llvm-6502/lib/CodeGen
Jakob Stoklund Olesen 40ef4fe82a Properly handle reloading and spilling around partial redefines in
LocalRewriter.

This is a bit of a hack that adds an implicit use operand to model the
read-modify-write nature of a partial redef. Uses and defs are rewritten in
separate passes, and a single operand would never be processed twice.

<rdar://problem/8518892>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116210 91177308-0d34-0410-b5e6-96231b3b80d8
2010-10-11 18:10:36 +00:00
..
AsmPrinter Line number 0 indicates there is no source line/file name info available for this construct. 2010-10-08 17:18:54 +00:00
SelectionDAG fix the default va_arg expansion (in the realignment case) to not implicitly 2010-10-10 18:36:26 +00:00
AggressiveAntiDepBreaker.cpp Anti-dependency breaking needs to be careful not to use reserved regs 2010-09-02 17:12:55 +00:00
AggressiveAntiDepBreaker.h
Analysis.cpp ComputeLinearIndex doesn't need its TLI argument. 2010-10-06 16:18:29 +00:00
AntiDepBreaker.h
BranchFolding.cpp
BranchFolding.h
CalcSpillWeights.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
CallingConvLower.cpp
CMakeLists.txt Add initialization routines for CodeGen. 2010-10-07 18:41:20 +00:00
CodeGen.cpp Add initialization routines for CodeGen. 2010-10-07 18:41:20 +00:00
CodePlacementOpt.cpp
CriticalAntiDepBreaker.cpp Fix a miscompile in 186.crafty for Thumb2 that was exposed by Evan's 2010-10-02 01:49:29 +00:00
CriticalAntiDepBreaker.h
DeadMachineInstructionElim.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
DwarfEHPrepare.cpp Reapply commit 112702 which was speculatively reverted by echristo. 2010-09-03 08:31:48 +00:00
ELF.h
ELFCodeEmitter.cpp
ELFCodeEmitter.h
ELFWriter.cpp
ELFWriter.h
GCMetadata.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
GCMetadataPrinter.cpp
GCStrategy.cpp Attach a DebugLoc to a GC point in order to get precise information in the JIT of a GC point. 2010-09-24 17:27:50 +00:00
IfConversion.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
InlineSpiller.cpp Update SplitEditor API to reflect the fact that the original live interval is 2010-10-05 22:19:33 +00:00
IntrinsicLowering.cpp Get rid of pop_macro warnings on MSVC. 2010-09-24 19:48:47 +00:00
LatencyPriorityQueue.cpp
LiveInterval.cpp Silence compiler warning. 2010-10-09 16:36:44 +00:00
LiveIntervalAnalysis.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
LiveStackAnalysis.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
LiveVariables.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
LLVMTargetMachine.cpp Call InitSections in llc and clang so that the binaries produced by them 2010-10-08 19:37:38 +00:00
LocalStackSlotAllocation.cpp Improve virtual frame base register allocation heuristics. 2010-08-31 17:58:19 +00:00
LowerSubregs.cpp Remove unused functions. 2010-08-16 17:18:20 +00:00
MachineBasicBlock.cpp Properly update MachineDominators when splitting critical edge. 2010-08-19 23:32:47 +00:00
MachineCSE.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
MachineDominators.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
MachineFunction.cpp force clients of MachineFunction::getMachineMemOperand to provide a 2010-09-21 04:46:39 +00:00
MachineFunctionAnalysis.cpp
MachineFunctionPass.cpp
MachineFunctionPrinterPass.cpp
MachineInstr.cpp convert a couple more places to use the new getStore() 2010-09-21 18:51:21 +00:00
MachineLICM.cpp Don't waste time unfolding simple loads. The unfolded copy won't be hoisted. 2010-10-08 18:59:19 +00:00
MachineLoopInfo.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
MachineModuleInfo.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
MachineModuleInfoImpls.cpp
MachinePassRegistry.cpp
MachineRegisterInfo.cpp Add MachineRegisterInfo::constrainRegClass and use it in MachineCSE. 2010-10-06 23:54:39 +00:00
MachineSink.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
MachineSSAUpdater.cpp
MachineVerifier.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
