mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-29 10:32:47 +00:00
f48eb533d5
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130131 91177308-0d34-0410-b5e6-96231b3b80d8
1766 lines
66 KiB
C++
1766 lines
66 KiB
C++
//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that Mips uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "mips-lower"
|
|
#include "MipsISelLowering.h"
|
|
#include "MipsMachineFunction.h"
|
|
#include "MipsTargetMachine.h"
|
|
#include "MipsTargetObjectFile.h"
|
|
#include "MipsSubtarget.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
using namespace llvm;
|
|
|
|
const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
case MipsISD::JmpLink : return "MipsISD::JmpLink";
|
|
case MipsISD::Hi : return "MipsISD::Hi";
|
|
case MipsISD::Lo : return "MipsISD::Lo";
|
|
case MipsISD::GPRel : return "MipsISD::GPRel";
|
|
case MipsISD::Ret : return "MipsISD::Ret";
|
|
case MipsISD::FPBrcond : return "MipsISD::FPBrcond";
|
|
case MipsISD::FPCmp : return "MipsISD::FPCmp";
|
|
case MipsISD::CMovFP_T : return "MipsISD::CMovFP_T";
|
|
case MipsISD::CMovFP_F : return "MipsISD::CMovFP_F";
|
|
case MipsISD::FPRound : return "MipsISD::FPRound";
|
|
case MipsISD::MAdd : return "MipsISD::MAdd";
|
|
case MipsISD::MAddu : return "MipsISD::MAddu";
|
|
case MipsISD::MSub : return "MipsISD::MSub";
|
|
case MipsISD::MSubu : return "MipsISD::MSubu";
|
|
case MipsISD::DivRem : return "MipsISD::DivRem";
|
|
case MipsISD::DivRemU : return "MipsISD::DivRemU";
|
|
case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64";
|
|
case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
|
|
default : return NULL;
|
|
}
|
|
}
|
|
|
|
MipsTargetLowering::
|
|
MipsTargetLowering(MipsTargetMachine &TM)
|
|
: TargetLowering(TM, new MipsTargetObjectFile()) {
|
|
Subtarget = &TM.getSubtarget<MipsSubtarget>();
|
|
|
|
// Mips does not have i1 type, so use i32 for
|
|
// setcc operations results (slt, sgt, ...).
|
|
setBooleanContents(ZeroOrOneBooleanContent);
|
|
|
|
// Set up the register classes
|
|
addRegisterClass(MVT::i32, Mips::CPURegsRegisterClass);
|
|
addRegisterClass(MVT::f32, Mips::FGR32RegisterClass);
|
|
|
|
// When dealing with single precision only, use libcalls
|
|
if (!Subtarget->isSingleFloat())
|
|
if (!Subtarget->isFP64bit())
|
|
addRegisterClass(MVT::f64, Mips::AFGR64RegisterClass);
|
|
|
|
// Load extented operations for i1 types must be promoted
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
|
|
|
|
// MIPS doesn't have extending float->double load/store
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
|
|
// Used by legalize types to correctly generate the setcc result.
|
|
// Without this, every float setcc comes with a AND/OR with the result,
|
|
// we don't want this, since the fpcmp result goes to a flag register,
|
|
// which is used implicitly by brcond and select operations.
|
|
AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
|
|
|
|
// Mips Custom Operations
|
|
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
|
|
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::i32, Custom);
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
|
|
setOperationAction(ISD::VASTART, MVT::Other, Custom);
|
|
|
|
setOperationAction(ISD::SDIV, MVT::i32, Expand);
|
|
setOperationAction(ISD::SREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i32, Expand);
|
|
|
|
// Operations not directly supported by Mips.
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::Other, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
|
|
setOperationAction(ISD::ROTL, MVT::i32, Expand);
|
|
|
|
if (!Subtarget->isMips32r2())
|
|
setOperationAction(ISD::ROTR, MVT::i32, Expand);
|
|
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::f32, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FPOWI, MVT::f32, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f32, Expand);
|
|
setOperationAction(ISD::FLOG, MVT::f32, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::f32, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::f32, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::f32, Expand);
|
|
|
|
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
|
|
|
|
setOperationAction(ISD::VAARG, MVT::Other, Expand);
|
|
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
|
|
setOperationAction(ISD::VAEND, MVT::Other, Expand);
|
|
|
|
// Use the default for now
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
|
|
|
|
if (Subtarget->isSingleFloat())
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
|
|
|
|
if (!Subtarget->hasSEInReg()) {
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
|
|
}
|
|
|
|
if (!Subtarget->hasBitCount())
|
|
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
|
|
|
|
if (!Subtarget->hasSwap())
|
|
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
|
|
|
|
setTargetDAGCombine(ISD::ADDE);
|
|
setTargetDAGCombine(ISD::SUBE);
|
|
setTargetDAGCombine(ISD::SDIVREM);
|
|
setTargetDAGCombine(ISD::UDIVREM);
|
|
setTargetDAGCombine(ISD::SETCC);
|
|
|
|
setStackPointerRegisterToSaveRestore(Mips::SP);
|
|
computeRegisterProperties();
|
|
}
|
|
|
|
MVT::SimpleValueType MipsTargetLowering::getSetCCResultType(EVT VT) const {
|
|
return MVT::i32;
|
|
}
|
|
|
|
/// getFunctionAlignment - Return the Log2 alignment of this function.
|
|
unsigned MipsTargetLowering::getFunctionAlignment(const Function *) const {
|
|
return 2;
|
|
}
|
|
|
|
// SelectMadd -
|
|
// Transforms a subgraph in CurDAG if the following pattern is found:
|
|
// (addc multLo, Lo0), (adde multHi, Hi0),
|
|
// where,
|
|
// multHi/Lo: product of multiplication
|
|
// Lo0: initial value of Lo register
|
|
// Hi0: initial value of Hi register
|
|
// Return true if pattern matching was successful.
|
|
static bool SelectMadd(SDNode* ADDENode, SelectionDAG* CurDAG) {
|
|
// ADDENode's second operand must be a flag output of an ADDC node in order
|
|
// for the matching to be successful.
|
|
SDNode* ADDCNode = ADDENode->getOperand(2).getNode();
|
|
|
|
if (ADDCNode->getOpcode() != ISD::ADDC)
|
|
return false;
|
|
|
|
SDValue MultHi = ADDENode->getOperand(0);
|
|
SDValue MultLo = ADDCNode->getOperand(0);
|
|
SDNode* MultNode = MultHi.getNode();
|
|
unsigned MultOpc = MultHi.getOpcode();
|
|
|
|
// MultHi and MultLo must be generated by the same node,
|
|
if (MultLo.getNode() != MultNode)
|
|
return false;
|
|
|
|
// and it must be a multiplication.
|
|
if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
|
|
return false;
|
|
|
|
// MultLo amd MultHi must be the first and second output of MultNode
|
|
// respectively.
|
|
if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
|
|
return false;
|
|
|
|
// Transform this to a MADD only if ADDENode and ADDCNode are the only users
|
|
// of the values of MultNode, in which case MultNode will be removed in later
|
|
// phases.
