setCCInstr->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = FBE; break;
|
|
case Instruction::SetNE: opCode = FBNE; break;
|
|
case Instruction::SetLE: opCode = FBLE; break;
|
|
case Instruction::SetGE: opCode = FBGE; break;
|
|
case Instruction::SetLT: opCode = FBL; break;
|
|
case Instruction::SetGT: opCode = FBG; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
// Create a unique TmpInstruction for a boolean value,
|
|
// representing the CC register used by a branch on that value.
|
|
// For now, hack this using a little static cache of TmpInstructions.
|
|
// Eventually the entire BURG instruction selection should be put
|
|
// into a separate class that can hold such information.
|
|
// The static cache is not too bad because the memory for these
|
|
// TmpInstructions will be freed along with the rest of the Method anyway.
|
|
//
|
|
static TmpInstruction*
|
|
GetTmpForCC(Value* boolVal, const Method* method, const Type* ccType)
|
|
{
|
|
typedef std::hash_map<const Value*, TmpInstruction*> BoolTmpCache;
|
|
static BoolTmpCache boolToTmpCache; // Map boolVal -> TmpInstruction*
|
|
static const Method* lastMethod = NULL; // Use to flush cache between methods
|
|
|
|
assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert");
|
|
|
|
if (lastMethod != method)
|
|
{
|
|
lastMethod = method;
|
|
boolToTmpCache.clear();
|
|
}
|
|
|
|
// Look for tmpI and create a new one otherwise. The new value is
|
|
// directly written to map using the ref returned by operator[].
|
|
TmpInstruction*& tmpI = boolToTmpCache[boolVal];
|
|
if (tmpI == NULL)
|
|
tmpI = new TmpInstruction(ccType, boolVal);
|
|
|
|
return tmpI;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseBccInstruction(const InstructionNode* instrNode,
|
|
bool& isFPBranch)
|
|
{
|
|
InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
|
|
BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
|
|
const Type* setCCType = setCCInstr->getOperand(0)->getType();
|
|
|
|
isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy);
|
|
|
|
if (isFPBranch)
|
|
return ChooseBFpccInstruction(instrNode, setCCInstr);
|
|
else
|
|
return ChooseBpccInstruction(instrNode, setCCInstr);
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseMovFpccInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
switch(instrNode->getInstruction()->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = MOVFE; break;
|
|
case Instruction::SetNE: opCode = MOVFNE; break;
|
|
case Instruction::SetLE: opCode = MOVFLE; break;
|
|
case Instruction::SetGE: opCode = MOVFGE; break;
|
|
case Instruction::SetLT: opCode = MOVFL; break;
|
|
case Instruction::SetGT: opCode = MOVFG; break;
|
|
default:
|
|
assert(0 && "Unrecognized VM instruction!");
|
|
break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
// Assumes that SUBcc v1, v2 -> v3 has been executed.
|
|
// In most cases, we want to clear v3 and then follow it by instruction
|
|
// MOVcc 1 -> v3.
|
|
// Set mustClearReg=false if v3 need not be cleared before conditional move.
|
|
// Set valueToMove=0 if we want to conditionally move 0 instead of 1
|
|
// (i.e., we want to test inverse of a condition)
|
|
// (The latter two cases do not seem to arise because SetNE needs nothing.)
|
|
//
|
|
static MachineOpCode
|
|
ChooseMovpccAfterSub(const InstructionNode* instrNode,
|
|
bool& mustClearReg,
|
|
int& valueToMove)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
mustClearReg = true;
|
|
valueToMove = 1;
|
|
|
|
switch(instrNode->getInstruction()->getOpcode())
|
|
{
|
|
case Instruction::SetEQ: opCode = MOVE; break;
|
|
case Instruction::SetLE: opCode = MOVLE; break;
|
|
case Instruction::SetGE: opCode = MOVGE; break;
|
|
case Instruction::SetLT: opCode = MOVL; break;
|
|
case Instruction::SetGT: opCode = MOVG; break;
|
|
case Instruction::SetNE: assert(0 && "No move required!"); break;
|
|
default: assert(0 && "Unrecognized VM instr!"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
static inline MachineOpCode
|
|
ChooseConvertToFloatInstr(const InstructionNode* instrNode,
|
|
const Type* opType)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
switch(instrNode->getOpLabel())
|
|
{
|
|
case ToFloatTy:
|
|
if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
|
|
opCode = FITOS;
|
|
else if (opType == Type::LongTy)
|
|
opCode = FXTOS;
|
|
else if (opType == Type::DoubleTy)
|
|
opCode = FDTOS;
|
|
else if (opType == Type::FloatTy)
|
|
;
|
|
else
|
|
assert(0 && "Cannot convert this type to FLOAT on SPARC");
|
|
break;
|
|
|
|
case ToDoubleTy:
|
|
// Use FXTOD for all integer-to-double conversions. This has to be
|
|
// consistent with the code in CreateCodeToCopyIntToFloat() since
|
|
// that will be used to load the integer into an FP register.
|
|
//
|
|
if (opType == Type::SByteTy || opType == Type::ShortTy ||
|
|
opType == Type::IntTy || opType == Type::LongTy)
|
|
opCode = FXTOD;
|
|
else if (opType == Type::FloatTy)
|
|
opCode = FSTOD;
|
|
else if (opType == Type::DoubleTy)
|
|
;
|
|
else
|
|
assert(0 && "Cannot convert this type to DOUBLE on SPARC");
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
static inline MachineOpCode
|
|
ChooseConvertToIntInstr(const InstructionNode* instrNode,
|
|
const Type* opType)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;;
|
|
|
|
int instrType = (int) instrNode->getOpLabel();
|
|
|
|
if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy)
|
|
{
|
|
switch (opType->getPrimitiveID())
|
|
{
|
|
case Type::FloatTyID: opCode = FSTOI; break;
|
|
case Type::DoubleTyID: opCode = FDTOI; break;
|
|
default:
|
|
assert(0 && "Non-numeric non-bool type cannot be converted to Int");
|
|
break;
|
|
}
|
|
}
|
|
else if (instrType == ToLongTy)
|
|
{
|
|
switch (opType->getPrimitiveID())
|
|
{
|
|
case Type::FloatTyID: opCode = FSTOX; break;
|
|
case Type::DoubleTyID: opCode = FDTOX; break;
|
|
default:
|
|
assert(0 && "Non-numeric non-bool type cannot be converted to Long");
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
assert(0 && "Should not get here, Mo!");
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseAddInstructionByType(const Type* resultType)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
if (resultType->isIntegral() ||
|
|
resultType->isPointerType() ||
|
|
resultType->isLabelType() ||
|
|
isa<MethodType>(resultType) ||
|
|
resultType == Type::BoolTy)
|
|
{
|
|
opCode = ADD;
|
|
}
|
|
else
|
|
switch(resultType->getPrimitiveID())
|
|
{
|
|
case Type::FloatTyID: opCode = FADDS; break;
|
|
case Type::DoubleTyID: opCode = FADDD; break;
|
|
default: assert(0 && "Invalid type for ADD instruction"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseAddInstruction(const InstructionNode* instrNode)
|
|
{
|
|
return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
|
|
}
|
|
|
|
|
|
static inline MachineInstr*
|
|
CreateMovFloatInstruction(const InstructionNode* instrNode,
|
|
const Type* resultType)
|
|
{
|
|
MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy)
|
|
? FMOVS : FMOVD);
|
|
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
instrNode->leftChild()->getValue());
|
|
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
|
|
instrNode->getValue());
|
|
return minstr;
|
|
}
|
|
|
|
static inline MachineInstr*
|
|
CreateAddConstInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineInstr* minstr = NULL;
|
|
|
|
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
|
|
assert(isa<Constant>(constOp));
|
|
|
|
// Cases worth optimizing are:
|
|
// (1) Add with 0 for float or double: use an FMOV of appropriate type,
|
|
// instead of an FADD (1 vs 3 cycles). There is no integer MOV.
|
|
//
|
|
const Type* resultType = instrNode->getInstruction()->getType();
|
|
|
|
if (resultType == Type::FloatTy ||
|
|
resultType == Type::DoubleTy)
|
|
{
|
|
double dval = cast<ConstantFP>(constOp)->getValue();
|
|
if (dval == 0.0)
|
|
minstr = CreateMovFloatInstruction(instrNode, resultType);
|
|
}
|
|
|
|
return minstr;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseSubInstructionByType(const Type* resultType)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
if (resultType->isIntegral() ||
|
|
resultType->isPointerType())
|
|
{
|
|
opCode = SUB;
|
|
}
|
|
else
|
|
switch(resultType->getPrimitiveID())
|
|
{
|
|
case Type::FloatTyID: opCode = FSUBS; break;
|
|
case Type::DoubleTyID: opCode = FSUBD; break;
|
|
default: assert(0 && "Invalid type for SUB instruction"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
static inline MachineInstr*
|
|
CreateSubConstInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineInstr* minstr = NULL;
|
|
|
|
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
|
|
assert(isa<Constant>(constOp));
|
|
|
|
// Cases worth optimizing are:
|
|
// (1) Sub with 0 for float or double: use an FMOV of appropriate type,
|
|
// instead of an FSUB (1 vs 3 cycles). There is no integer MOV.