Makefile
ObjectCodeEmitter.cpp
OcamlGC.cpp
OptimizePHIs.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
Passes.cpp
PeepholeOptimizer.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
PHIElimination.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
PHIElimination.h PHI elimination shouldn't require machineloopinfo since it's used at -O0. Move the requirement to LiveIntervalAnalysis instead. Note this does not change the number of times machineloopinfo is computed. 2010-08-17 21:00:37 +00:00
PostRAHazardRecognizer.cpp Teach if-converter to be more careful with predicating instructions that would 2010-09-10 01:29:16 +00:00
PostRASchedulerList.cpp Teach if-converter to be more careful with predicating instructions that would 2010-09-10 01:29:16 +00:00
PreAllocSplitting.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
ProcessImplicitDefs.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
PrologEpilogInserter.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
PrologEpilogInserter.h Simplify eliminateFrameIndex() interface back down now that PEI doesn't need 2010-08-26 23:32:16 +00:00
PseudoSourceValue.cpp
README.txt
RegAllocFast.cpp Add DEBUG message. 2010-09-10 20:32:09 +00:00
RegAllocLinearScan.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
RegAllocPBQP.cpp Removed the older style (in-allocator) problem construction system from the PBQP allocator. Problem construction is now done exclusively with the new builders. 2010-10-04 12:13:07 +00:00
RegisterCoalescer.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
RegisterScavenging.cpp The scavenger should just use getAllocatableSet() rather than reinventing it 2010-09-02 18:29:04 +00:00
RenderMachineFunction.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
RenderMachineFunction.h Added support for register allocators to record which intervals are spill intervals, and where the uses and defs of the original intervals were in the original code. 2010-09-02 08:27:00 +00:00
ScheduleDAG.cpp
ScheduleDAGEmit.cpp
ScheduleDAGInstrs.cpp Avoid compiler warning: comparison between signed and unsigned integer. 2010-10-08 23:01:57 +00:00
ScheduleDAGInstrs.h Teach if-converter to be more careful with predicating instructions that would 2010-09-10 01:29:16 +00:00
ScheduleDAGPrinter.cpp
ShadowStackGC.cpp
ShrinkWrapping.cpp
SimpleRegisterCoalescing.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
SimpleRegisterCoalescing.h
SjLjEHPrepare.cpp
SlotIndexes.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
Spiller.cpp Removed VNInfo::isDefAccurate(). Def "accuracy" can be checked by testing whether LiveIntervals::getInstructionFromIndex(def) returns NULL. 2010-09-25 12:04:16 +00:00
Spiller.h Clean up the Spiller.h interface. 2010-08-13 22:56:53 +00:00
SplitKit.cpp Rename SplitEditor::rewrite to finish() and break it out into a couple of new 2010-10-08 23:42:21 +00:00
SplitKit.h Rename SplitEditor::rewrite to finish() and break it out into a couple of new 2010-10-08 23:42:21 +00:00
Splitter.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
Splitter.h
StackProtector.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
StackSlotColoring.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
StrongPHIElimination.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
TailDuplication.cpp
TargetInstrInfoImpl.cpp force clients of MachineFunction::getMachineMemOperand to provide a 2010-09-21 04:46:39 +00:00
TargetLoweringObjectFileImpl.cpp Do not check that the bodies of two defs of same linkonce global are the same. 2010-10-08 21:50:04 +00:00
TwoAddressInstructionPass.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
UnreachableBlockElim.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
VirtRegMap.cpp Now with fewer extraneous semicolons! 2010-10-07 22:25:06 +00:00
VirtRegMap.h
VirtRegRewriter.cpp Properly handle reloading and spilling around partial redefines in 2010-10-11 18:10:36 +00:00
VirtRegRewriter.h