|
|
// If there exist users other than ADDENode or ADDCNode, this function returns
|
|
// here, which will result in MultNode being mapped to a single MULT
|
|
// instruction node rather than a pair of MULT and MADD instructions being
|
|
// produced.
|
|
if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
|
|
return false;
|
|
|
|
SDValue Chain = CurDAG->getEntryNode();
|
|
DebugLoc dl = ADDENode->getDebugLoc();
|
|
|
|
// create MipsMAdd(u) node
|
|
MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
|
|
|
|
SDValue MAdd = CurDAG->getNode(MultOpc, dl,
|
|
MVT::Glue,
|
|
MultNode->getOperand(0),// Factor 0
|
|
MultNode->getOperand(1),// Factor 1
|
|
ADDCNode->getOperand(1),// Lo0
|
|
ADDENode->getOperand(1));// Hi0
|
|
|
|
// create CopyFromReg nodes
|
|
SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
|
|
MAdd);
|
|
SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
|
|
Mips::HI, MVT::i32,
|
|
CopyFromLo.getValue(2));
|
|
|
|
// replace uses of adde and addc here
|
|
if (!SDValue(ADDCNode, 0).use_empty())
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
|
|
|
|
if (!SDValue(ADDENode, 0).use_empty())
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
|
|
|
|
return true;
|
|
}
|
|
|
|
// SelectMsub -
|
|
// Transforms a subgraph in CurDAG if the following pattern is found:
|
|
// (addc Lo0, multLo), (sube Hi0, multHi),
|
|
// where,
|
|
// multHi/Lo: product of multiplication
|
|
// Lo0: initial value of Lo register
|
|
// Hi0: initial value of Hi register
|
|
// Return true if pattern matching was successful.
|
|
static bool SelectMsub(SDNode* SUBENode, SelectionDAG* CurDAG) {
|
|
// SUBENode's second operand must be a flag output of an SUBC node in order
|
|
// for the matching to be successful.
|
|
SDNode* SUBCNode = SUBENode->getOperand(2).getNode();
|
|
|
|
if (SUBCNode->getOpcode() != ISD::SUBC)
|
|
return false;
|
|
|
|
SDValue MultHi = SUBENode->getOperand(1);
|
|
SDValue MultLo = SUBCNode->getOperand(1);
|
|
SDNode* MultNode = MultHi.getNode();
|
|
unsigned MultOpc = MultHi.getOpcode();
|
|
|
|
// MultHi and MultLo must be generated by the same node,
|
|
if (MultLo.getNode() != MultNode)
|
|
return false;
|
|
|
|
// and it must be a multiplication.
|
|
if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
|
|
return false;
|
|
|
|
// MultLo amd MultHi must be the first and second output of MultNode
|
|
// respectively.
|
|
if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
|
|
return false;
|
|
|
|
// Transform this to a MSUB only if SUBENode and SUBCNode are the only users
|
|
// of the values of MultNode, in which case MultNode will be removed in later
|
|
// phases.
|
|
// If there exist users other than SUBENode or SUBCNode, this function returns
|
|
// here, which will result in MultNode being mapped to a single MULT
|
|
// instruction node rather than a pair of MULT and MSUB instructions being
|
|
// produced.
|
|
if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
|
|
return false;
|
|
|
|
SDValue Chain = CurDAG->getEntryNode();
|
|
DebugLoc dl = SUBENode->getDebugLoc();
|
|
|
|
// create MipsSub(u) node
|
|
MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
|
|
|
|
SDValue MSub = CurDAG->getNode(MultOpc, dl,
|
|
MVT::Glue,
|
|
MultNode->getOperand(0),// Factor 0
|
|
MultNode->getOperand(1),// Factor 1
|
|
SUBCNode->getOperand(0),// Lo0
|
|
SUBENode->getOperand(0));// Hi0
|
|
|
|
// create CopyFromReg nodes
|
|
SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
|
|
MSub);
|
|
SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
|
|
Mips::HI, MVT::i32,
|
|
CopyFromLo.getValue(2));
|
|
|
|
// replace uses of sube and subc here
|
|
if (!SDValue(SUBCNode, 0).use_empty())
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
|
|
|
|
if (!SDValue(SUBENode, 0).use_empty())
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
|
|
|
|
return true;
|
|
}
|
|
|
|
static SDValue PerformADDECombine(SDNode *N, SelectionDAG& DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget* Subtarget) {
|
|
if (DCI.isBeforeLegalize())
|
|
return SDValue();
|
|
|
|
if (Subtarget->isMips32() && SelectMadd(N, &DAG))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformSUBECombine(SDNode *N, SelectionDAG& DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget* Subtarget) {
|
|
if (DCI.isBeforeLegalize())
|
|
return SDValue();
|
|
|
|
if (Subtarget->isMips32() && SelectMsub(N, &DAG))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG& DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget* Subtarget) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
|
|
MipsISD::DivRemU;
|
|
DebugLoc dl = N->getDebugLoc();
|
|
|
|
SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
|
|
N->getOperand(0), N->getOperand(1));
|
|
SDValue InChain = DAG.getEntryNode();
|
|
SDValue InGlue = DivRem;
|
|
|
|
// insert MFLO
|
|
if (N->hasAnyUseOfValue(0)) {
|
|
SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, Mips::LO, MVT::i32,
|
|
InGlue);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
|
|
InChain = CopyFromLo.getValue(1);
|
|
InGlue = CopyFromLo.getValue(2);
|
|
}
|
|
|
|
// insert MFHI
|
|
if (N->hasAnyUseOfValue(1)) {
|
|
SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
|
|
Mips::HI, MVT::i32, InGlue);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
|
|
switch (CC) {
|
|
default: llvm_unreachable("Unknown fp condition code!");
|
|
case ISD::SETEQ:
|
|
case ISD::SETOEQ: return Mips::FCOND_OEQ;
|
|
case ISD::SETUNE: return Mips::FCOND_UNE;
|
|
case ISD::SETLT:
|
|
case ISD::SETOLT: return Mips::FCOND_OLT;
|
|
case ISD::SETGT:
|
|
case ISD::SETOGT: return Mips::FCOND_OGT;
|
|
case ISD::SETLE:
|
|
case ISD::SETOLE: return Mips::FCOND_OLE;
|
|
case ISD::SETGE:
|
|
case ISD::SETOGE: return Mips::FCOND_OGE;
|
|
case ISD::SETULT: return Mips::FCOND_ULT;
|
|
case ISD::SETULE: return Mips::FCOND_ULE;
|
|
case ISD::SETUGT: return Mips::FCOND_UGT;
|
|
case ISD::SETUGE: return Mips::FCOND_UGE;
|
|
case ISD::SETUO: return Mips::FCOND_UN;
|
|
case ISD::SETO: return Mips::FCOND_OR;
|
|
case ISD::SETNE:
|
|
case ISD::SETONE: return Mips::FCOND_ONE;
|
|
case ISD::SETUEQ: return Mips::FCOND_UEQ;
|
|
}
|
|
}
|
|
|
|
|
|
// Returns true if condition code has to be inverted.
|
|
static bool InvertFPCondCode(Mips::CondCode CC) {
|
|
if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
|
|
return false;
|
|
|
|
if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT)
|
|
return true;
|
|
|
|
assert(false && "Illegal Condition Code");
|
|
return false;
|
|
}
|
|
|
|
// Creates and returns an FPCmp node from a setcc node.
|
|
// Returns Op if setcc is not a floating point comparison.
|
|
static SDValue CreateFPCmp(SelectionDAG& DAG, const SDValue& Op) {
|
|
// must be a SETCC node
|
|
if (Op.getOpcode() != ISD::SETCC)
|
|
return Op;
|
|
|
|
SDValue LHS = Op.getOperand(0);
|
|
|
|
if (!LHS.getValueType().isFloatingPoint())
|
|
return Op;
|
|
|
|
SDValue RHS = Op.getOperand(1);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
|
|
// node if necessary.