|
|
//
|
|
const Type* resultType = instrNode->getInstruction()->getType();
|
|
|
|
if (resultType == Type::FloatTy ||
|
|
resultType == Type::DoubleTy)
|
|
{
|
|
double dval = cast<ConstantFP>(constOp)->getValue();
|
|
if (dval == 0.0)
|
|
minstr = CreateMovFloatInstruction(instrNode, resultType);
|
|
}
|
|
|
|
return minstr;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseFcmpInstruction(const InstructionNode* instrNode)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
|
|
switch(operand->getType()->getPrimitiveID()) {
|
|
case Type::FloatTyID: opCode = FCMPS; break;
|
|
case Type::DoubleTyID: opCode = FCMPD; break;
|
|
default: assert(0 && "Invalid type for FCMP instruction"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
// Assumes that leftArg and rightArg are both cast instructions.
|
|
//
|
|
static inline bool
|
|
BothFloatToDouble(const InstructionNode* instrNode)
|
|
{
|
|
InstrTreeNode* leftArg = instrNode->leftChild();
|
|
InstrTreeNode* rightArg = instrNode->rightChild();
|
|
InstrTreeNode* leftArgArg = leftArg->leftChild();
|
|
InstrTreeNode* rightArgArg = rightArg->leftChild();
|
|
assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
|
|
|
|
// Check if both arguments are floats cast to double
|
|
return (leftArg->getValue()->getType() == Type::DoubleTy &&
|
|
leftArgArg->getValue()->getType() == Type::FloatTy &&
|
|
rightArgArg->getValue()->getType() == Type::FloatTy);
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseMulInstructionByType(const Type* resultType)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
if (resultType->isIntegral())
|
|
opCode = MULX;
|
|
else
|
|
switch(resultType->getPrimitiveID())
|
|
{
|
|
case Type::FloatTyID: opCode = FMULS; break;
|
|
case Type::DoubleTyID: opCode = FMULD; break;
|
|
default: assert(0 && "Invalid type for MUL instruction"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
static inline MachineOpCode
|
|
ChooseMulInstruction(const InstructionNode* instrNode,
|
|
bool checkCasts)
|
|
{
|
|
if (checkCasts && BothFloatToDouble(instrNode))
|
|
return FSMULD;
|
|
|
|
// else use the regular multiply instructions
|
|
return ChooseMulInstructionByType(instrNode->getInstruction()->getType());
|
|
}
|
|
|
|
|
|
static inline MachineInstr*
|
|
CreateIntNegInstruction(TargetMachine& target,
|
|
Value* vreg)
|
|
{
|
|
MachineInstr* minstr = new MachineInstr(SUB);
|
|
minstr->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
|
|
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg);
|
|
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg);
|
|
return minstr;
|
|
}
|
|
|
|
|
|
static inline MachineInstr*
|
|
CreateMulConstInstruction(TargetMachine &target,
|
|
const InstructionNode* instrNode,
|
|
MachineInstr*& getMinstr2)
|
|
{
|
|
MachineInstr* minstr = NULL; // return NULL if we cannot exploit constant
|
|
getMinstr2 = NULL; // to create a cheaper instruction
|
|
|
|
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
|
|
assert(isa<Constant>(constOp));
|
|
|
|
// Cases worth optimizing are:
|
|
// (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
|
|
// (2) Multiply by 2^x for integer types: replace with Shift
|
|
//
|
|
const Type* resultType = instrNode->getInstruction()->getType();
|
|
|
|
if (resultType->isIntegral() || resultType->isPointerType())
|
|
{
|
|
unsigned pow;
|
|
bool isValidConst;
|
|
int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
|
|
if (isValidConst)
|
|
{
|
|
bool needNeg = false;
|
|
if (C < 0)
|
|
{
|
|
needNeg = true;
|
|
C = -C;
|
|
}
|
|
|
|
if (C == 0 || C == 1)
|
|
{
|
|
minstr = new MachineInstr(ADD);
|
|
|
|
if (C == 0)
|
|
minstr->SetMachineOperand(0,
|
|
target.getRegInfo().getZeroRegNum());
|
|
else
|
|
minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
|
|
instrNode->leftChild()->getValue());
|
|
minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum());
|
|
}
|
|
else if (IsPowerOf2(C, pow))
|
|
{
|
|
minstr = new MachineInstr((resultType == Type::LongTy)
|
|
? SLLX : SLL);
|
|
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
instrNode->leftChild()->getValue());
|
|
minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
|
|
pow);
|
|
}
|
|
|
|
if (minstr && needNeg)
|
|
{ // insert <reg = SUB 0, reg> after the instr to flip the sign
|
|
getMinstr2 = CreateIntNegInstruction(target,
|
|
instrNode->getValue());
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (resultType == Type::FloatTy ||
|
|
resultType == Type::DoubleTy)
|
|
{
|
|
double dval = cast<ConstantFP>(constOp)->getValue();
|
|
if (fabs(dval) == 1)
|
|
{
|
|
bool needNeg = (dval < 0);
|
|
|
|
MachineOpCode opCode = needNeg
|
|
? (resultType == Type::FloatTy? FNEGS : FNEGD)
|
|
: (resultType == Type::FloatTy? FMOVS : FMOVD);
|
|
|
|
minstr = new MachineInstr(opCode);
|
|
minstr->SetMachineOperand(0,
|
|
MachineOperand::MO_VirtualRegister,
|
|
instrNode->leftChild()->getValue());
|
|
}
|
|
}
|
|
}
|
|
|
|
if (minstr != NULL)
|
|
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
|
|
instrNode->getValue());
|
|
|
|
return minstr;
|
|
}
|
|
|
|
|
|
// Generate a divide instruction for Div or Rem.
|
|
// For Rem, this assumes that the operand type will be signed if the result
|
|
// type is signed. This is correct because they must have the same sign.
|
|
//
|
|
static inline MachineOpCode
|
|
ChooseDivInstruction(TargetMachine &target,
|
|
const InstructionNode* instrNode)
|
|
{
|
|
MachineOpCode opCode = INVALID_OPCODE;
|
|
|
|
const Type* resultType = instrNode->getInstruction()->getType();
|
|
|
|
if (resultType->isIntegral())
|
|
opCode = resultType->isSigned()? SDIVX : UDIVX;
|
|
else
|
|
switch(resultType->getPrimitiveID())
|
|
{
|
|
case Type::FloatTyID: opCode = FDIVS; break;
|
|
case Type::DoubleTyID: opCode = FDIVD; break;
|
|
default: assert(0 && "Invalid type for DIV instruction"); break;
|
|
}
|
|
|
|
return opCode;
|
|
}
|
|
|
|
|
|
static inline MachineInstr*
|
|
CreateDivConstInstruction(TargetMachine &target,
|
|
const InstructionNode* instrNode,
|
|
MachineInstr*& getMinstr2)
|
|
{
|
|
MachineInstr* minstr = NULL;
|
|
getMinstr2 = NULL;
|
|
|
|
Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
|
|
assert(isa<Constant>(constOp));
|
|
|
|
// Cases worth optimizing are:
|
|
// (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
|
|
// (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
|
|
//
|
|
const Type* resultType = instrNode->getInstruction()->getType();
|
|
|
|
if (resultType->isIntegral())
|
|
{
|
|
unsigned pow;
|
|
bool isValidConst;
|
|
int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
|
|
if (isValidConst)
|
|
{
|
|
bool needNeg = false;
|
|
if (C < 0)
|
|
{
|
|
needNeg = true;
|
|
C = -C;
|
|
}
|
|
|
|
if (C == 1)
|
|
{
|
|
minstr = new MachineInstr(ADD);
|
|
minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
|
|
instrNode->leftChild()->getValue());
|
|
minstr->SetMachineOperand(1,target.getRegInfo().getZeroRegNum());
|
|
}
|
|
else if (IsPowerOf2(C, pow))
|
|
{
|
|
MachineOpCode opCode= ((resultType->isSigned())
|
|
? (resultType==Type::LongTy)? SRAX : SRA
|
|
: (resultType==Type::LongTy)? SRLX : SRL);
|
|
minstr = new MachineInstr(opCode);
|
|
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
instrNode->leftChild()->getValue());
|
|
minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
|
|
pow);
|
|
}
|
|
|
|
if (minstr && needNeg)
|
|
{ // insert <reg = SUB 0, reg> after the instr to flip the sign
|
|
getMinstr2 = CreateIntNegInstruction(target,
|
|
instrNode->getValue());
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (resultType == Type::FloatTy ||
|
|
resultType == Type::DoubleTy)
|
|
{
|
|
double dval = cast<ConstantFP>(constOp)->getValue();
|
|
if (fabs(dval) == 1)
|
|
{
|
|
bool needNeg = (dval < 0);
|
|
|
|
MachineOpCode opCode = needNeg
|
|
? (resultType == Type::FloatTy? FNEGS : FNEGD)
|
|
: (resultType == Type::FloatTy? FMOVS : FMOVD);
|
|
|
|
minstr = new MachineInstr(opCode);
|
|
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
instrNode->leftChild()->getValue());
|
|
}
|
|
}
|
|
}
|
|
|
|
if (minstr != NULL)
|
|
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
|
|
instrNode->getValue());
|
|
|
|
return minstr;
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------
|
|
// Function SetOperandsForMemInstr
|
|
//
|
|
// Choose addressing mode for the given load or store instruction.
