llvm-6502/utils/TableGen/CodeGenInstruction.cpp
Tom Stellard b461e8304c Target: Allow target specific operand types
This adds two new fields to the RegisterOperand TableGen class:

string OperandNamespace = "MCOI";
string OperandType = "OPERAND_REGISTER";

These fields can be used to specify a target specific operand type,
which will be stored in the OperandType member of the MCOperandInfo
object.

This can be useful for targets that need to store some extra information
about operands that cannot be expressed using the target independent
types.  For example, in the R600 backend, there are operands which
can take either registers or immediates and it is convenient to be able
to specify this in the TableGen definitions.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225661 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-12 19:33:09 +00:00

683 lines
26 KiB
C++

//===- CodeGenInstruction.cpp - CodeGen Instruction Class Wrapper ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the CodeGenInstruction class.
//
//===----------------------------------------------------------------------===//
#include "CodeGenInstruction.h"
#include "CodeGenTarget.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <set>
using namespace llvm;
//===----------------------------------------------------------------------===//
// CGIOperandList Implementation
//===----------------------------------------------------------------------===//
CGIOperandList::CGIOperandList(Record *R) : TheDef(R) {
isPredicable = false;
hasOptionalDef = false;
isVariadic = false;
DagInit *OutDI = R->getValueAsDag("OutOperandList");
if (DefInit *Init = dyn_cast<DefInit>(OutDI->getOperator())) {
if (Init->getDef()->getName() != "outs")
PrintFatalError(R->getName() + ": invalid def name for output list: use 'outs'");
} else
PrintFatalError(R->getName() + ": invalid output list: use 'outs'");
NumDefs = OutDI->getNumArgs();
DagInit *InDI = R->getValueAsDag("InOperandList");
if (DefInit *Init = dyn_cast<DefInit>(InDI->getOperator())) {
if (Init->getDef()->getName() != "ins")
PrintFatalError(R->getName() + ": invalid def name for input list: use 'ins'");
} else
PrintFatalError(R->getName() + ": invalid input list: use 'ins'");
unsigned MIOperandNo = 0;
std::set<std::string> OperandNames;
for (unsigned i = 0, e = InDI->getNumArgs()+OutDI->getNumArgs(); i != e; ++i){
Init *ArgInit;
std::string ArgName;
if (i < NumDefs) {
ArgInit = OutDI->getArg(i);
ArgName = OutDI->getArgName(i);
} else {
ArgInit = InDI->getArg(i-NumDefs);
ArgName = InDI->getArgName(i-NumDefs);
}
DefInit *Arg = dyn_cast<DefInit>(ArgInit);
if (!Arg)
PrintFatalError("Illegal operand for the '" + R->getName() + "' instruction!");
Record *Rec = Arg->getDef();
std::string PrintMethod = "printOperand";
std::string EncoderMethod;
std::string OperandType = "OPERAND_UNKNOWN";
std::string OperandNamespace = "MCOI";
unsigned NumOps = 1;
DagInit *MIOpInfo = nullptr;
if (Rec->isSubClassOf("RegisterOperand")) {
PrintMethod = Rec->getValueAsString("PrintMethod");
OperandType = Rec->getValueAsString("OperandType");
OperandNamespace = Rec->getValueAsString("OperandNamespace");
} else if (Rec->isSubClassOf("Operand")) {
PrintMethod = Rec->getValueAsString("PrintMethod");
OperandType = Rec->getValueAsString("OperandType");
// If there is an explicit encoder method, use it.