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
|
|
return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
|
|
DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
|
|
}
|
|
|
|
// Creates and returns a CMovFPT/F node.
|
|
static SDValue CreateCMovFP(SelectionDAG& DAG, SDValue Cond, SDValue True,
|
|
SDValue False, DebugLoc DL) {
|
|
bool invert = InvertFPCondCode((Mips::CondCode)
|
|
cast<ConstantSDNode>(Cond.getOperand(2))
|
|
->getSExtValue());
|
|
|
|
return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
|
|
True.getValueType(), True, False, Cond);
|
|
}
|
|
|
|
static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG& DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget* Subtarget) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
SDValue Cond = CreateFPCmp(DAG, SDValue(N, 0));
|
|
|
|
if (Cond.getOpcode() != MipsISD::FPCmp)
|
|
return SDValue();
|
|
|
|
SDValue True = DAG.getConstant(1, MVT::i32);
|
|
SDValue False = DAG.getConstant(0, MVT::i32);
|
|
|
|
return CreateCMovFP(DAG, Cond, True, False, N->getDebugLoc());
|
|
}
|
|
|
|
SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
|
|
const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
unsigned opc = N->getOpcode();
|
|
|
|
switch (opc) {
|
|
default: break;
|
|
case ISD::ADDE:
|
|
return PerformADDECombine(N, DAG, DCI, Subtarget);
|
|
case ISD::SUBE:
|
|
return PerformSUBECombine(N, DAG, DCI, Subtarget);
|
|
case ISD::SDIVREM:
|
|
case ISD::UDIVREM:
|
|
return PerformDivRemCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::SETCC:
|
|
return PerformSETCCCombine(N, DAG, DCI, Subtarget);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerOperation(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
switch (Op.getOpcode())
|
|
{
|
|
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
|
|
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
|
|
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
|
|
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
|
|
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
|
|
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
|
|
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
|
|
case ISD::SELECT: return LowerSELECT(Op, DAG);
|
|
case ISD::VASTART: return LowerVASTART(Op, DAG);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Lower helper functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// AddLiveIn - This helper function adds the specified physical register to the
|
|
// MachineFunction as a live in value. It also creates a corresponding
|
|
// virtual register for it.
|
|
static unsigned
|
|
AddLiveIn(MachineFunction &MF, unsigned PReg, TargetRegisterClass *RC)
|
|
{
|
|
assert(RC->contains(PReg) && "Not the correct regclass!");
|
|
unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
|
|
MF.getRegInfo().addLiveIn(PReg, VReg);
|
|
return VReg;
|
|
}
|
|
|
|
// Get fp branch code (not opcode) from condition code.
|
|
static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
|
|
if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
|
|
return Mips::BRANCH_T;
|
|
|
|
if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT)
|
|
return Mips::BRANCH_F;
|
|
|
|
return Mips::BRANCH_INVALID;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const {
|
|
// There is no need to expand CMov instructions if target has
|
|
// conditional moves.
|
|
if (Subtarget->hasCondMov())
|
|
return BB;
|
|
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
bool isFPCmp = false;
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
unsigned Opc;
|
|
|
|
switch (MI->getOpcode()) {
|
|
default: assert(false && "Unexpected instr type to insert");
|
|
case Mips::MOVT:
|
|
case Mips::MOVT_S:
|
|
case Mips::MOVT_D:
|
|
isFPCmp = true;
|
|
Opc = Mips::BC1F;
|
|
break;
|
|
case Mips::MOVF:
|
|
case Mips::MOVF_S:
|
|
case Mips::MOVF_D:
|
|
isFPCmp = true;
|
|
Opc = Mips::BC1T;
|
|
break;
|
|
case Mips::MOVZ_I:
|
|
case Mips::MOVZ_S:
|
|
case Mips::MOVZ_D:
|
|
Opc = Mips::BNE;
|
|
break;
|
|
case Mips::MOVN_I:
|
|
case Mips::MOVN_S:
|
|
case Mips::MOVN_D:
|
|
Opc = Mips::BEQ;
|
|
break;
|
|
}
|
|
|
|
// To "insert" a SELECT_CC instruction, we actually have to insert the
|
|
// diamond control-flow pattern. The incoming instruction knows the
|
|
// destination vreg to set, the condition code register to branch on, the
|
|
// true/false values to select between, and a branch opcode to use.
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// setcc r1, r2, r3
|
|
// bNE r1, r0, copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *thisMBB = BB;
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, copy0MBB);
|
|
F->insert(It, sinkMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
sinkMBB->splice(sinkMBB->begin(), BB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// Next, add the true and fallthrough blocks as its successors.
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// Emit the right instruction according to the type of the operands compared
|
|
if (isFPCmp)
|
|
BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
|
|
else
|
|
BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
|
|
.addReg(Mips::ZERO).addMBB(sinkMBB);
|
|
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
BB = copy0MBB;
|
|
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
|
|
if (isFPCmp)
|
|
BuildMI(*BB, BB->begin(), dl,
|
|
TII->get(Mips::PHI), MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
|
|
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
|
|
else
|
|
BuildMI(*BB, BB->begin(), dl,
|
|
TII->get(Mips::PHI), MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
|
|
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
|
|
|
|
MI->eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Misc Lower Operation implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
if (!Subtarget->isMips1())
|
|
return Op;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
unsigned CCReg = AddLiveIn(MF, Mips::FCR31, Mips::CCRRegisterClass);
|
|
|
|
SDValue Chain = DAG.getEntryNode();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue Src = Op.getOperand(0);
|
|
|
|
// Set the condition register
|
|
SDValue CondReg = DAG.getCopyFromReg(Chain, dl, CCReg, MVT::i32);
|
|
CondReg = DAG.getCopyToReg(Chain, dl, Mips::AT, CondReg);
|
|
CondReg = DAG.getCopyFromReg(CondReg, dl, Mips::AT, MVT::i32);
|
|
|
|
SDValue Cst = DAG.getConstant(3, MVT::i32);
|
|
SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i32, CondReg, Cst);
|
|
Cst = DAG.getConstant(2, MVT::i32);
|
|
SDValue Xor = DAG.getNode(ISD::XOR, dl, MVT::i32, Or, Cst);
|
|
|
|
SDValue InFlag(0, 0);
|
|
CondReg = DAG.getCopyToReg(Chain, dl, Mips::FCR31, Xor, InFlag);
|
|
|
|
// Emit the round instruction and bit convert to integer
|
|
SDValue Trunc = DAG.getNode(MipsISD::FPRound, dl, MVT::f32,
|
|
Src, CondReg.getValue(1));
|
|
SDValue BitCvt = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Trunc);
|
|
return BitCvt;
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Size = Op.getOperand(1);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// Get a reference from Mips stack pointer
|
|
SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, Mips::SP, MVT::i32);
|
|
|
|
// Subtract the dynamic size from the actual stack size to
|
|
// obtain the new stack size.
|
|
SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size);
|
|
|
|
// The Sub result contains the new stack start address, so it
|
|
// must be placed in the stack pointer register.
|
|
Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, Mips::SP, Sub);
|
|
|
|
// This node always has two return values: a new stack pointer
|
|
// value and a chain
|
|
SDValue Ops[2] = { Sub, Chain };
|
|
return DAG.getMergeValues(Ops, 2, dl);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
// The first operand is the chain, the second is the condition, the third is
|
|
// the block to branch to if the condition is true.