|
|
// Use [reg+reg] if it is an indexed reference, and the index offset is
|
|
// not a constant or if it cannot fit in the offset field.
|
|
// Use [reg+offset] in all other cases.
|
|
//
|
|
// This assumes that all array refs are "lowered" to one of these forms:
|
|
// %x = load (subarray*) ptr, constant ; single constant offset
|
|
// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
|
|
// Generally, this should happen via strength reduction + LICM.
|
|
// Also, strength reduction should take care of using the same register for
|
|
// the loop index variable and an array index, when that is profitable.
|
|
//------------------------------------------------------------------------
|
|
|
|
static void
|
|
SetOperandsForMemInstr(MachineInstr* minstr,
|
|
const InstructionNode* vmInstrNode,
|
|
const TargetMachine& target)
|
|
{
|
|
MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
|
|
|
|
// Variables to hold the index vector, ptr value, and offset value.
|
|
// The major work here is to extract these for all 3 instruction types
|
|
// and then call the common function SetMemOperands_Internal().
|
|
//
|
|
vector<Value*> idxVec;
|
|
Value* ptrVal;
|
|
Value* arrayOffsetVal = NULL;
|
|
|
|
// Test if a GetElemPtr instruction is being folded into this mem instrn.
|
|
// If so, it will be in the left child for Load and GetElemPtr,
|
|
// and in the right child for Store instructions.
|
|
//
|
|
InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store
|
|
? vmInstrNode->rightChild()
|
|
: vmInstrNode->leftChild());
|
|
|
|
if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
|
|
ptrChild->getOpLabel() == GetElemPtrIdx)
|
|
{
|
|
// There is a GetElemPtr instruction and there may be a chain of
|
|
// more than one. Use the pointer value of the last one in the chain.
|
|
// Fold the index vectors from the entire chain and from the mem
|
|
// instruction into one single index vector.
|
|
// Finally, we never fold for an array instruction so make that NULL.
|
|
|
|
ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, idxVec);
|
|
idxVec.insert(idxVec.end(), memInst->idx_begin(), memInst->idx_end());
|
|
assert(!((PointerType*)ptrVal->getType())->getElementType()->isArrayType()
|
|
&& "GetElemPtr cannot be folded into array refs in selection");
|
|
}
|
|
else
|
|
{
|
|
// There is no GetElemPtr instruction.
|
|
// Use the pointer value and the index vector from the Mem instruction.
|
|
// If it is an array reference, check that it has been lowered to
|
|
// at most a single offset, then get the array offset value.
|
|
//
|
|
ptrVal = memInst->getPointerOperand();
|
|
|
|
const Type* opType = cast<PointerType>(ptrVal->getType())->getElementType();
|
|
if (opType->isArrayType())
|
|
{
|
|
assert((memInst->getNumOperands()
|
|
== (unsigned) 1 + memInst->getFirstIndexOperandNumber())
|
|
&& "Array refs must be lowered before Instruction Selection");
|
|
arrayOffsetVal = * memInst->idx_begin();
|
|
}
|
|
}
|
|
|
|
SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
|
|
idxVec, target);
|
|
}
|
|
|
|
|
|
static void
|
|
SetMemOperands_Internal(MachineInstr* minstr,
|
|
const InstructionNode* vmInstrNode,
|
|
Value* ptrVal,
|
|
Value* arrayOffsetVal,
|
|
const vector<Value*>& idxVec,
|
|
const TargetMachine& target)
|
|
{
|
|
MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
|
|
|
|
// Initialize so we default to storing the offset in a register.
|
|
int64_t smallConstOffset = 0;
|
|
Value* valueForRegOffset = NULL;
|
|
MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister;
|
|
|
|
// Check if there is an index vector and if so, if it translates to
|
|
// a small enough constant to fit in the immediate-offset field.
|
|
//
|
|
if (idxVec.size() > 0)
|
|
{
|
|
bool isConstantOffset = false;
|
|
unsigned offset = 0;
|
|
|
|
const PointerType* ptrType = (PointerType*) ptrVal->getType();
|
|
|
|
if (ptrType->getElementType()->isStructType())
|
|
{
|
|
// the offset is always constant for structs
|
|
isConstantOffset = true;
|
|
|
|
// Compute the offset value using the index vector
|
|
offset = target.DataLayout.getIndexedOffset(ptrType, idxVec);
|
|
}
|
|
else
|
|
{
|
|
// It must be an array ref. Check if the offset is a constant,
|
|
// and that the indexing has been lowered to a single offset.
|
|
//
|
|
assert(isa<SequentialType>(ptrType->getElementType()));
|
|
assert(arrayOffsetVal != NULL
|
|
&& "Expect to be given Value* for array offsets");
|
|
|
|
if (Constant *CPV = dyn_cast<Constant>(arrayOffsetVal))
|
|
{
|
|
isConstantOffset = true; // always constant for structs
|
|
assert(arrayOffsetVal->getType()->isIntegral());
|
|
offset = (CPV->getType()->isSigned()
|
|
? cast<ConstantSInt>(CPV)->getValue()
|
|
: (int64_t) cast<ConstantUInt>(CPV)->getValue());
|
|
}
|
|
else
|
|
{
|
|
valueForRegOffset = arrayOffsetVal;
|
|
}
|
|
}
|
|
|
|
if (isConstantOffset)
|
|
{
|
|
// create a virtual register for the constant
|
|
valueForRegOffset = ConstantSInt::get(Type::IntTy, offset);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
offsetOpType = MachineOperand::MO_SignExtendedImmed;
|
|
smallConstOffset = 0;
|
|
}
|
|
|
|
// Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
|
|
// It is the left child in the instruction tree in all cases.
|
|
Value* leftVal = vmInstrNode->leftChild()->getValue();
|
|
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal);
|
|
|
|
// Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
|
|
// Operand 2 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
|
|
//
|
|
unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
|
|
if (offsetOpType == MachineOperand::MO_VirtualRegister)
|
|
{
|
|
assert(valueForRegOffset != NULL);
|
|
minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset);
|
|
}
|
|
else
|
|
minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
|
|
|
|
if (memInst->getOpcode() == Instruction::Store)
|
|
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal);
|
|
else
|
|
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
|
|
vmInstrNode->getValue());
|
|
}
|
|
|
|
|
|
//
|
|
// Substitute operand `operandNum' of the instruction in node `treeNode'
|
|
// in place of the use(s) of that instruction in node `parent'.
|
|
// Check both explicit and implicit operands!