EncoderMethod = Rec->getValueAsString("EncoderMethod");
MIOpInfo = Rec->getValueAsDag("MIOperandInfo");
// Verify that MIOpInfo has an 'ops' root value.
if (!isa<DefInit>(MIOpInfo->getOperator()) ||
cast<DefInit>(MIOpInfo->getOperator())->getDef()->getName() != "ops")
PrintFatalError("Bad value for MIOperandInfo in operand '" + Rec->getName() +
"'\n");
// If we have MIOpInfo, then we have #operands equal to number of entries
// in MIOperandInfo.
if (unsigned NumArgs = MIOpInfo->getNumArgs())
NumOps = NumArgs;
if (Rec->isSubClassOf("PredicateOp"))
isPredicable = true;
else if (Rec->isSubClassOf("OptionalDefOperand"))
hasOptionalDef = true;
} else if (Rec->getName() == "variable_ops") {
isVariadic = true;
continue;
} else if (Rec->isSubClassOf("RegisterClass")) {
OperandType = "OPERAND_REGISTER";
} else if (!Rec->isSubClassOf("PointerLikeRegClass") &&
!Rec->isSubClassOf("unknown_class"))
PrintFatalError("Unknown operand class '" + Rec->getName() +
"' in '" + R->getName() + "' instruction!");
// Check that the operand has a name and that it's unique.
if (ArgName.empty())
PrintFatalError("In instruction '" + R->getName() + "', operand #" +
Twine(i) + " has no name!");
if (!OperandNames.insert(ArgName).second)
PrintFatalError("In instruction '" + R->getName() + "', operand #" +
Twine(i) + " has the same name as a previous operand!");
OperandList.push_back(OperandInfo(Rec, ArgName, PrintMethod, EncoderMethod,
OperandNamespace + "::" + OperandType,
MIOperandNo, NumOps, MIOpInfo));
MIOperandNo += NumOps;
}
// Make sure the constraints list for each operand is large enough to hold
// constraint info, even if none is present.
for (unsigned i = 0, e = OperandList.size(); i != e; ++i)
OperandList[i].Constraints.resize(OperandList[i].MINumOperands);
}
/// getOperandNamed - Return the index of the operand with the specified
/// non-empty name. If the instruction does not have an operand with the
/// specified name, abort.
///
unsigned CGIOperandList::getOperandNamed(StringRef Name) const {
unsigned OpIdx;
if (hasOperandNamed(Name, OpIdx)) return OpIdx;
PrintFatalError("'" + TheDef->getName() +
"' does not have an operand named '$" + Name + "'!");
}
/// hasOperandNamed - Query whether the instruction has an operand of the
/// given name. If so, return true and set OpIdx to the index of the
/// operand. Otherwise, return false.
bool CGIOperandList::hasOperandNamed(StringRef Name, unsigned &OpIdx) const {
assert(!Name.empty() && "Cannot search for operand with no name!");
for (unsigned i = 0, e = OperandList.size(); i != e; ++i)
if (OperandList[i].Name == Name) {
OpIdx = i;
return true;
}
return false;
}
std::pair<unsigned,unsigned>
CGIOperandList::ParseOperandName(const std::string &Op, bool AllowWholeOp) {
if (Op.empty() || Op[0] != '$')
PrintFatalError(TheDef->getName() + ": Illegal operand name: '" + Op + "'");
std::string OpName = Op.substr(1);
std::string SubOpName;
// Check to see if this is $foo.bar.
std::string::size_type DotIdx = OpName.find_first_of(".");
if (DotIdx != std::string::npos) {
SubOpName = OpName.substr(DotIdx+1);
if (SubOpName.empty())
PrintFatalError(TheDef->getName() + ": illegal empty suboperand name in '" +Op +"'");
OpName = OpName.substr(0, DotIdx);
}
unsigned OpIdx = getOperandNamed(OpName);
if (SubOpName.empty()) { // If no suboperand name was specified:
// If one was needed, throw.
if (OperandList[OpIdx].MINumOperands > 1 && !AllowWholeOp &&
SubOpName.empty())
PrintFatalError(TheDef->getName() + ": Illegal to refer to"
" whole operand part of complex operand '" + Op + "'");
// Otherwise, return the operand.
return std::make_pair(OpIdx, 0U);
}
// Find the suboperand number involved.
DagInit *MIOpInfo = OperandList[OpIdx].MIOperandInfo;
if (!MIOpInfo)
PrintFatalError(TheDef->getName() + ": unknown suboperand name in '" + Op + "'");
// Find the operand with the right name.
for (unsigned i = 0, e = MIOpInfo->getNumArgs(); i != e; ++i)
if (MIOpInfo->getArgName(i) == SubOpName)
return std::make_pair(OpIdx, i);
// Otherwise, didn't find it!