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Dest = Op.getOperand(2);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
|
|
|
|
// Return if flag is not set by a floating point comparison.
|
|
if (CondRes.getOpcode() != MipsISD::FPCmp)
|
|
return Op;
|
|
|
|
SDValue CCNode = CondRes.getOperand(2);
|
|
Mips::CondCode CC =
|
|
(Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
|
|
SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
|
|
|
|
return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
|
|
Dest, CondRes);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerSELECT(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
|
|
|
|
// Return if flag is not set by a floating point comparison.
|
|
if (Cond.getOpcode() != MipsISD::FPCmp)
|
|
return Op;
|
|
|
|
return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
|
|
Op.getDebugLoc());
|
|
}
|
|
|
|
SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// FIXME there isn't actually debug info here
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
|
|
if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
|
|
SDVTList VTs = DAG.getVTList(MVT::i32);
|
|
|
|
MipsTargetObjectFile &TLOF = (MipsTargetObjectFile&)getObjFileLowering();
|
|
|
|
// %gp_rel relocation
|
|
if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
|
|
SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
|
|
MipsII::MO_GPREL);
|
|
SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
|
|
SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
|
|
return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode);
|
|
}
|
|
// %hi/%lo relocation
|
|
SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
|
|
MipsII::MO_ABS_HI);
|
|
SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
|
|
MipsII::MO_ABS_LO);
|
|
SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
|
|
return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
|
|
} else {
|
|
SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
|
|
MipsII::MO_GOT);
|
|
SDValue ResNode = DAG.getLoad(MVT::i32, dl,
|
|
DAG.getEntryNode(), GA, MachinePointerInfo(),
|
|
false, false, 0);
|
|
// On functions and global targets not internal linked only
|
|
// a load from got/GP is necessary for PIC to work.
|
|
if (!GV->hasInternalLinkage() &&
|
|
(!GV->hasLocalLinkage() || isa<Function>(GV)))
|
|
return ResNode;
|
|
SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
|
|
MipsII::MO_ABS_LO);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
|
|
return DAG.getNode(ISD::ADD, dl, MVT::i32, ResNode, Lo);
|
|
}
|
|
|
|
llvm_unreachable("Dont know how to handle GlobalAddress");
|
|
return SDValue(0,0);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
|
|
// FIXME there isn't actually debug info here
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
|
|
// %hi/%lo relocation
|
|
SDValue BAHi = DAG.getBlockAddress(BA, MVT::i32, true,
|
|
MipsII::MO_ABS_HI);
|
|
SDValue BALo = DAG.getBlockAddress(BA, MVT::i32, true,
|
|
MipsII::MO_ABS_LO);
|
|
SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo);
|
|
return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
|
|
}
|
|
|
|
SDValue BAGOTOffset = DAG.getBlockAddress(BA, MVT::i32, true,
|
|
MipsII::MO_GOT);
|
|
SDValue BALOOffset = DAG.getBlockAddress(BA, MVT::i32, true,
|
|
MipsII::MO_ABS_LO);
|
|
SDValue Load = DAG.getLoad(MVT::i32, dl,
|
|
DAG.getEntryNode(), BAGOTOffset,
|
|
MachinePointerInfo(), false, false, 0);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALOOffset);
|
|
return DAG.getNode(ISD::ADD, dl, MVT::i32, Load, Lo);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
llvm_unreachable("TLS not implemented for MIPS.");
|
|
return SDValue(); // Not reached
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
SDValue ResNode;
|
|
SDValue HiPart;
|
|
// FIXME there isn't actually debug info here
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
|
|
unsigned char OpFlag = IsPIC ? MipsII::MO_GOT : MipsII::MO_ABS_HI;
|
|
|
|
EVT PtrVT = Op.getValueType();
|
|
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
|
|
|
|
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);
|
|
|
|
if (!IsPIC) {
|
|
SDValue Ops[] = { JTI };
|
|
HiPart = DAG.getNode(MipsISD::Hi, dl, DAG.getVTList(MVT::i32), Ops, 1);
|
|
} else // Emit Load from Global Pointer
|
|
HiPart = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(), JTI,
|
|
MachinePointerInfo(),
|
|
false, false, 0);
|
|
|
|
SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
|
|
MipsII::MO_ABS_LO);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, JTILo);
|
|
ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
|
|
|
|
return ResNode;
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
SDValue ResNode;
|
|
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
|
|
const Constant *C = N->getConstVal();
|
|
// FIXME there isn't actually debug info here
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// gp_rel relocation
|
|
// FIXME: we should reference the constant pool using small data sections,
|
|
// but the asm printer currently doesn't support this feature without
|
|
// hacking it. This feature should come soon so we can uncomment the
|
|
// stuff below.
|
|
//if (IsInSmallSection(C->getType())) {
|
|
// SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
|
|
// SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
|
|
// ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
|
|
|
|
if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
|
|
SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
|
|
N->getOffset(), MipsII::MO_ABS_HI);
|
|
SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
|
|
N->getOffset(), MipsII::MO_ABS_LO);
|
|
SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
|
|
ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
|
|
} else {
|
|
SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
|
|
N->getOffset(), MipsII::MO_GOT);
|
|
SDValue Load = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(),
|
|
CP, MachinePointerInfo::getConstantPool(),
|
|
false, false, 0);
|
|
SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
|
|
N->getOffset(), MipsII::MO_ABS_LO);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
|
|
ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, Load, Lo);
|
|
}
|
|
|
|
return ResNode;
|
|
}
|
|
|
|
SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
|
|
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
|
|
getPointerTy());
|
|
|
|
// vastart just stores the address of the VarArgsFrameIndex slot into the
|
|
// memory location argument.