|
|
//
|
|
static void
|
|
ForwardOperand(InstructionNode* treeNode,
|
|
InstrTreeNode* parent,
|
|
int operandNum)
|
|
{
|
|
assert(treeNode && parent && "Invalid invocation of ForwardOperand");
|
|
|
|
Instruction* unusedOp = treeNode->getInstruction();
|
|
Value* fwdOp = unusedOp->getOperand(operandNum);
|
|
|
|
// The parent itself may be a list node, so find the real parent instruction
|
|
while (parent->getNodeType() != InstrTreeNode::NTInstructionNode)
|
|
{
|
|
parent = parent->parent();
|
|
assert(parent && "ERROR: Non-instruction node has no parent in tree.");
|
|
}
|
|
InstructionNode* parentInstrNode = (InstructionNode*) parent;
|
|
|
|
Instruction* userInstr = parentInstrNode->getInstruction();
|
|
MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(userInstr);
|
|
for (unsigned i=0, N=mvec.size(); i < N; i++)
|
|
{
|
|
MachineInstr* minstr = mvec[i];
|
|
|
|
for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i)
|
|
{
|
|
const MachineOperand& mop = minstr->getOperand(i);
|
|
if (mop.getOperandType() == MachineOperand::MO_VirtualRegister &&
|
|
mop.getVRegValue() == unusedOp)
|
|
{
|
|
minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister,
|
|
fwdOp);
|
|
}
|
|
}
|
|
|
|
for (unsigned i=0, numOps=minstr->getNumImplicitRefs(); i < numOps; ++i)
|
|
if (minstr->getImplicitRef(i) == unusedOp)
|
|
minstr->setImplicitRef(i, fwdOp, minstr->implicitRefIsDefined(i));
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void UltraSparcInstrInfo::
|
|
CreateCopyInstructionsByType(const TargetMachine& target,
|
|
Value* src,
|
|
Instruction* dest,
|
|
vector<MachineInstr*>& minstrVec) const
|
|
{
|
|
bool loadConstantToReg = false;
|
|
|
|
const Type* resultType = dest->getType();
|
|
|
|
MachineOpCode opCode = ChooseAddInstructionByType(resultType);
|
|
if (opCode == INVALID_OPCODE)
|
|
{
|
|
assert(0 && "Unsupported result type in CreateCopyInstructionsByType()");
|
|
return;
|
|
}
|
|
|
|
// if `src' is a constant that doesn't fit in the immed field or if it is
|
|
// a global variable (i.e., a constant address), generate a load
|
|
// instruction instead of an add
|
|
//
|
|
if (isa<Constant>(src))
|
|
{
|
|
unsigned int machineRegNum;
|
|
int64_t immedValue;
|
|
MachineOperand::MachineOperandType opType =
|
|
ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true,
|
|
machineRegNum, immedValue);
|
|
|
|
if (opType == MachineOperand::MO_VirtualRegister)
|
|
loadConstantToReg = true;
|
|
}
|
|
else if (isa<GlobalValue>(src))
|
|
loadConstantToReg = true;
|
|
|
|
if (loadConstantToReg)
|
|
{ // `src' is constant and cannot fit in immed field for the ADD
|
|
// Insert instructions to "load" the constant into a register
|
|
vector<TmpInstruction*> tempVec;
|
|
target.getInstrInfo().CreateCodeToLoadConst(src,dest,minstrVec,tempVec);
|
|
for (unsigned i=0; i < tempVec.size(); i++)
|
|
MachineCodeForInstruction::get(dest).addTemp(tempVec[i]);
|
|
}
|
|
else
|
|
{ // Create the appropriate add instruction.
|
|
// Make `src' the second operand, in case it is a constant
|
|
// Use (unsigned long) 0 for a NULL pointer value.
|
|
//
|
|
const Type* nullValueType =
|
|
(resultType->getPrimitiveID() == Type::PointerTyID)? Type::ULongTy
|
|
: resultType;
|
|
MachineInstr* minstr = new MachineInstr(opCode);
|
|
minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
Constant::getNullConstant(nullValueType));
|
|
minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, src);
|
|
minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, dest);
|
|
minstrVec.push_back(minstr);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//******************* Externally Visible Functions *************************/
|
|
|
|
|
|
//------------------------------------------------------------------------
|
|
// External Function: GetInstructionsForProlog
|
|
// External Function: GetInstructionsForEpilog
|
|
//
|
|
// Purpose:
|
|
// Create prolog and epilog code for procedure entry and exit
|
|
//------------------------------------------------------------------------
|
|
|
|
extern unsigned
|
|
GetInstructionsForProlog(BasicBlock* entryBB,
|
|
TargetMachine &target,
|
|
MachineInstr** mvec)
|
|
{
|
|
const MachineFrameInfo& frameInfo = target.getFrameInfo();
|
|
|
|
// The second operand is the stack size. If it does not fit in the
|
|
// immediate field, we either have to find an unused register in the
|
|
// caller's window or move some elements to the dynamically allocated
|
|
// area of the stack frame (just above save area and method args).
|
|
Method* method = entryBB->getParent();
|
|
MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(method);
|
|
unsigned int staticStackSize = mcInfo.getStaticStackSize();
|
|
|
|
if (staticStackSize < (unsigned) frameInfo.getMinStackFrameSize())
|
|
staticStackSize = (unsigned) frameInfo.getMinStackFrameSize();
|
|
|
|
if (unsigned padsz = (staticStackSize %
|
|
(unsigned) frameInfo.getStackFrameSizeAlignment()))
|
|
staticStackSize += frameInfo.getStackFrameSizeAlignment() - padsz;
|
|
|
|
assert(target.getInstrInfo().constantFitsInImmedField(SAVE, staticStackSize)
|
|
&& "Stack size too large for immediate field of SAVE instruction. Need additional work as described in the comment above");
|
|
|
|
mvec[0] = new MachineInstr(SAVE);
|
|
mvec[0]->SetMachineOperand(0, target.getRegInfo().getStackPointer());
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
|
|
- (int) staticStackSize);
|
|
mvec[0]->SetMachineOperand(2, target.getRegInfo().getStackPointer());
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
extern unsigned
|
|
GetInstructionsForEpilog(BasicBlock* anExitBB,
|
|
TargetMachine &target,
|
|
MachineInstr** mvec)
|
|
{
|
|
mvec[0] = new MachineInstr(RESTORE);
|
|
mvec[0]->SetMachineOperand(0, target.getRegInfo().getZeroRegNum());
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
|
|
(int64_t)0);
|
|
mvec[0]->SetMachineOperand(2, target.getRegInfo().getZeroRegNum());
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------
|
|
// External Function: ThisIsAChainRule
|
|
//
|
|
// Purpose:
|
|
// Check if a given BURG rule is a chain rule.
|
|
//------------------------------------------------------------------------
|
|
|
|
extern bool
|
|
ThisIsAChainRule(int eruleno)
|
|
{
|
|
switch(eruleno)
|
|
{
|
|
case 111: // stmt: reg
|
|
case 113: // stmt: bool
|
|
case 123:
|
|
case 124:
|
|
case 125:
|
|
case 126:
|
|
case 127:
|
|
case 128:
|
|
case 129:
|
|
case 130:
|
|
case 131:
|
|
case 132:
|
|
case 133:
|
|
case 155:
|
|
case 221:
|
|
case 222:
|
|
case 241:
|
|
case 242:
|
|
case 243:
|
|
case 244:
|
|
return true; break;
|
|
|
|
default:
|
|
return false; break;
|
|
}
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------
|
|
// External Function: GetInstructionsByRule
|
|
//
|
|
// Purpose:
|
|
// Choose machine instructions for the SPARC according to the
|
|
// patterns chosen by the BURG-generated parser.
|
|
//------------------------------------------------------------------------
|
|
|
|
unsigned
|
|
GetInstructionsByRule(InstructionNode* subtreeRoot,
|
|
int ruleForNode,
|
|
short* nts,
|
|
TargetMachine &target,
|
|
MachineInstr** mvec)
|
|
{
|
|
int numInstr = 1; // initialize for common case
|
|
bool checkCast = false; // initialize here to use fall-through
|
|
int nextRule;
|
|
int forwardOperandNum = -1;
|
|
|
|
for (unsigned i=0; i < MAX_INSTR_PER_VMINSTR; i++)
|
|
mvec[i] = NULL;
|
|
|
|
//
|
|
// Let's check for chain rules outside the switch so that we don't have
|
|
// to duplicate the list of chain rule production numbers here again
|
|
//
|
|
if (ThisIsAChainRule(ruleForNode))
|
|
{
|
|
// Chain rules have a single nonterminal on the RHS.
|
|
// Get the rule that matches the RHS non-terminal and use that instead.
|
|
//
|
|
assert(nts[0] && ! nts[1]
|
|
&& "A chain rule should have only one RHS non-terminal!");
|
|
nextRule = burm_rule(subtreeRoot->state, nts[0]);
|
|
nts = burm_nts[nextRule];
|
|
numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec);
|
|
}
|
|
else
|
|
{
|
|
switch(ruleForNode) {
|
|
case 1: // stmt: Ret
|
|
case 2: // stmt: RetValue(reg)
|
|
{ // NOTE: Prepass of register allocation is responsible
|
|
// for moving return value to appropriate register.
|
|
// Mark the return-address register as a hidden virtual reg.
|
|
// Mark the return value register as an implicit ref of
|
|
// the machine instruction.
|
|
// Finally put a NOP in the delay slot.