PrintFatalError(TheDef->getName() + ": unknown suboperand name in '" + Op + "'");
return std::make_pair(0U, 0U);
}
static void ParseConstraint(const std::string &CStr, CGIOperandList &Ops) {
// EARLY_CLOBBER: @early $reg
std::string::size_type wpos = CStr.find_first_of(" \t");
std::string::size_type start = CStr.find_first_not_of(" \t");
std::string Tok = CStr.substr(start, wpos - start);
if (Tok == "@earlyclobber") {
std::string Name = CStr.substr(wpos+1);
wpos = Name.find_first_not_of(" \t");
if (wpos == std::string::npos)
PrintFatalError("Illegal format for @earlyclobber constraint: '" + CStr + "'");
Name = Name.substr(wpos);
std::pair<unsigned,unsigned> Op = Ops.ParseOperandName(Name, false);
// Build the string for the operand
if (!Ops[Op.first].Constraints[Op.second].isNone())
PrintFatalError("Operand '" + Name + "' cannot have multiple constraints!");
Ops[Op.first].Constraints[Op.second] =
CGIOperandList::ConstraintInfo::getEarlyClobber();
return;
}
// Only other constraint is "TIED_TO" for now.
std::string::size_type pos = CStr.find_first_of('=');
assert(pos != std::string::npos && "Unrecognized constraint");
start = CStr.find_first_not_of(" \t");
std::string Name = CStr.substr(start, pos - start);
// TIED_TO: $src1 = $dst
wpos = Name.find_first_of(" \t");
if (wpos == std::string::npos)
PrintFatalError("Illegal format for tied-to constraint: '" + CStr + "'");
std::string DestOpName = Name.substr(0, wpos);
std::pair<unsigned,unsigned> DestOp = Ops.ParseOperandName(DestOpName, false);
Name = CStr.substr(pos+1);
wpos = Name.find_first_not_of(" \t");
if (wpos == std::string::npos)
PrintFatalError("Illegal format for tied-to constraint: '" + CStr + "'");
std::string SrcOpName = Name.substr(wpos);
std::pair<unsigned,unsigned> SrcOp = Ops.ParseOperandName(SrcOpName, false);
if (SrcOp > DestOp) {
std::swap(SrcOp, DestOp);
std::swap(SrcOpName, DestOpName);
}
unsigned FlatOpNo = Ops.getFlattenedOperandNumber(SrcOp);
if (!Ops[DestOp.first].Constraints[DestOp.second].isNone())
PrintFatalError("Operand '" + DestOpName +
"' cannot have multiple constraints!");
Ops[DestOp.first].Constraints[DestOp.second] =
CGIOperandList::ConstraintInfo::getTied(FlatOpNo);
}
static void ParseConstraints(const std::string &CStr, CGIOperandList &Ops) {
if (CStr.empty()) return;
const std::string delims(",");
std::string::size_type bidx, eidx;
bidx = CStr.find_first_not_of(delims);
while (bidx != std::string::npos) {
eidx = CStr.find_first_of(delims, bidx);
if (eidx == std::string::npos)
eidx = CStr.length();
ParseConstraint(CStr.substr(bidx, eidx - bidx), Ops);
bidx = CStr.find_first_not_of(delims, eidx);
}
}
void CGIOperandList::ProcessDisableEncoding(std::string DisableEncoding) {
while (1) {
std::pair<StringRef, StringRef> P = getToken(DisableEncoding, " ,\t");
std::string OpName = P.first;
DisableEncoding = P.second;
if (OpName.empty()) break;
// Figure out which operand this is.
std::pair<unsigned,unsigned> Op = ParseOperandName(OpName, false);
// Mark the operand as not-to-be encoded.