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
|
|
MachinePointerInfo(SV),
|
|
false, false, 0);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MipsGenCallingConv.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TODO: Implement a generic logic using tblgen that can support this.
|
|
// Mips O32 ABI rules:
|
|
// ---
|
|
// i32 - Passed in A0, A1, A2, A3 and stack
|
|
// f32 - Only passed in f32 registers if no int reg has been used yet to hold
|
|
// an argument. Otherwise, passed in A1, A2, A3 and stack.
|
|
// f64 - Only passed in two aliased f32 registers if no int reg has been used
|
|
// yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
|
|
// not used, it must be shadowed. If only A3 is avaiable, shadow it and
|
|
// go to stack.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
|
|
MVT LocVT, CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags, CCState &State) {
|
|
|
|
static const unsigned IntRegsSize=4, FloatRegsSize=2;
|
|
|
|
static const unsigned IntRegs[] = {
|
|
Mips::A0, Mips::A1, Mips::A2, Mips::A3
|
|
};
|
|
static const unsigned F32Regs[] = {
|
|
Mips::F12, Mips::F14
|
|
};
|
|
static const unsigned F64Regs[] = {
|
|
Mips::D6, Mips::D7
|
|
};
|
|
|
|
unsigned Reg = 0;
|
|
static bool IntRegUsed = false;
|
|
|
|
// This must be the first arg of the call if no regs have been allocated.
|
|
// Initialize IntRegUsed in that case.
|
|
if (IntRegs[State.getFirstUnallocated(IntRegs, IntRegsSize)] == Mips::A0 &&
|
|
F32Regs[State.getFirstUnallocated(F32Regs, FloatRegsSize)] == Mips::F12 &&
|
|
F64Regs[State.getFirstUnallocated(F64Regs, FloatRegsSize)] == Mips::D6)
|
|
IntRegUsed = false;
|
|
|
|
// Promote i8 and i16
|
|
if (LocVT == MVT::i8 || LocVT == MVT::i16) {
|
|
LocVT = MVT::i32;
|
|
if (ArgFlags.isSExt())
|
|
LocInfo = CCValAssign::SExt;
|
|
else if (ArgFlags.isZExt())
|
|
LocInfo = CCValAssign::ZExt;
|
|
else
|
|
LocInfo = CCValAssign::AExt;
|
|
}
|
|
|
|
if (ValVT == MVT::i32) {
|
|
Reg = State.AllocateReg(IntRegs, IntRegsSize);
|
|
IntRegUsed = true;
|
|
} else if (ValVT == MVT::f32) {
|
|
// An int reg has to be marked allocated regardless of whether or not
|
|
// IntRegUsed is true.
|
|
Reg = State.AllocateReg(IntRegs, IntRegsSize);
|
|
|
|
if (IntRegUsed) {
|
|
if (Reg) // Int reg is available
|
|
LocVT = MVT::i32;
|
|
} else {
|
|
unsigned FReg = State.AllocateReg(F32Regs, FloatRegsSize);
|
|
if (FReg) // F32 reg is available
|
|
Reg = FReg;
|
|
else if (Reg) // No F32 regs are available, but an int reg is available.
|
|
LocVT = MVT::i32;
|
|
}
|
|
} else if (ValVT == MVT::f64) {
|
|
// Int regs have to be marked allocated regardless of whether or not
|
|
// IntRegUsed is true.
|
|
Reg = State.AllocateReg(IntRegs, IntRegsSize);
|
|
if (Reg == Mips::A1)
|
|
Reg = State.AllocateReg(IntRegs, IntRegsSize);
|
|
else if (Reg == Mips::A3)
|
|
Reg = 0;
|
|
State.AllocateReg(IntRegs, IntRegsSize);
|
|
|
|
// At this point, Reg is A0, A2 or 0, and all the unavailable integer regs
|
|
// are marked as allocated.
|
|
if (IntRegUsed) {
|
|
if (Reg)// if int reg is available
|
|
LocVT = MVT::i32;
|
|
} else {
|
|
unsigned FReg = State.AllocateReg(F64Regs, FloatRegsSize);
|
|
if (FReg) // F64 reg is available.
|
|
Reg = FReg;
|
|
else if (Reg) // No F64 regs are available, but an int reg is available.
|
|
LocVT = MVT::i32;
|
|
}
|
|
} else
|
|
assert(false && "cannot handle this ValVT");
|
|
|
|
if (!Reg) {
|
|
unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
|
|
unsigned Offset = State.AllocateStack(SizeInBytes, SizeInBytes);
|
|
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
|
|
} else
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
|
|
return false; // CC must always match
|
|
}
|
|
|
|
static bool CC_MipsO32_VarArgs(unsigned ValNo, MVT ValVT,
|
|
MVT LocVT, CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags, CCState &State) {
|
|
|
|
static const unsigned IntRegsSize=4;
|
|
|
|
static const unsigned IntRegs[] = {
|
|
Mips::A0, Mips::A1, Mips::A2, Mips::A3
|
|
};
|
|
|
|
// Promote i8 and i16
|
|
if (LocVT == MVT::i8 || LocVT == MVT::i16) {
|
|
LocVT = MVT::i32;
|
|
if (ArgFlags.isSExt())
|
|
LocInfo = CCValAssign::SExt;
|
|
else if (ArgFlags.isZExt())
|
|
LocInfo = CCValAssign::ZExt;
|
|
else
|
|
LocInfo = CCValAssign::AExt;
|
|
}
|
|
|
|
unsigned Reg;
|
|
|
|
if (ValVT == MVT::i32 || ValVT == MVT::f32) {
|
|
Reg = State.AllocateReg(IntRegs, IntRegsSize);
|
|
LocVT = MVT::i32;
|
|
} else if (ValVT == MVT::f64) {
|
|
Reg = State.AllocateReg(IntRegs, IntRegsSize);
|
|
if (Reg == Mips::A1 || Reg == Mips::A3)
|
|
Reg = State.AllocateReg(IntRegs, IntRegsSize);
|
|
State.AllocateReg(IntRegs, IntRegsSize);
|
|
LocVT = MVT::i32;
|
|
} else
|
|
llvm_unreachable("Cannot handle this ValVT.");
|
|
|
|
if (!Reg) {
|
|
unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
|
|
unsigned Offset = State.AllocateStack(SizeInBytes, SizeInBytes);
|
|
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
|
|
} else
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
|
|
return false; // CC must always match
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Call Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// LowerCall - functions arguments are copied from virtual regs to
|
|
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
|
|
/// TODO: isTailCall.
|
|
SDValue
|
|
MipsTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
bool &isTailCall,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
// MIPs target does not yet support tail call optimization.
|
|
isTailCall = false;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
|
|
|
|
// Analyze operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
|
|
*DAG.getContext());
|
|
|
|
// To meet O32 ABI, Mips must always allocate 16 bytes on
|
|
// the stack (even if less than 4 are used as arguments)
|
|
if (Subtarget->isABI_O32()) {
|
|
int VTsize = MVT(MVT::i32).getSizeInBits()/8;
|
|
MFI->CreateFixedObject(VTsize, (VTsize*3), true);
|
|
CCInfo.AnalyzeCallOperands(Outs,
|
|
isVarArg ? CC_MipsO32_VarArgs : CC_MipsO32);
|
|
} else
|
|
CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
unsigned NumBytes = CCInfo.getNextStackOffset();
|
|
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
|
|
|
|
// With EABI is it possible to have 16 args on registers.
|
|
SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
|
|
// First/LastArgStackLoc contains the first/last
|
|
// "at stack" argument location.
|
|
int LastArgStackLoc = 0;
|
|
unsigned FirstStackArgLoc = (Subtarget->isABI_EABI() ? 0 : 16);
|
|
|
|
// Walk the register/memloc assignments, inserting copies/loads.