|
|
ReturnInst *returnInstr =
|
|
cast<ReturnInst>(subtreeRoot->getInstruction());
|
|
assert(returnInstr->getOpcode() == Instruction::Ret);
|
|
|
|
Instruction* returnReg = new TmpInstruction(returnInstr);
|
|
MachineCodeForInstruction::get(returnInstr).addTemp(returnReg);
|
|
|
|
mvec[0] = new MachineInstr(JMPLRET);
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
returnReg);
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
|
|
(int64_t)8);
|
|
mvec[0]->SetMachineOperand(2, target.getRegInfo().getZeroRegNum());
|
|
|
|
if (returnInstr->getReturnValue() != NULL)
|
|
mvec[0]->addImplicitRef(returnInstr->getReturnValue());
|
|
|
|
unsigned n = numInstr++; // delay slot
|
|
mvec[n] = new MachineInstr(NOP);
|
|
|
|
break;
|
|
}
|
|
|
|
case 3: // stmt: Store(reg,reg)
|
|
case 4: // stmt: Store(reg,ptrreg)
|
|
mvec[0] = new MachineInstr(
|
|
ChooseStoreInstruction(
|
|
subtreeRoot->leftChild()->getValue()->getType()));
|
|
SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 5: // stmt: BrUncond
|
|
mvec[0] = new MachineInstr(BA);
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
|
|
(Value*)NULL);
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
|
|
cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(0));
|
|
|
|
// delay slot
|
|
mvec[numInstr++] = new MachineInstr(NOP);
|
|
break;
|
|
|
|
case 206: // stmt: BrCond(setCCconst)
|
|
{ // setCCconst => boolean was computed with `%b = setCC type reg1 const'
|
|
// If the constant is ZERO, we can use the branch-on-integer-register
|
|
// instructions and avoid the SUBcc instruction entirely.
|
|
// Otherwise this is just the same as case 5, so just fall through.
|
|
//
|
|
InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
|
|
assert(constNode &&
|
|
constNode->getNodeType() ==InstrTreeNode::NTConstNode);
|
|
Constant *constVal = cast<Constant>(constNode->getValue());
|
|
bool isValidConst;
|
|
|
|
if ((constVal->getType()->isIntegral()
|
|
|| constVal->getType()->isPointerType())
|
|
&& GetConstantValueAsSignedInt(constVal, isValidConst) == 0
|
|
&& isValidConst)
|
|
{
|
|
BranchInst* brInst=cast<BranchInst>(subtreeRoot->getInstruction());
|
|
|
|
// That constant is a zero after all...
|
|
// Use the left child of setCC as the first argument!
|
|
mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->leftChild()->leftChild()->getValue());
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
|
|
brInst->getSuccessor(0));
|
|
|
|
// delay slot
|
|
mvec[numInstr++] = new MachineInstr(NOP);
|
|
|
|
// false branch
|
|
int n = numInstr++;
|
|
mvec[n] = new MachineInstr(BA);
|
|
mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
|
|
(Value*) NULL);
|
|
mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
|
|
brInst->getSuccessor(1));
|
|
|
|
// delay slot
|
|
mvec[numInstr++] = new MachineInstr(NOP);
|
|
|
|
break;
|
|
}
|
|
// ELSE FALL THROUGH
|
|
}
|
|
|
|
case 6: // stmt: BrCond(bool)
|
|
{ // bool => boolean was computed with some boolean operator
|
|
// (SetCC, Not, ...). We need to check whether the type was a FP,
|
|
// signed int or unsigned int, and check the branching condition in
|
|
// order to choose the branch to use.
|
|
// If it is an integer CC, we also need to find the unique
|
|
// TmpInstruction representing that CC.
|
|
//
|
|
BranchInst* brInst = cast<BranchInst>(subtreeRoot->getInstruction());
|
|
bool isFPBranch;
|
|
mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot,
|
|
isFPBranch));
|
|
|
|
Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(),
|
|
brInst->getParent()->getParent(),
|
|
isFPBranch? Type::FloatTy : Type::IntTy);
|
|
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, ccValue);
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
|
|
brInst->getSuccessor(0));
|
|
|
|
// delay slot
|
|
mvec[numInstr++] = new MachineInstr(NOP);
|
|
|
|
// false branch
|
|
int n = numInstr++;
|
|
mvec[n] = new MachineInstr(BA);
|
|
mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
|
|
(Value*) NULL);
|
|
mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
|
|
brInst->getSuccessor(1));
|
|
|
|
// delay slot
|
|
mvec[numInstr++] = new MachineInstr(NOP);
|
|
break;
|
|
}
|
|
|
|
case 208: // stmt: BrCond(boolconst)
|
|
{
|
|
// boolconst => boolean is a constant; use BA to first or second label
|
|
Constant* constVal =
|
|
cast<Constant>(subtreeRoot->leftChild()->getValue());
|
|
unsigned dest = cast<ConstantBool>(constVal)->getValue()? 0 : 1;
|
|
|
|
mvec[0] = new MachineInstr(BA);
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
|
|
(Value*) NULL);
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
|
|
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(dest));
|
|
|
|
// delay slot
|
|
mvec[numInstr++] = new MachineInstr(NOP);
|
|
break;
|
|
}
|
|
|
|
case 8: // stmt: BrCond(boolreg)
|
|
{ // boolreg => boolean is stored in an existing register.
|
|
// Just use the branch-on-integer-register instruction!
|
|
//
|
|
mvec[0] = new MachineInstr(BRNZ);
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->leftChild()->getValue());
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
|
|
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
|
|
|
|
// delay slot
|
|
mvec[numInstr++] = new MachineInstr(NOP); // delay slot
|
|
|
|
// false branch
|
|
int n = numInstr++;
|
|
mvec[n] = new MachineInstr(BA);
|
|
mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
|
|
(Value*) NULL);
|
|
mvec[n]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
|
|
((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
|
|
|
|
// delay slot
|
|
mvec[numInstr++] = new MachineInstr(NOP);
|
|
break;
|
|
}
|
|
|
|
case 9: // stmt: Switch(reg)
|
|
assert(0 && "*** SWITCH instruction is not implemented yet.");
|
|
numInstr = 0;
|
|
break;
|
|
|
|
case 10: // reg: VRegList(reg, reg)
|
|
assert(0 && "VRegList should never be the topmost non-chain rule");
|
|
break;
|
|
|
|
case 21: // bool: Not(bool): Both these are implemented as:
|
|
case 321: // reg: BNot(reg) : reg = reg XOR-NOT 0
|
|
mvec[0] = new MachineInstr(XNOR);
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->leftChild()->getValue());
|
|
mvec[0]->SetMachineOperand(1, target.getRegInfo().getZeroRegNum());
|
|
mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->getValue());
|
|
break;
|
|
|
|
case 322: // reg: ToBoolTy(bool):
|
|
case 22: // reg: ToBoolTy(reg):
|
|
{
|
|
const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
|
|
assert(opType->isIntegral() || opType->isPointerType()
|
|
|| opType == Type::BoolTy);
|
|
numInstr = 0;
|
|
forwardOperandNum = 0;
|
|
break;
|
|
}
|
|
|
|
case 23: // reg: ToUByteTy(reg)
|
|
case 25: // reg: ToUShortTy(reg)
|
|
case 27: // reg: ToUIntTy(reg)
|
|
case 29: // reg: ToULongTy(reg)
|
|
{
|
|
const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
|
|
assert(opType->isIntegral() ||
|
|
opType->isPointerType() ||
|
|
opType == Type::BoolTy && "Cast is illegal for other types");
|
|
numInstr = 0;
|
|
forwardOperandNum = 0;
|
|
break;
|
|
}
|
|
|
|
case 24: // reg: ToSByteTy(reg)
|
|
case 26: // reg: ToShortTy(reg)
|
|
case 28: // reg: ToIntTy(reg)
|
|
case 30: // reg: ToLongTy(reg)
|
|
{
|
|
const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
|
|
if (opType->isIntegral()
|
|
|| opType->isPointerType()
|
|
|| opType == Type::BoolTy)
|
|
{
|
|
numInstr = 0;
|
|
forwardOperandNum = 0;
|
|
}
|
|
else
|
|
{
|
|
// If the source operand is an FP type, the int result must be
|
|
// copied from float to int register via memory!
|
|
Instruction *dest = subtreeRoot->getInstruction();
|
|
Value* leftVal = subtreeRoot->leftChild()->getValue();
|
|
Value* destForCast;
|
|
vector<MachineInstr*> minstrVec;
|
|
|
|
if (opType == Type::FloatTy || opType == Type::DoubleTy)
|
|
{
|
|
// Create a temporary to represent the INT register
|
|
// into which the FP value will be copied via memory.
|
|
// The type of this temporary will determine the FP
|
|
// register used: single-prec for a 32-bit int or smaller,
|
|
// double-prec for a 64-bit int.