if (Op.second >= OperandList[Op.first].DoNotEncode.size())
OperandList[Op.first].DoNotEncode.resize(Op.second+1);
OperandList[Op.first].DoNotEncode[Op.second] = true;
}
}
//===----------------------------------------------------------------------===//
// CodeGenInstruction Implementation
//===----------------------------------------------------------------------===//
CodeGenInstruction::CodeGenInstruction(Record *R)
: TheDef(R), Operands(R), InferredFrom(nullptr) {
Namespace = R->getValueAsString("Namespace");
AsmString = R->getValueAsString("AsmString");
isReturn = R->getValueAsBit("isReturn");
isBranch = R->getValueAsBit("isBranch");
isIndirectBranch = R->getValueAsBit("isIndirectBranch");
isCompare = R->getValueAsBit("isCompare");
isMoveImm = R->getValueAsBit("isMoveImm");
isBitcast = R->getValueAsBit("isBitcast");
isSelect = R->getValueAsBit("isSelect");
isBarrier = R->getValueAsBit("isBarrier");
isCall = R->getValueAsBit("isCall");
canFoldAsLoad = R->getValueAsBit("canFoldAsLoad");
isPredicable = Operands.isPredicable || R->getValueAsBit("isPredicable");
isConvertibleToThreeAddress = R->getValueAsBit("isConvertibleToThreeAddress");
isCommutable = R->getValueAsBit("isCommutable");
isTerminator = R->getValueAsBit("isTerminator");
isReMaterializable = R->getValueAsBit("isReMaterializable");
hasDelaySlot = R->getValueAsBit("hasDelaySlot");
usesCustomInserter = R->getValueAsBit("usesCustomInserter");
hasPostISelHook = R->getValueAsBit("hasPostISelHook");
hasCtrlDep = R->getValueAsBit("hasCtrlDep");
isNotDuplicable = R->getValueAsBit("isNotDuplicable");
isRegSequence = R->getValueAsBit("isRegSequence");
isExtractSubreg = R->getValueAsBit("isExtractSubreg");
isInsertSubreg = R->getValueAsBit("isInsertSubreg");
bool Unset;
mayLoad = R->getValueAsBitOrUnset("mayLoad", Unset);
mayLoad_Unset = Unset;
mayStore = R->getValueAsBitOrUnset("mayStore", Unset);
mayStore_Unset = Unset;
hasSideEffects = R->getValueAsBitOrUnset("hasSideEffects", Unset);
hasSideEffects_Unset = Unset;
isAsCheapAsAMove = R->getValueAsBit("isAsCheapAsAMove");
hasExtraSrcRegAllocReq = R->getValueAsBit("hasExtraSrcRegAllocReq");
hasExtraDefRegAllocReq = R->getValueAsBit("hasExtraDefRegAllocReq");
isCodeGenOnly = R->getValueAsBit("isCodeGenOnly");
isPseudo = R->getValueAsBit("isPseudo");
ImplicitDefs = R->getValueAsListOfDefs("Defs");
ImplicitUses = R->getValueAsListOfDefs("Uses");
// Parse Constraints.
ParseConstraints(R->getValueAsString("Constraints"), Operands);
// Parse the DisableEncoding field.
Operands.ProcessDisableEncoding(R->getValueAsString("DisableEncoding"));
// First check for a ComplexDeprecationPredicate.
if (R->getValue("ComplexDeprecationPredicate")) {
HasComplexDeprecationPredicate = true;
DeprecatedReason = R->getValueAsString("ComplexDeprecationPredicate");
} else if (RecordVal *Dep = R->getValue("DeprecatedFeatureMask")) {
// Check if we have a Subtarget feature mask.
HasComplexDeprecationPredicate = false;
DeprecatedReason = Dep->getValue()->getAsString();
} else {
// This instruction isn't deprecated.
HasComplexDeprecationPredicate = false;
DeprecatedReason = "";
}
}
/// HasOneImplicitDefWithKnownVT - If the instruction has at least one
/// implicit def and it has a known VT, return the VT, otherwise return
/// MVT::Other.
MVT::SimpleValueType CodeGenInstruction::
HasOneImplicitDefWithKnownVT(const CodeGenTarget &TargetInfo) const {
if (ImplicitDefs.empty()) return MVT::Other;
// Check to see if the first implicit def has a resolvable type.