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
SDValue Arg = OutVals[i];
|
|
CCValAssign &VA = ArgLocs[i];
|
|
|
|
// Promote the value if needed.
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
if (Subtarget->isABI_O32() && VA.isRegLoc()) {
|
|
if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i32)
|
|
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
|
|
if (VA.getValVT() == MVT::f64 && VA.getLocVT() == MVT::i32) {
|
|
SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
|
|
Arg, DAG.getConstant(0, MVT::i32));
|
|
SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
|
|
Arg, DAG.getConstant(1, MVT::i32));
|
|
if (!Subtarget->isLittle())
|
|
std::swap(Lo, Hi);
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Lo));
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg()+1, Hi));
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
case CCValAssign::SExt:
|
|
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::AExt:
|
|
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
}
|
|
|
|
// Arguments that can be passed on register must be kept at
|
|
// RegsToPass vector
|
|
if (VA.isRegLoc()) {
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
|
|
continue;
|
|
}
|
|
|
|
// Register can't get to this point...
|
|
assert(VA.isMemLoc());
|
|
|
|
// Create the frame index object for this incoming parameter
|
|
// This guarantees that when allocating Local Area the firsts
|
|
// 16 bytes which are alwayes reserved won't be overwritten
|
|
// if O32 ABI is used. For EABI the first address is zero.
|
|
LastArgStackLoc = (FirstStackArgLoc + VA.getLocMemOffset());
|
|
int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
|
|
LastArgStackLoc, true);
|
|
|
|
SDValue PtrOff = DAG.getFrameIndex(FI,getPointerTy());
|
|
|
|
// emit ISD::STORE whichs stores the
|
|
// parameter value to a stack Location
|
|
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
|
|
MachinePointerInfo(),
|
|
false, false, 0));
|
|
}
|
|
|
|
// Transform all store nodes into one single node because all store
|
|
// nodes are independent of each other.
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&MemOpChains[0], MemOpChains.size());
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token
|
|
// chain and flag operands which copy the outgoing args into registers.
|
|
// The InFlag in necessary since all emitted instructions must be
|
|
// stuck together.
|
|
SDValue InFlag;
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
|
|
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
|
|
// node so that legalize doesn't hack it.
|
|
unsigned char OpFlag = IsPIC ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
|
|
bool LoadSymAddr = false;
|
|
SDValue CalleeLo;
|
|
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
if (IsPIC && G->getGlobal()->hasInternalLinkage()) {
|
|
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
|
|
getPointerTy(), 0,MipsII:: MO_GOT);
|
|
CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(),
|
|
0, MipsII::MO_ABS_LO);
|
|
} else {
|
|
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
|
|
getPointerTy(), 0, OpFlag);
|
|
}
|
|
|
|
LoadSymAddr = true;
|
|
}
|
|
else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
Callee = DAG.getTargetExternalSymbol(S->getSymbol(),
|
|
getPointerTy(), OpFlag);
|
|
LoadSymAddr = true;
|
|
}
|
|
|
|
// Create nodes that load address of callee and copy it to T9
|
|
if (IsPIC) {
|
|
if (LoadSymAddr) {
|
|
// Load callee address
|
|
SDValue LoadValue = DAG.getLoad(MVT::i32, dl, Chain, Callee,
|
|
MachinePointerInfo::getGOT(),
|
|
false, false, 0);
|
|
|
|
// Use GOT+LO if callee has internal linkage.
|
|
if (CalleeLo.getNode()) {
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CalleeLo);
|
|
Callee = DAG.getNode(ISD::ADD, dl, MVT::i32, LoadValue, Lo);
|
|
} else
|
|
Callee = LoadValue;
|
|
|
|
// Use chain output from LoadValue
|
|
Chain = LoadValue.getValue(1);
|
|
}
|
|
|
|
// copy to T9
|
|
Chain = DAG.getCopyToReg(Chain, dl, Mips::T9, Callee, SDValue(0, 0));
|
|
InFlag = Chain.getValue(1);
|
|
Callee = DAG.getRegister(Mips::T9, MVT::i32);
|
|
}
|
|
|
|
// MipsJmpLink = #chain, #target_address, #opt_in_flags...
|
|
// = Chain, Callee, Reg#1, Reg#2, ...
|
|
//
|
|
// Returns a chain & a flag for retval copy to use.
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
// Add argument registers to the end of the list so that they are
|
|
// known live into the call.
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
|
|
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
|
|
RegsToPass[i].second.getValueType()));
|
|
|
|
if (InFlag.getNode())
|
|
Ops.push_back(InFlag);
|
|
|
|
Chain = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Create a stack location to hold GP when PIC is used. This stack
|
|
// location is used on function prologue to save GP and also after all
|
|
// emitted CALL's to restore GP.
|
|
if (IsPIC) {
|
|
// Function can have an arbitrary number of calls, so
|
|
// hold the LastArgStackLoc with the biggest offset.
|
|
int FI;
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
if (LastArgStackLoc >= MipsFI->getGPStackOffset()) {
|
|
LastArgStackLoc = (!LastArgStackLoc) ? (16) : (LastArgStackLoc+4);
|
|
// Create the frame index only once. SPOffset here can be anything
|
|
// (this will be fixed on processFunctionBeforeFrameFinalized)
|
|
if (MipsFI->getGPStackOffset() == -1) {
|
|
FI = MFI->CreateFixedObject(4, 0, true);
|
|
MipsFI->setGPFI(FI);
|
|
}
|
|
MipsFI->setGPStackOffset(LastArgStackLoc);
|
|
}
|
|
|
|
// Reload GP value.
|
|
FI = MipsFI->getGPFI();
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
|
|
SDValue GPLoad = DAG.getLoad(MVT::i32, dl, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, 0);
|
|
Chain = GPLoad.getValue(1);
|
|
Chain = DAG.getCopyToReg(Chain, dl, DAG.getRegister(Mips::GP, MVT::i32),
|
|
GPLoad, SDValue(0,0));
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// Create the CALLSEQ_END node.
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
DAG.getIntPtrConstant(0, true), InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Handle result values, copying them out of physregs into vregs that we
|
|
// return.
|
|
return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
|
|
Ins, dl, DAG, InVals);
|
|
}
|
|
|
|
/// LowerCallResult - Lower the result values of a call into the
|
|
/// appropriate copies out of appropriate physical registers.
|
|
SDValue
|
|
MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
|
|
// Assign locations to each value returned by this call.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
|
|
RVLocs, *DAG.getContext());
|
|
|
|
CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
|
|
RVLocs[i].getValVT(), InFlag).getValue(1);
|
|
InFlag = Chain.getValue(2);
|
|
InVals.push_back(Chain.getValue(0));
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Formal Arguments Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// LowerFormalArguments - transform physical registers into virtual registers
|
|
/// and generate load operations for arguments places on the stack.
|
|
SDValue
|
|
MipsTargetLowering::LowerFormalArguments(SDValue Chain,
|
|
CallingConv::ID CallConv,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg>
|
|
&Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals)
|
|
const {
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
|
|
MipsFI->setVarArgsFrameIndex(0);
|
|
|
|
// Used with vargs to acumulate store chains.