|
|
//
|
|
const Type* destTypeToUse =
|
|
(dest->getType() == Type::LongTy)? Type::DoubleTy
|
|
: Type::FloatTy;
|
|
destForCast = new TmpInstruction(destTypeToUse, leftVal);
|
|
MachineCodeForInstruction &MCFI =
|
|
MachineCodeForInstruction::get(dest);
|
|
MCFI.addTemp(destForCast);
|
|
|
|
vector<TmpInstruction*> tempVec;
|
|
target.getInstrInfo().CreateCodeToCopyFloatToInt(
|
|
dest->getParent()->getParent(),
|
|
(TmpInstruction*) destForCast, dest,
|
|
minstrVec, tempVec, target);
|
|
|
|
for (unsigned i=0; i < tempVec.size(); ++i)
|
|
MCFI.addTemp(tempVec[i]);
|
|
}
|
|
else
|
|
destForCast = leftVal;
|
|
|
|
MachineOpCode opCode=ChooseConvertToIntInstr(subtreeRoot, opType);
|
|
assert(opCode != INVALID_OPCODE && "Expected to need conversion!");
|
|
|
|
mvec[0] = new MachineInstr(opCode);
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
leftVal);
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
|
|
destForCast);
|
|
|
|
assert(numInstr == 1 && "Should be initialized to 1 at the top");
|
|
for (unsigned i=0; i < minstrVec.size(); ++i)
|
|
mvec[numInstr++] = minstrVec[i];
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 31: // reg: ToFloatTy(reg):
|
|
case 32: // reg: ToDoubleTy(reg):
|
|
case 232: // reg: ToDoubleTy(Constant):
|
|
|
|
// If this instruction has a parent (a user) in the tree
|
|
// and the user is translated as an FsMULd instruction,
|
|
// then the cast is unnecessary. So check that first.
|
|
// In the future, we'll want to do the same for the FdMULq instruction,
|
|
// so do the check here instead of only for ToFloatTy(reg).
|
|
//
|
|
if (subtreeRoot->parent() != NULL &&
|
|
MachineCodeForInstruction::get(((InstructionNode*)subtreeRoot->parent())->getInstruction())[0]->getOpCode() == FSMULD)
|
|
{
|
|
numInstr = 0;
|
|
forwardOperandNum = 0;
|
|
}
|
|
else
|
|
{
|
|
Value* leftVal = subtreeRoot->leftChild()->getValue();
|
|
const Type* opType = leftVal->getType();
|
|
MachineOpCode opCode=ChooseConvertToFloatInstr(subtreeRoot,opType);
|
|
if (opCode == INVALID_OPCODE) // no conversion needed
|
|
{
|
|
numInstr = 0;
|
|
forwardOperandNum = 0;
|
|
}
|
|
else
|
|
{
|
|
// If the source operand is a non-FP type it must be
|
|
// first copied from int to float register via memory!
|
|
Instruction *dest = subtreeRoot->getInstruction();
|
|
Value* srcForCast;
|
|
int n = 0;
|
|
if (opType != Type::FloatTy && opType != Type::DoubleTy)
|
|
{
|
|
// Create a temporary to represent the FP register
|
|
// into which the integer will be copied via memory.
|
|
// The type of this temporary will determine the FP
|
|
// register used: single-prec for a 32-bit int or smaller,
|
|
// double-prec for a 64-bit int.
|
|
//
|
|
const Type* srcTypeToUse =
|
|
(leftVal->getType() == Type::LongTy)? Type::DoubleTy
|
|
: Type::FloatTy;
|
|
|
|
srcForCast = new TmpInstruction(srcTypeToUse, dest);
|
|
MachineCodeForInstruction &DestMCFI =
|
|
MachineCodeForInstruction::get(dest);
|
|
DestMCFI.addTemp(srcForCast);
|
|
|
|
vector<MachineInstr*> minstrVec;
|
|
vector<TmpInstruction*> tempVec;
|
|
target.getInstrInfo().CreateCodeToCopyIntToFloat(
|
|
dest->getParent()->getParent(),
|
|
leftVal, (TmpInstruction*) srcForCast,
|
|
minstrVec, tempVec, target);
|
|
|
|
for (unsigned i=0; i < minstrVec.size(); ++i)
|
|
mvec[n++] = minstrVec[i];
|
|
|
|
for (unsigned i=0; i < tempVec.size(); ++i)
|
|
DestMCFI.addTemp(tempVec[i]);
|
|
}
|
|
else
|
|
srcForCast = leftVal;
|
|
|
|
MachineInstr* castI = new MachineInstr(opCode);
|
|
castI->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
srcForCast);
|
|
castI->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
|
|
dest);
|
|
mvec[n++] = castI;
|
|
numInstr = n;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 19: // reg: ToArrayTy(reg):
|
|
case 20: // reg: ToPointerTy(reg):
|
|
numInstr = 0;
|
|
forwardOperandNum = 0;
|
|
break;
|
|
|
|
case 233: // reg: Add(reg, Constant)
|
|
mvec[0] = CreateAddConstInstruction(subtreeRoot);
|
|
if (mvec[0] != NULL)
|
|
break;
|
|
// ELSE FALL THROUGH
|
|
|
|
case 33: // reg: Add(reg, reg)
|
|
mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 234: // reg: Sub(reg, Constant)
|
|
mvec[0] = CreateSubConstInstruction(subtreeRoot);
|
|
if (mvec[0] != NULL)
|
|
break;
|
|
// ELSE FALL THROUGH
|
|
|
|
case 34: // reg: Sub(reg, reg)
|
|
mvec[0] = new MachineInstr(ChooseSubInstructionByType(
|
|
subtreeRoot->getInstruction()->getType()));
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 135: // reg: Mul(todouble, todouble)
|
|
checkCast = true;
|
|
// FALL THROUGH
|
|
|
|
case 35: // reg: Mul(reg, reg)
|
|
mvec[0] =new MachineInstr(ChooseMulInstruction(subtreeRoot,checkCast));
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 335: // reg: Mul(todouble, todoubleConst)
|
|
checkCast = true;
|
|
// FALL THROUGH
|
|
|
|
case 235: // reg: Mul(reg, Constant)
|
|
mvec[0] = CreateMulConstInstruction(target, subtreeRoot, mvec[1]);
|
|
if (mvec[0] == NULL)
|
|
{
|
|
mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot,
|
|
checkCast));
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
}
|
|
else
|
|
if (mvec[1] != NULL)
|
|
++numInstr;
|
|
break;
|
|
|
|
case 236: // reg: Div(reg, Constant)
|
|
mvec[0] = CreateDivConstInstruction(target, subtreeRoot, mvec[1]);
|
|
if (mvec[0] != NULL)
|
|
{
|
|
if (mvec[1] != NULL)
|
|
++numInstr;
|
|
}
|
|
else
|
|
// ELSE FALL THROUGH
|
|
|
|
case 36: // reg: Div(reg, reg)
|
|
mvec[0] = new MachineInstr(ChooseDivInstruction(target, subtreeRoot));
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 37: // reg: Rem(reg, reg)
|
|
case 237: // reg: Rem(reg, Constant)
|
|
{
|
|
Instruction* remInstr = subtreeRoot->getInstruction();
|
|
|
|
TmpInstruction* quot = new TmpInstruction(
|
|
subtreeRoot->leftChild()->getValue(),
|
|
subtreeRoot->rightChild()->getValue());
|
|
TmpInstruction* prod = new TmpInstruction(
|
|
quot,
|
|
subtreeRoot->rightChild()->getValue());
|
|
MachineCodeForInstruction::get(remInstr).addTemp(quot).addTemp(prod);
|
|
|
|
mvec[0] = new MachineInstr(ChooseDivInstruction(target, subtreeRoot));
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,quot);
|
|
|
|
int n = numInstr++;
|
|
mvec[n] = new MachineInstr(ChooseMulInstructionByType(
|
|
subtreeRoot->getInstruction()->getType()));
|
|
mvec[n]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,quot);
|
|
mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->rightChild()->getValue());
|
|
mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,prod);
|
|
|
|
n = numInstr++;
|
|
mvec[n] = new MachineInstr(ChooseSubInstructionByType(
|
|
subtreeRoot->getInstruction()->getType()));
|
|
Set3OperandsFromInstr(mvec[n], subtreeRoot, target);
|
|
mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,prod);
|
|
|
|
break;
|
|
}
|
|
|
|
case 38: // bool: And(bool, bool)
|
|
case 238: // bool: And(bool, boolconst)
|
|
case 338: // reg : BAnd(reg, reg)
|
|
case 538: // reg : BAnd(reg, Constant)
|
|
mvec[0] = new MachineInstr(AND);
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 138: // bool: And(bool, not)
|
|
case 438: // bool: BAnd(bool, not)
|
|
mvec[0] = new MachineInstr(ANDN);
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 39: // bool: Or(bool, bool)
|
|
case 239: // bool: Or(bool, boolconst)
|
|
case 339: // reg : BOr(reg, reg)
|
|
case 539: // reg : BOr(reg, Constant)
|
|
mvec[0] = new MachineInstr(ORN);
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 139: // bool: Or(bool, not)
|
|
case 439: // bool: BOr(bool, not)
|
|
mvec[0] = new MachineInstr(ORN);
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 40: // bool: Xor(bool, bool)
|
|
case 240: // bool: Xor(bool, boolconst)
|
|
case 340: // reg : BXor(reg, reg)
|
|
case 540: // reg : BXor(reg, Constant)
|
|
mvec[0] = new MachineInstr(XOR);
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 140: // bool: Xor(bool, not)
|
|
case 440: // bool: BXor(bool, not)
|
|
mvec[0] = new MachineInstr(XNOR);
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 41: // boolconst: SetCC(reg, Constant)
|
|
// Check if this is an integer comparison, and
|
|
// there is a parent, and the parent decided to use
|
|
// a branch-on-integer-register instead of branch-on-condition-code.