Record *FirstImplicitDef = ImplicitDefs[0];
assert(FirstImplicitDef->isSubClassOf("Register"));
const std::vector<MVT::SimpleValueType> &RegVTs =
TargetInfo.getRegisterVTs(FirstImplicitDef);
if (RegVTs.size() == 1)
return RegVTs[0];
return MVT::Other;
}
/// FlattenAsmStringVariants - Flatten the specified AsmString to only
/// include text from the specified variant, returning the new string.
std::string CodeGenInstruction::
FlattenAsmStringVariants(StringRef Cur, unsigned Variant) {
std::string Res = "";
for (;;) {
// Find the start of the next variant string.
size_t VariantsStart = 0;
for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
if (Cur[VariantsStart] == '{' &&
(VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
Cur[VariantsStart-1] != '\\')))
break;
// Add the prefix to the result.
Res += Cur.slice(0, VariantsStart);
if (VariantsStart == Cur.size())
break;
++VariantsStart; // Skip the '{'.
// Scan to the end of the variants string.
size_t VariantsEnd = VariantsStart;
unsigned NestedBraces = 1;
for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
if (--NestedBraces == 0)
break;
} else if (Cur[VariantsEnd] == '{')
++NestedBraces;
}
// Select the Nth variant (or empty).
StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
for (unsigned i = 0; i != Variant; ++i)
Selection = Selection.split('|').second;
Res += Selection.split('|').first;
assert(VariantsEnd != Cur.size() &&
"Unterminated variants in assembly string!");
Cur = Cur.substr(VariantsEnd + 1);
}
return Res;
}
//===----------------------------------------------------------------------===//
/// CodeGenInstAlias Implementation
//===----------------------------------------------------------------------===//
/// tryAliasOpMatch - This is a helper function for the CodeGenInstAlias
/// constructor. It checks if an argument in an InstAlias pattern matches
/// the corresponding operand of the instruction. It returns true on a
/// successful match, with ResOp set to the result operand to be used.
bool CodeGenInstAlias::tryAliasOpMatch(DagInit *Result, unsigned AliasOpNo,
Record *InstOpRec, bool hasSubOps,
ArrayRef<SMLoc> Loc, CodeGenTarget &T,
ResultOperand &ResOp) {
Init *Arg = Result->getArg(AliasOpNo);
DefInit *ADI = dyn_cast<DefInit>(Arg);
Record *ResultRecord = ADI ? ADI->getDef() : nullptr;
if (ADI && ADI->getDef() == InstOpRec) {
// If the operand is a record, it must have a name, and the record type
// must match up with the instruction's argument type.
if (Result->getArgName(AliasOpNo).empty())
PrintFatalError(Loc, "result argument #" + Twine(AliasOpNo) +
" must have a name!");
ResOp = ResultOperand(Result->getArgName(AliasOpNo), ResultRecord);
return true;
}
// For register operands, the source register class can be a subclass
// of the instruction register class, not just an exact match.
if (InstOpRec->isSubClassOf("RegisterOperand"))
InstOpRec = InstOpRec->getValueAsDef("RegClass");
if (ADI && ADI->getDef()->isSubClassOf("RegisterOperand"))
ADI = ADI->getDef()->getValueAsDef("RegClass")->getDefInit();
if (ADI && ADI->getDef()->isSubClassOf("RegisterClass")) {
if (!InstOpRec->isSubClassOf("RegisterClass"))
return false;
if (!T.getRegisterClass(InstOpRec)
.hasSubClass(&T.getRegisterClass(ADI->getDef())))
return false;
ResOp = ResultOperand(Result->getArgName(AliasOpNo), ResultRecord);
return true;
}
// Handle explicit registers.
if (ADI && ADI->getDef()->isSubClassOf("Register")) {
if (InstOpRec->isSubClassOf("OptionalDefOperand")) {
DagInit *DI = InstOpRec->getValueAsDag("MIOperandInfo");
// The operand info should only have a single (register) entry. We
// want the register class of it.