|
|
std::vector<SDValue> OutChains;
|
|
|
|
// Keep track of the last register used for arguments
|
|
unsigned ArgRegEnd = 0;
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
|
|
ArgLocs, *DAG.getContext());
|
|
|
|
if (Subtarget->isABI_O32())
|
|
CCInfo.AnalyzeFormalArguments(Ins,
|
|
isVarArg ? CC_MipsO32_VarArgs : CC_MipsO32);
|
|
else
|
|
CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
|
|
|
|
unsigned FirstStackArgLoc = (Subtarget->isABI_EABI() ? 0 : 16);
|
|
unsigned LastStackArgEndOffset = 0;
|
|
EVT LastRegArgValVT;
|
|
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
|
|
// Arguments stored on registers
|
|
if (VA.isRegLoc()) {
|
|
EVT RegVT = VA.getLocVT();
|
|
ArgRegEnd = VA.getLocReg();
|
|
LastRegArgValVT = VA.getValVT();
|
|
TargetRegisterClass *RC = 0;
|
|
|
|
if (RegVT == MVT::i32)
|
|
RC = Mips::CPURegsRegisterClass;
|
|
else if (RegVT == MVT::f32)
|
|
RC = Mips::FGR32RegisterClass;
|
|
else if (RegVT == MVT::f64) {
|
|
if (!Subtarget->isSingleFloat())
|
|
RC = Mips::AFGR64RegisterClass;
|
|
} else
|
|
llvm_unreachable("RegVT not supported by FormalArguments Lowering");
|
|
|
|
// Transform the arguments stored on
|
|
// physical registers into virtual ones
|
|
unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegEnd, RC);
|
|
SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
|
|
|
|
// If this is an 8 or 16-bit value, it has been passed promoted
|
|
// to 32 bits. Insert an assert[sz]ext to capture this, then
|
|
// truncate to the right size.
|
|
if (VA.getLocInfo() != CCValAssign::Full) {
|
|
unsigned Opcode = 0;
|
|
if (VA.getLocInfo() == CCValAssign::SExt)
|
|
Opcode = ISD::AssertSext;
|
|
else if (VA.getLocInfo() == CCValAssign::ZExt)
|
|
Opcode = ISD::AssertZext;
|
|
if (Opcode)
|
|
ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
|
|
DAG.getValueType(VA.getValVT()));
|
|
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
|
|
}
|
|
|
|
// Handle O32 ABI cases: i32->f32 and (i32,i32)->f64
|
|
if (Subtarget->isABI_O32()) {
|
|
if (RegVT == MVT::i32 && VA.getValVT() == MVT::f32)
|
|
ArgValue = DAG.getNode(ISD::BITCAST, dl, MVT::f32, ArgValue);
|
|
if (RegVT == MVT::i32 && VA.getValVT() == MVT::f64) {
|
|
unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
|
|
VA.getLocReg()+1, RC);
|
|
SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
|
|
if (!Subtarget->isLittle())
|
|
std::swap(ArgValue, ArgValue2);
|
|
ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
|
|
ArgValue, ArgValue2);
|
|
}
|
|
}
|
|
|
|
InVals.push_back(ArgValue);
|
|
} else { // VA.isRegLoc()
|
|
|
|
// sanity check
|
|
assert(VA.isMemLoc());
|
|
|
|
// The last argument is not a register anymore
|
|
ArgRegEnd = 0;
|
|
|
|
// The stack pointer offset is relative to the caller stack frame.
|
|
// Since the real stack size is unknown here, a negative SPOffset
|
|
// is used so there's a way to adjust these offsets when the stack
|
|
// size get known (on EliminateFrameIndex). A dummy SPOffset is
|
|
// used instead of a direct negative address (which is recorded to
|
|
// be used on emitPrologue) to avoid mis-calc of the first stack
|
|
// offset on PEI::calculateFrameObjectOffsets.
|
|
unsigned ArgSize = VA.getValVT().getSizeInBits()/8;
|
|
LastStackArgEndOffset = FirstStackArgLoc + VA.getLocMemOffset() + ArgSize;
|
|
int FI = MFI->CreateFixedObject(ArgSize, 0, true);
|
|
MipsFI->recordLoadArgsFI(FI, -(4 +
|
|
(FirstStackArgLoc + VA.getLocMemOffset())));
|
|
|
|
// Create load nodes to retrieve arguments from the stack
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
|
|
InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, 0));
|
|
}
|
|
}
|
|
|
|
// The mips ABIs for returning structs by value requires that we copy
|
|
// the sret argument into $v0 for the return. Save the argument into
|
|
// a virtual register so that we can access it from the return points.
|
|
if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
|
|
unsigned Reg = MipsFI->getSRetReturnReg();
|
|
if (!Reg) {
|
|
Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
|
|
MipsFI->setSRetReturnReg(Reg);
|
|
}
|
|
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
|
|
}
|
|
|
|
// To meet ABI, when VARARGS are passed on registers, the registers
|
|
// must have their values written to the caller stack frame. If the last
|
|
// argument was placed in the stack, there's no need to save any register.
|
|
if (isVarArg && Subtarget->isABI_O32()) {
|
|
if (ArgRegEnd) {
|
|
// Last named formal argument is passed in register.
|
|
|
|
// The last register argument that must be saved is Mips::A3
|
|
TargetRegisterClass *RC = Mips::CPURegsRegisterClass;
|
|
if (LastRegArgValVT == MVT::f64)
|
|
ArgRegEnd++;
|
|
|
|
if (ArgRegEnd < Mips::A3) {
|
|
// Both the last named formal argument and the first variable
|
|
// argument are passed in registers.
|
|
for (++ArgRegEnd; ArgRegEnd <= Mips::A3; ++ArgRegEnd) {
|
|
unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegEnd, RC);
|
|
SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, MVT::i32);
|
|
|
|
int FI = MFI->CreateFixedObject(4, 0, true);
|
|
MipsFI->recordStoreVarArgsFI(FI, -(4+(ArgRegEnd-Mips::A0)*4));
|
|
SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
|
|
OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
|
|
MachinePointerInfo(),
|
|
false, false, 0));
|
|
|
|
// Record the frame index of the first variable argument
|
|
// which is a value necessary to VASTART.
|
|
if (!MipsFI->getVarArgsFrameIndex()) {
|
|
MFI->setObjectAlignment(FI, 4);
|
|
MipsFI->setVarArgsFrameIndex(FI);
|
|
}
|
|
}
|
|
} else {
|
|
// Last named formal argument is in register Mips::A3, and the first
|
|
// variable argument is on stack. Record the frame index of the first
|
|
// variable argument.
|
|
int FI = MFI->CreateFixedObject(4, 0, true);
|
|
MFI->setObjectAlignment(FI, 4);
|
|
MipsFI->recordStoreVarArgsFI(FI, -20);
|
|
MipsFI->setVarArgsFrameIndex(FI);
|
|
}
|
|
} else {
|
|
// Last named formal argument and all the variable arguments are passed
|
|
// on stack. Record the frame index of the first variable argument.