|
|
// If so, the SUBcc instruction is not required.
|
|
// (However, we must still check for constants to be loaded from
|
|
// the constant pool so that such a load can be associated with
|
|
// this instruction.)
|
|
//
|
|
// Otherwise this is just the same as case 42, so just fall through.
|
|
//
|
|
if ((subtreeRoot->leftChild()->getValue()->getType()->isIntegral() ||
|
|
subtreeRoot->leftChild()->getValue()->getType()->isPointerType())
|
|
&& subtreeRoot->parent() != NULL)
|
|
{
|
|
InstructionNode* parent = (InstructionNode*) subtreeRoot->parent();
|
|
assert(parent->getNodeType() == InstrTreeNode::NTInstructionNode);
|
|
const MachineCodeForInstruction &minstrVec =
|
|
MachineCodeForInstruction::get(parent->getInstruction());
|
|
MachineOpCode parentOpCode;
|
|
if (parent->getInstruction()->getOpcode() == Instruction::Br &&
|
|
(parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
|
|
parentOpCode <= BRGEZ)
|
|
{
|
|
numInstr = 0; // don't forward the operand!
|
|
break;
|
|
}
|
|
}
|
|
// ELSE FALL THROUGH
|
|
|
|
case 42: // bool: SetCC(reg, reg):
|
|
{
|
|
// This generates a SUBCC instruction, putting the difference in
|
|
// a result register, and setting a condition code.
|
|
//
|
|
// If the boolean result of the SetCC is used by anything other
|
|
// than a single branch instruction, the boolean must be
|
|
// computed and stored in the result register. Otherwise, discard
|
|
// the difference (by using %g0) and keep only the condition code.
|
|
//
|
|
// To compute the boolean result in a register we use a conditional
|
|
// move, unless the result of the SUBCC instruction can be used as
|
|
// the bool! This assumes that zero is FALSE and any non-zero
|
|
// integer is TRUE.
|
|
//
|
|
InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent();
|
|
Instruction* setCCInstr = subtreeRoot->getInstruction();
|
|
bool keepBoolVal = (parentNode == NULL ||
|
|
parentNode->getInstruction()->getOpcode()
|
|
!= Instruction::Br);
|
|
bool subValIsBoolVal = setCCInstr->getOpcode() == Instruction::SetNE;
|
|
bool keepSubVal = keepBoolVal && subValIsBoolVal;
|
|
bool computeBoolVal = keepBoolVal && ! subValIsBoolVal;
|
|
|
|
bool mustClearReg;
|
|
int valueToMove;
|
|
MachineOpCode movOpCode = 0;
|
|
|
|
// Mark the 4th operand as being a CC register, and as a def
|
|
// A TmpInstruction is created to represent the CC "result".
|
|
// Unlike other instances of TmpInstruction, this one is used
|
|
// by machine code of multiple LLVM instructions, viz.,
|
|
// the SetCC and the branch. Make sure to get the same one!
|
|
// Note that we do this even for FP CC registers even though they
|
|
// are explicit operands, because the type of the operand
|
|
// needs to be a floating point condition code, not an integer
|
|
// condition code. Think of this as casting the bool result to
|
|
// a FP condition code register.
|
|
//
|
|
Value* leftVal = subtreeRoot->leftChild()->getValue();
|
|
bool isFPCompare = (leftVal->getType() == Type::FloatTy ||
|
|
leftVal->getType() == Type::DoubleTy);
|
|
|
|
TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr,
|
|
setCCInstr->getParent()->getParent(),
|
|
isFPCompare? Type::FloatTy : Type::IntTy);
|
|
MachineCodeForInstruction::get(setCCInstr).addTemp(tmpForCC);
|
|
|
|
if (! isFPCompare)
|
|
{
|
|
// Integer condition: dest. should be %g0 or an integer register.
|
|
// If result must be saved but condition is not SetEQ then we need
|
|
// a separate instruction to compute the bool result, so discard
|
|
// result of SUBcc instruction anyway.
|
|
//
|
|
mvec[0] = new MachineInstr(SUBcc);
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target, ! keepSubVal);
|
|
|
|
mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister,
|
|
tmpForCC, /*def*/true);
|
|
|
|
if (computeBoolVal)
|
|
{ // recompute bool using the integer condition codes
|
|
movOpCode =
|
|
ChooseMovpccAfterSub(subtreeRoot,mustClearReg,valueToMove);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// FP condition: dest of FCMP should be some FCCn register
|
|
mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
|
|
tmpForCC);
|
|
mvec[0]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->leftChild()->getValue());
|
|
mvec[0]->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->rightChild()->getValue());
|
|
|
|
if (computeBoolVal)
|
|
{// recompute bool using the FP condition codes
|
|
mustClearReg = true;
|
|
valueToMove = 1;
|
|
movOpCode = ChooseMovFpccInstruction(subtreeRoot);
|
|
}
|
|
}
|
|
|
|
if (computeBoolVal)
|
|
{
|
|
if (mustClearReg)
|
|
{// Unconditionally set register to 0
|
|
int n = numInstr++;
|
|
mvec[n] = new MachineInstr(SETHI);
|
|
mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,
|
|
(int64_t)0);
|
|
mvec[n]->SetMachineOperand(1,MachineOperand::MO_VirtualRegister,
|
|
setCCInstr);
|
|
}
|
|
|
|
// Now conditionally move `valueToMove' (0 or 1) into the register
|
|
int n = numInstr++;
|
|
mvec[n] = new MachineInstr(movOpCode);
|
|
mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
|
|
tmpForCC);
|
|
mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
|
|
valueToMove);
|
|
mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
|
|
setCCInstr);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 43: // boolreg: VReg
|
|
case 44: // boolreg: Constant
|
|
numInstr = 0;
|
|
break;
|
|
|
|
case 51: // reg: Load(reg)
|
|
case 52: // reg: Load(ptrreg)
|
|
case 53: // reg: LoadIdx(reg,reg)
|
|
case 54: // reg: LoadIdx(ptrreg,reg)
|
|
mvec[0] = new MachineInstr(ChooseLoadInstruction(
|
|
subtreeRoot->getValue()->getType()));
|
|
SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 55: // reg: GetElemPtr(reg)
|
|
case 56: // reg: GetElemPtrIdx(reg,reg)
|
|
if (subtreeRoot->parent() != NULL)
|
|
{
|
|
// If the parent was a memory operation and not an array access,
|
|
// the parent will fold this instruction in so generate nothing.
|
|
//
|
|
Instruction* parent =
|
|
cast<Instruction>(subtreeRoot->parent()->getValue());
|
|
if (parent->getOpcode() == Instruction::Load ||
|
|
parent->getOpcode() == Instruction::Store ||
|
|
parent->getOpcode() == Instruction::GetElementPtr)
|
|
{
|
|
// Check if the parent is an array access,
|
|
// If so, we still need to generate this instruction.
|
|
GetElementPtrInst* getElemInst =
|
|
cast<GetElementPtrInst>(subtreeRoot->getInstruction());
|
|
const PointerType* ptrType =
|
|
cast<PointerType>(getElemInst->getPointerOperand()->getType());
|
|
if (! ptrType->getElementType()->isArrayType())
|
|
{// we don't need a separate instr
|
|
numInstr = 0; // don't forward operand!