//===---------------------------------------------------------------------===//

Common register allocation / spilling problem:

        mul lr, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        ldr r4, [sp, #+52]
        mla r4, r3, lr, r4

can be:

        mul lr, r4, lr
        mov r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

and then "merge" mul and mov:

        mul r4, r4, lr
        str lr, [sp, #+52]
        ldr lr, [r1, #+32]
        sxth r3, r3
        mla r4, r3, lr, r4

It also increase the likelyhood the store may become dead.

//===---------------------------------------------------------------------===//

bb27 ...
        ...
        %reg1037 = ADDri %reg1039, 1
        %reg1038 = ADDrs %reg1032, %reg1039, %NOREG, 10
    Successors according to CFG: 0x8b03bf0 (#5)

bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5):
    Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4)
        %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0>

Note ADDri is not a two-address instruction. However, its result %reg1037 is an
operand of the PHI node in bb76 and its operand %reg1039 is the result of the
PHI node. We should treat it as a two-address code and make sure the ADDri is
scheduled after any node that reads %reg1039.

//===---------------------------------------------------------------------===//

Use local info (i.e. register scavenger) to assign it a free register to allow
reuse:
        ldr r3, [sp, #+4]
        add r3, r3, #3
        ldr r2, [sp, #+8]
        add r2, r2, #2
        ldr r1, [sp, #+4]  <==
        add r1, r1, #1
        ldr r0, [sp, #+4]
        add r0, r0, #2

//===---------------------------------------------------------------------===//

LLVM aggressively lift CSE out of loop. Sometimes this can be negative side-
effects:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
load [i + R1]
...
load [i + R2]
...
load [i + R3]

Suppose there is high register pressure, R1, R2, R3, can be spilled. We need
to implement proper re-materialization to handle this:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
R1 = X + 4  @ re-materialized
load [i + R1]
...
R2 = X + 7 @ re-materialized
load [i + R2]
...
R3 = X + 15 @ re-materialized
load [i + R3]

Furthermore, with re-association, we can enable sharing:

R1 = X + 4
R2 = X + 7
R3 = X + 15

loop:
T = i + X
load [T + 4]
...
load [T + 7]
...
load [T + 15]
//===---------------------------------------------------------------------===//

It's not always a good idea to choose rematerialization over spilling. If all
the load / store instructions would be folded then spilling is cheaper because
it won't require new live intervals / registers. See 2003-05-31-LongShifts for
an example.

//===---------------------------------------------------------------------===//

With a copying garbage collector, derived pointers must not be retained across
collector safe points; the collector could move the objects and invalidate the
derived pointer. This is bad enough in the first place, but safe points can
crop up unpredictably. Consider:

        %array = load { i32, [0 x %obj] }** %array_addr
        %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n
        %old = load %obj** %nth_el
        %z = div i64 %x, %y
        store %obj* %new, %obj** %nth_el

If the i64 division is lowered to a libcall, then a safe point will (must)
appear for the call site. If a collection occurs, %array and %nth_el no longer
point into the correct object.

The fix for this is to copy address calculations so that dependent pointers
are never live across safe point boundaries. But the loads cannot be copied
like this if there was an intervening store, so may be hard to get right.

Only a concurrent mutator can trigger a collection at the libcall safe point.
So single-threaded programs do not have this requirement, even with a copying
collector. Still, LLVM optimizations would probably undo a front-end's careful
work.

//===---------------------------------------------------------------------===//

The ocaml frametable structure supports liveness information. It would be good
to support it.

//===---------------------------------------------------------------------===//

The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be
revisited. The check is there to work around a misuse of directives in inline
assembly.

//===---------------------------------------------------------------------===//

It would be good to detect collector/target compatibility instead of silently
doing the wrong thing.

//===---------------------------------------------------------------------===//

It would be really nice to be able to write patterns in .td files for copies,
which would eliminate a bunch of explicit predicates on them (e.g. no side 
effects).  Once this is in place, it would be even better to have tblgen 
synthesize the various copy insertion/inspection methods in TargetInstrInfo.

//===---------------------------------------------------------------------===//

Stack coloring improvments:

1. Do proper LiveStackAnalysis on all stack objects including those which are
   not spill slots.
2. Reorder objects to fill in gaps between objects.
   e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4

//===---------------------------------------------------------------------===//

The scheduler should be able to sort nearby instructions by their address. For
example, in an expanded memset sequence it's not uncommon to see code like this:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

Each of the stores is independent, and the scheduler is currently making an
arbitrary decision about the order.

//===---------------------------------------------------------------------===//

Another opportunitiy in this code is that the $0 could be moved to a register:

  movl $0, 4(%rdi)
  movl $0, 8(%rdi)
  movl $0, 12(%rdi)
  movl $0, 0(%rdi)

This would save substantial code size, especially for longer sequences like
this. It would be easy to have a rule telling isel to avoid matching MOV32mi
if the immediate has more than some fixed number of uses. It's more involved
to teach the register allocator how to do late folding to recover from
excessive register pressure.