|
|
int FI = MFI->CreateFixedObject(4, 0, true);
|
|
MFI->setObjectAlignment(FI, 4);
|
|
MipsFI->recordStoreVarArgsFI(FI, -(4+LastStackArgEndOffset));
|
|
MipsFI->setVarArgsFrameIndex(FI);
|
|
}
|
|
}
|
|
|
|
// All stores are grouped in one node to allow the matching between
|
|
// the size of Ins and InVals. This only happens when on varg functions
|
|
if (!OutChains.empty()) {
|
|
OutChains.push_back(Chain);
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&OutChains[0], OutChains.size());
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Return Value Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue
|
|
MipsTargetLowering::LowerReturn(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
DebugLoc dl, SelectionDAG &DAG) const {
|
|
|
|
// CCValAssign - represent the assignment of
|
|
// the return value to a location
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
|
|
// CCState - Info about the registers and stack slot.
|
|
CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
|
|
RVLocs, *DAG.getContext());
|
|
|
|
// Analize return values.
|
|
CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
|
|
|
|
// If this is the first return lowered for this function, add
|
|
// the regs to the liveout set for the function.
|
|
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i)
|
|
if (RVLocs[i].isRegLoc())
|
|
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
|
|
}
|
|
|
|
SDValue Flag;
|
|
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
|
|
OutVals[i], Flag);
|
|
|
|
// guarantee that all emitted copies are
|
|
// stuck together, avoiding something bad
|
|
Flag = Chain.getValue(1);
|
|
}
|
|
|
|
// The mips ABIs for returning structs by value requires that we copy
|
|
// the sret argument into $v0 for the return. We saved the argument into
|
|
// a virtual register in the entry block, so now we copy the value out
|
|
// and into $v0.
|
|
if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
unsigned Reg = MipsFI->getSRetReturnReg();
|
|
|
|
if (!Reg)
|
|
llvm_unreachable("sret virtual register not created in the entry block");
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
|
|
Flag = Chain.getValue(1);
|
|
}
|
|
|
|
// Return on Mips is always a "jr $ra"
|
|
if (Flag.getNode())
|
|
return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
|
|
Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag);
|
|
else // Return Void
|
|
return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
|
|
Chain, DAG.getRegister(Mips::RA, MVT::i32));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Mips Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
MipsTargetLowering::ConstraintType MipsTargetLowering::
|
|
getConstraintType(const std::string &Constraint) const
|
|
{
|
|
// Mips specific constrainy
|
|
// GCC config/mips/constraints.md
|
|
//
|
|
// 'd' : An address register. Equivalent to r
|
|
// unless generating MIPS16 code.
|
|
// 'y' : Equivalent to r; retained for
|
|
// backwards compatibility.
|
|
// 'f' : Floating Point registers.
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default : break;
|
|
case 'd':
|
|
case 'y':
|
|
case 'f':
|
|
return C_RegisterClass;
|
|
break;
|
|
}
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
/// Examine constraint type and operand type and determine a weight value.
|
|
/// This object must already have been set up with the operand type
|
|
/// and the current alternative constraint selected.
|
|
TargetLowering::ConstraintWeight
|
|
MipsTargetLowering::getSingleConstraintMatchWeight(
|
|
AsmOperandInfo &info, const char *constraint) const {
|
|
ConstraintWeight weight = CW_Invalid;
|
|
Value *CallOperandVal = info.CallOperandVal;
|
|
// If we don't have a value, we can't do a match,
|
|
// but allow it at the lowest weight.
|
|
if (CallOperandVal == NULL)
|
|
return CW_Default;
|
|
const Type *type = CallOperandVal->getType();
|
|
// Look at the constraint type.
|
|
switch (*constraint) {
|
|
default:
|
|
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
|
|
break;
|
|
case 'd':
|
|
case 'y':
|
|
if (type->isIntegerTy())
|
|
weight = CW_Register;
|
|
break;
|
|
case 'f':
|
|
if (type->isFloatTy())
|
|
weight = CW_Register;
|
|
break;
|
|
}
|
|
return weight;
|
|
}
|
|
|
|
/// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
|
|
/// return a list of registers that can be used to satisfy the constraint.
|
|
/// This should only be used for C_RegisterClass constraints.
|
|
std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
|
|
getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
|
|
{
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'r':
|
|
return std::make_pair(0U, Mips::CPURegsRegisterClass);
|
|
case 'f':
|
|
if (VT == MVT::f32)
|
|
return std::make_pair(0U, Mips::FGR32RegisterClass);
|
|
if (VT == MVT::f64)
|
|
if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit()))
|
|
return std::make_pair(0U, Mips::AFGR64RegisterClass);
|
|
}
|
|
}
|
|
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
|
|
}
|
|
|
|
/// Given a register class constraint, like 'r', if this corresponds directly
|
|
/// to an LLVM register class, return a register of 0 and the register class
|
|
/// pointer.
|
|
std::vector<unsigned> MipsTargetLowering::
|
|
getRegClassForInlineAsmConstraint(const std::string &Constraint,
|
|
EVT VT) const
|
|
{
|
|
if (Constraint.size() != 1)
|
|
return std::vector<unsigned>();
|
|
|
|
switch (Constraint[0]) {
|
|
default : break;
|
|
case 'r':
|
|
// GCC Mips Constraint Letters
|
|
case 'd':
|
|
case 'y':
|
|
return make_vector<unsigned>(Mips::T0, Mips::T1, Mips::T2, Mips::T3,
|
|
Mips::T4, Mips::T5, Mips::T6, Mips::T7, Mips::S0, Mips::S1,
|
|
Mips::S2, Mips::S3, Mips::S4, Mips::S5, Mips::S6, Mips::S7,
|
|
Mips::T8, 0);
|
|
|
|
case 'f':
|
|
if (VT == MVT::f32) {
|
|
if (Subtarget->isSingleFloat())
|
|
return make_vector<unsigned>(Mips::F2, Mips::F3, Mips::F4, Mips::F5,
|
|
Mips::F6, Mips::F7, Mips::F8, Mips::F9, Mips::F10, Mips::F11,
|
|
Mips::F20, Mips::F21, Mips::F22, Mips::F23, Mips::F24,
|
|
Mips::F25, Mips::F26, Mips::F27, Mips::F28, Mips::F29,
|
|
Mips::F30, Mips::F31, 0);
|
|
else
|
|
return make_vector<unsigned>(Mips::F2, Mips::F4, Mips::F6, Mips::F8,
|
|
Mips::F10, Mips::F20, Mips::F22, Mips::F24, Mips::F26,
|
|
Mips::F28, Mips::F30, 0);
|
|
}
|
|
|
|
if (VT == MVT::f64)
|
|
if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit()))
|
|
return make_vector<unsigned>(Mips::D1, Mips::D2, Mips::D3, Mips::D4,
|
|
Mips::D5, Mips::D10, Mips::D11, Mips::D12, Mips::D13,
|
|
Mips::D14, Mips::D15, 0);
|
|
}
|
|
return std::vector<unsigned>();
|
|
}
|
|
|
|
bool
|
|
MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
|
|
// The Mips target isn't yet aware of offsets.
|
|
return false;
|
|
}
|
|
|
|
bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
|
|
if (VT != MVT::f32 && VT != MVT::f64)
|
|
return false;
|
|
if (Imm.isNegZero())
|
|
return false;
|
|
return Imm.isZero();
|
|
}
|