InstOpRec = cast<DefInit>(DI->getArg(0))->getDef();
}
if (!InstOpRec->isSubClassOf("RegisterClass"))
return false;
if (!T.getRegisterClass(InstOpRec)
.contains(T.getRegBank().getReg(ADI->getDef())))
PrintFatalError(Loc, "fixed register " + ADI->getDef()->getName() +
" is not a member of the " + InstOpRec->getName() +
" register class!");
if (!Result->getArgName(AliasOpNo).empty())
PrintFatalError(Loc, "result fixed register argument must "
"not have a name!");
ResOp = ResultOperand(ResultRecord);
return true;
}
// Handle "zero_reg" for optional def operands.
if (ADI && ADI->getDef()->getName() == "zero_reg") {
// Check if this is an optional def.
// Tied operands where the source is a sub-operand of a complex operand
// need to represent both operands in the alias destination instruction.
// Allow zero_reg for the tied portion. This can and should go away once
// the MC representation of things doesn't use tied operands at all.
//if (!InstOpRec->isSubClassOf("OptionalDefOperand"))
// throw TGError(Loc, "reg0 used for result that is not an "
// "OptionalDefOperand!");
ResOp = ResultOperand(static_cast<Record*>(nullptr));
return true;
}
// Literal integers.
if (IntInit *II = dyn_cast<IntInit>(Arg)) {
if (hasSubOps || !InstOpRec->isSubClassOf("Operand"))
return false;
// Integer arguments can't have names.
if (!Result->getArgName(AliasOpNo).empty())
PrintFatalError(Loc, "result argument #" + Twine(AliasOpNo) +
" must not have a name!");
ResOp = ResultOperand(II->getValue());
return true;
}
// Bits<n> (also used for 0bxx literals)
if (BitsInit *BI = dyn_cast<BitsInit>(Arg)) {
if (hasSubOps || !InstOpRec->isSubClassOf("Operand"))
return false;
if (!BI->isComplete())
return false;
// Convert the bits init to an integer and use that for the result.
IntInit *II =
dyn_cast_or_null<IntInit>(BI->convertInitializerTo(IntRecTy::get()));
if (!II)
return false;
ResOp = ResultOperand(II->getValue());
return true;
}
// If both are Operands with the same MVT, allow the conversion. It's
// up to the user to make sure the values are appropriate, just like
// for isel Pat's.
if (InstOpRec->isSubClassOf("Operand") && ADI &&
ADI->getDef()->isSubClassOf("Operand")) {
// FIXME: What other attributes should we check here? Identical
// MIOperandInfo perhaps?
if (InstOpRec->getValueInit("Type") != ADI->getDef()->getValueInit("Type"))
return false;
ResOp = ResultOperand(Result->getArgName(AliasOpNo), ADI->getDef());
return true;
}
return false;
}
unsigned CodeGenInstAlias::ResultOperand::getMINumOperands() const {
if (!isRecord())
return 1;
Record *Rec = getRecord();
if (!Rec->isSubClassOf("Operand"))
return 1;
DagInit *MIOpInfo = Rec->getValueAsDag("MIOperandInfo");
if (MIOpInfo->getNumArgs() == 0) {
// Unspecified, so it defaults to 1
return 1;
}
return MIOpInfo->getNumArgs();
}
CodeGenInstAlias::CodeGenInstAlias(Record *R, unsigned Variant,
CodeGenTarget &T)
: TheDef(R) {
Result = R->getValueAsDag("ResultInst");
AsmString = R->getValueAsString("AsmString");
AsmString = CodeGenInstruction::FlattenAsmStringVariants(AsmString, Variant);
// Verify that the root of the result is an instruction.
DefInit *DI = dyn_cast<DefInit>(Result->getOperator());
if (!DI || !DI->getDef()->isSubClassOf("Instruction"))
PrintFatalError(R->getLoc(),
"result of inst alias should be an instruction");
ResultInst = &T.getInstruction(DI->getDef());
// NameClass - If argument names are repeated, we need to verify they have
// the same class.