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// else in all other cases we need to a separate ADD instruction
|
|
mvec[0] = new MachineInstr(ADD);
|
|
SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
|
|
case 57: // reg: Alloca: Implement as 1 instruction:
|
|
{ // add %fp, offsetFromFP -> result
|
|
Instruction* instr = subtreeRoot->getInstruction();
|
|
const PointerType* instrType = (const PointerType*) instr->getType();
|
|
assert(instrType->isPointerType());
|
|
int tsize = (int)
|
|
target.findOptimalStorageSize(instrType->getElementType());
|
|
assert(tsize != 0 && "Just to check when this can happen");
|
|
|
|
Method* method = instr->getParent()->getParent();
|
|
MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(method);
|
|
int offsetFromFP = mcInfo.allocateLocalVar(target, instr, (unsigned int) tsize);
|
|
|
|
// Create a temporary Value to hold the constant offset.
|
|
// This is needed because it may not fit in the immediate field.
|
|
ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP);
|
|
|
|
// Instruction 1: add %fp, offsetFromFP -> result
|
|
mvec[0] = new MachineInstr(ADD);
|
|
mvec[0]->SetMachineOperand(0, target.getRegInfo().getFramePointer());
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
|
|
offsetVal);
|
|
mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
|
|
instr);
|
|
break;
|
|
}
|
|
|
|
case 58: // reg: Alloca(reg): Implement as 3 instructions:
|
|
// mul num, typeSz -> tmp
|
|
// sub %sp, tmp -> %sp
|
|
{ // add %sp, frameSizeBelowDynamicArea -> result
|
|
Instruction* instr = subtreeRoot->getInstruction();
|
|
const PointerType* instrType = (const PointerType*) instr->getType();
|
|
assert(instrType->isPointerType() &&
|
|
instrType->getElementType()->isArrayType());
|
|
const Type* eltType =
|
|
((ArrayType*) instrType->getElementType())->getElementType();
|
|
int tsize = (int) target.findOptimalStorageSize(eltType);
|
|
|
|
assert(tsize != 0 && "Just to check when this can happen");
|
|
|
|
// Create a temporary Value to hold the constant type-size
|
|
ConstantSInt* tsizeVal = ConstantSInt::get(Type::IntTy, tsize);
|
|
|
|
// Create a temporary Value to hold the constant offset from SP
|
|
Method* method = instr->getParent()->getParent();
|
|
bool ignore; // we don't need this
|
|
ConstantSInt* dynamicAreaOffset = ConstantSInt::get(Type::IntTy,
|
|
target.getFrameInfo().getDynamicAreaOffset(MachineCodeForMethod::get(method),
|
|
ignore));
|
|
|
|
// Create a temporary value to hold `tmp'
|
|
Instruction* tmpInstr = new TmpInstruction(
|
|
subtreeRoot->leftChild()->getValue(),
|
|
NULL /*could insert tsize here*/);
|
|
MachineCodeForInstruction::get(subtreeRoot->getInstruction()).addTemp(tmpInstr);
|
|
|
|
// Instruction 1: mul numElements, typeSize -> tmp
|
|
mvec[0] = new MachineInstr(MULX);
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->leftChild()->getValue());
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
|
|
tsizeVal);
|
|
mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
|
|
tmpInstr);
|
|
|
|
// Instruction 2: sub %sp, tmp -> %sp
|
|
numInstr++;
|
|
mvec[1] = new MachineInstr(SUB);
|
|
mvec[1]->SetMachineOperand(0, target.getRegInfo().getStackPointer());
|
|
mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
|
|
tmpInstr);
|
|
mvec[1]->SetMachineOperand(2, target.getRegInfo().getStackPointer());
|
|
|
|
// Instruction 3: add %sp, frameSizeBelowDynamicArea -> result
|
|
numInstr++;
|
|
mvec[2] = new MachineInstr(ADD);
|
|
mvec[2]->SetMachineOperand(0, target.getRegInfo().getStackPointer());
|
|
mvec[2]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
|
|
dynamicAreaOffset);
|
|
mvec[2]->SetMachineOperand(2,MachineOperand::MO_VirtualRegister,instr);
|
|
break;
|
|
}
|
|
|
|
case 61: // reg: Call
|
|
{ // Generate a call-indirect (i.e., jmpl) for now to expose
|
|
// the potential need for registers. If an absolute address
|
|
// is available, replace this with a CALL instruction.
|
|
// Mark both the indirection register and the return-address
|
|
// register as hidden virtual registers.
|
|
// Also, mark the operands of the Call and return value (if
|
|
// any) as implicit operands of the CALL machine instruction.
|
|
//
|
|
CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction());
|
|
Value *callee = callInstr->getCalledValue();
|
|
|
|
Instruction* retAddrReg = new TmpInstruction(callInstr);
|
|
|
|
// Note temporary values in the machineInstrVec for the VM instr.
|
|
//
|
|
// WARNING: Operands 0..N-1 must go in slots 0..N-1 of implicitUses.
|
|
// The result value must go in slot N. This is assumed
|
|
// in register allocation.
|
|
//
|
|
MachineCodeForInstruction::get(callInstr).addTemp(retAddrReg);
|
|
|
|
|
|
// Generate the machine instruction and its operands.
|
|
// Use CALL for direct function calls; this optimistically assumes
|
|
// the PC-relative address fits in the CALL address field (22 bits).
|
|
// Use JMPL for indirect calls.
|
|
//
|
|
if (callee->getValueType() == Value::MethodVal)
|
|
{ // direct function call
|
|
mvec[0] = new MachineInstr(CALL);
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,
|
|
callee);
|
|
}
|
|
else
|
|
{ // indirect function call
|
|
mvec[0] = new MachineInstr(JMPLCALL);
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
callee);
|
|
mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
|
|
(int64_t) 0);
|
|
mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
|
|
retAddrReg);
|
|
}
|
|
|
|
// Add the call operands and return value as implicit refs
|
|
for (unsigned i=0, N=callInstr->getNumOperands(); i < N; ++i)
|
|
if (callInstr->getOperand(i) != callee)
|
|
mvec[0]->addImplicitRef(callInstr->getOperand(i));
|
|
|
|
if (callInstr->getType() != Type::VoidTy)
|
|
mvec[0]->addImplicitRef(callInstr, /*isDef*/ true);
|
|
|
|
// For the CALL instruction, the ret. addr. reg. is also implicit
|
|
if (callee->getValueType() == Value::MethodVal)
|
|
mvec[0]->addImplicitRef(retAddrReg, /*isDef*/ true);
|
|
|
|
mvec[numInstr++] = new MachineInstr(NOP); // delay slot
|
|
break;
|
|
}
|
|
|
|
case 62: // reg: Shl(reg, reg)
|
|
{ const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
|
|
assert(opType->isIntegral()
|
|
|| opType == Type::BoolTy
|
|
|| opType->isPointerType()&& "Shl unsupported for other types");
|
|
mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
}
|
|
|
|
case 63: // reg: Shr(reg, reg)
|
|
{ const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
|
|
assert(opType->isIntegral()
|
|
|| opType == Type::BoolTy
|
|
|| opType->isPointerType() &&"Shr unsupported for other types");
|
|
mvec[0] = new MachineInstr((opType->isSigned()
|
|
? ((opType == Type::LongTy)? SRAX : SRA)
|
|
: ((opType == Type::LongTy)? SRLX : SRL)));
|
|
Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
|
|
break;
|
|
}
|
|
|
|
case 64: // reg: Phi(reg,reg)
|
|
numInstr = 0; // don't forward the value
|
|
break;
|
|
#undef NEED_PHI_MACHINE_INSTRS
|
|
#ifdef NEED_PHI_MACHINE_INSTRS
|
|
{ // This instruction has variable #operands, so resultPos is 0.
|
|
Instruction* phi = subtreeRoot->getInstruction();
|
|
mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands());
|
|
mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
|
|
subtreeRoot->getValue());
|
|
for (unsigned i=0, N=phi->getNumOperands(); i < N; i++)
|
|
mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister,
|
|
phi->getOperand(i));
|
|
break;
|
|
}
|
|
#endif // NEED_PHI_MACHINE_INSTRS
|
|
|
|
case 71: // reg: VReg
|
|
case 72: // reg: Constant
|
|
numInstr = 0; // don't forward the value
|
|
break;
|
|
|
|
default:
|
|
assert(0 && "Unrecognized BURG rule");
|
|
numInstr = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (forwardOperandNum >= 0)
|
|
{ // We did not generate a machine instruction but need to use operand.
|
|
// If user is in the same tree, replace Value in its machine operand.
|
|
// If not, insert a copy instruction which should get coalesced away
|
|
// by register allocation.
|
|
if (subtreeRoot->parent() != NULL)
|
|
ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
|
|
else
|
|
{
|
|
vector<MachineInstr*> minstrVec;
|
|
target.getInstrInfo().CreateCopyInstructionsByType(target,
|
|
subtreeRoot->getInstruction()->getOperand(forwardOperandNum),
|
|
subtreeRoot->getInstruction(), minstrVec);
|
|
assert(minstrVec.size() > 0);
|
|
for (unsigned i=0; i < minstrVec.size(); ++i)
|
|
mvec[numInstr++] = minstrVec[i];
|
|
}
|
|
}
|
|
|
|
return numInstr;
|
|
}
|
|
|
|
|