StringMap<Record*> NameClass;
for (unsigned i = 0, e = Result->getNumArgs(); i != e; ++i) {
DefInit *ADI = dyn_cast<DefInit>(Result->getArg(i));
if (!ADI || Result->getArgName(i).empty())
continue;
// Verify we don't have something like: (someinst GR16:$foo, GR32:$foo)
// $foo can exist multiple times in the result list, but it must have the
// same type.
Record *&Entry = NameClass[Result->getArgName(i)];
if (Entry && Entry != ADI->getDef())
PrintFatalError(R->getLoc(), "result value $" + Result->getArgName(i) +
" is both " + Entry->getName() + " and " +
ADI->getDef()->getName() + "!");
Entry = ADI->getDef();
}
// Decode and validate the arguments of the result.
unsigned AliasOpNo = 0;
for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
// Tied registers don't have an entry in the result dag unless they're part
// of a complex operand, in which case we include them anyways, as we
// don't have any other way to specify the whole operand.
if (ResultInst->Operands[i].MINumOperands == 1 &&
ResultInst->Operands[i].getTiedRegister() != -1)
continue;
if (AliasOpNo >= Result->getNumArgs())
PrintFatalError(R->getLoc(), "not enough arguments for instruction!");
Record *InstOpRec = ResultInst->Operands[i].Rec;
unsigned NumSubOps = ResultInst->Operands[i].MINumOperands;
ResultOperand ResOp(static_cast<int64_t>(0));
if (tryAliasOpMatch(Result, AliasOpNo, InstOpRec, (NumSubOps > 1),
R->getLoc(), T, ResOp)) {
// If this is a simple operand, or a complex operand with a custom match
// class, then we can match is verbatim.
if (NumSubOps == 1 ||
(InstOpRec->getValue("ParserMatchClass") &&
InstOpRec->getValueAsDef("ParserMatchClass")
->getValueAsString("Name") != "Imm")) {
ResultOperands.push_back(ResOp);
ResultInstOperandIndex.push_back(std::make_pair(i, -1));
++AliasOpNo;
// Otherwise, we need to match each of the suboperands individually.
} else {
DagInit *MIOI = ResultInst->Operands[i].MIOperandInfo;
for (unsigned SubOp = 0; SubOp != NumSubOps; ++SubOp) {
Record *SubRec = cast<DefInit>(MIOI->getArg(SubOp))->getDef();
// Take care to instantiate each of the suboperands with the correct
// nomenclature: $foo.bar
ResultOperands.push_back(
ResultOperand(Result->getArgName(AliasOpNo) + "." +
MIOI->getArgName(SubOp), SubRec));
ResultInstOperandIndex.push_back(std::make_pair(i, SubOp));
}
++AliasOpNo;
}
continue;
}
// If the argument did not match the instruction operand, and the operand
// is composed of multiple suboperands, try matching the suboperands.
if (NumSubOps > 1) {
DagInit *MIOI = ResultInst->Operands[i].MIOperandInfo;
for (unsigned SubOp = 0; SubOp != NumSubOps; ++SubOp) {
if (AliasOpNo >= Result->getNumArgs())
PrintFatalError(R->getLoc(), "not enough arguments for instruction!");
Record *SubRec = cast<DefInit>(MIOI->getArg(SubOp))->getDef();
if (tryAliasOpMatch(Result, AliasOpNo, SubRec, false,
R->getLoc(), T, ResOp)) {
ResultOperands.push_back(ResOp);
ResultInstOperandIndex.push_back(std::make_pair(i, SubOp));
++AliasOpNo;
} else {
PrintFatalError(R->getLoc(), "result argument #" + Twine(AliasOpNo) +
" does not match instruction operand class " +
(SubOp == 0 ? InstOpRec->getName() :SubRec->getName()));
}
}
continue;
}
PrintFatalError(R->getLoc(), "result argument #" + Twine(AliasOpNo) +
" does not match instruction operand class " +
InstOpRec->getName());
}
if (AliasOpNo != Result->getNumArgs())
PrintFatalError(R->getLoc(), "too many operands for instruction!");
}