mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-16 11:30:51 +00:00
d2cc017f46
uncovered a bug where registers were not being put in a map if they were not found... git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4776 91177308-0d34-0410-b5e6-96231b3b80d8
651 lines
22 KiB
C++
651 lines
22 KiB
C++
//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
|
|
//
|
|
// This file defines a simple peephole instruction selector for the x86 platform
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/iOperators.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/iPHINode.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
#include <map>
|
|
|
|
using namespace MOTy; // Get Use, Def, UseAndDef
|
|
|
|
namespace {
|
|
struct ISel : public FunctionPass, InstVisitor<ISel> {
|
|
TargetMachine &TM;
|
|
MachineFunction *F; // The function we are compiling into
|
|
MachineBasicBlock *BB; // The current MBB we are compiling
|
|
|
|
unsigned CurReg;
|
|
std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
|
|
|
|
ISel(TargetMachine &tm)
|
|
: TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
|
|
|
|
/// runOnFunction - Top level implementation of instruction selection for
|
|
/// the entire function.
|
|
///
|
|
bool runOnFunction(Function &Fn) {
|
|
F = &MachineFunction::construct(&Fn, TM);
|
|
visit(Fn);
|
|
RegMap.clear();
|
|
F = 0;
|
|
return false; // We never modify the LLVM itself.
|
|
}
|
|
|
|
/// visitBasicBlock - This method is called when we are visiting a new basic
|
|
/// block. This simply creates a new MachineBasicBlock to emit code into
|
|
/// and adds it to the current MachineFunction. Subsequent visit* for
|
|
/// instructions will be invoked for all instructions in the basic block.
|
|
///
|
|
void visitBasicBlock(BasicBlock &LLVM_BB) {
|
|
BB = new MachineBasicBlock(&LLVM_BB);
|
|
// FIXME: Use the auto-insert form when it's available
|
|
F->getBasicBlockList().push_back(BB);
|
|
}
|
|
|
|
// Visitation methods for various instructions. These methods simply emit
|
|
// fixed X86 code for each instruction.
|
|
//
|
|
void visitReturnInst(ReturnInst &RI);
|
|
void visitBranchInst(BranchInst &BI);
|
|
|
|
// Arithmetic operators
|
|
void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
|
|
void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
|
|
void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
|
|
void visitMul(BinaryOperator &B);
|
|
|
|
void visitDiv(BinaryOperator &B) { visitDivRem(B); }
|
|
void visitRem(BinaryOperator &B) { visitDivRem(B); }
|
|
void visitDivRem(BinaryOperator &B);
|
|
|
|
// Bitwise operators
|
|
void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
|
|
void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
|
|
void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
|
|
|
|
// Binary comparison operators
|
|
void visitSetCondInst(SetCondInst &I);
|
|
|
|
// Memory Instructions
|
|
void visitLoadInst(LoadInst &I);
|
|
void visitStoreInst(StoreInst &I);
|
|
|
|
// Other operators
|
|
void visitShiftInst(ShiftInst &I);
|
|
void visitPHINode(PHINode &I);
|
|
|
|
void visitInstruction(Instruction &I) {
|
|
std::cerr << "Cannot instruction select: " << I;
|
|
abort();
|
|
}
|
|
|
|
|
|
/// copyConstantToRegister - Output the instructions required to put the
|
|
/// specified constant into the specified register.
|
|
///
|
|
void copyConstantToRegister(Constant *C, unsigned Reg);
|
|
|
|
/// getReg - This method turns an LLVM value into a register number. This
|
|
/// is guaranteed to produce the same register number for a particular value
|
|
/// every time it is queried.
|
|
///
|
|
unsigned getReg(Value &V) { return getReg(&V); } // Allow references
|
|
unsigned getReg(Value *V) {
|
|
unsigned &Reg = RegMap[V];
|
|
if (Reg == 0) {
|
|
Reg = CurReg++;
|
|
RegMap[V] = Reg;
|
|
|
|
// Add the mapping of regnumber => reg class to MachineFunction
|
|
F->addRegMap(Reg,
|
|
TM.getRegisterInfo()->getRegClassForType(V->getType()));
|
|
}
|
|
|
|
// If this operand is a constant, emit the code to copy the constant into
|
|
// the register here...
|
|
//
|
|
if (Constant *C = dyn_cast<Constant>(V))
|
|
copyConstantToRegister(C, Reg);
|
|
|
|
return Reg;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
|
|
/// Representation.
|
|
///
|
|
enum TypeClass {
|
|
cByte, cShort, cInt, cLong, cFloat, cDouble
|
|
};
|
|
|
|
/// getClass - Turn a primitive type into a "class" number which is based on the
|
|
/// size of the type, and whether or not it is floating point.
|
|
///
|
|
static inline TypeClass getClass(const Type *Ty) {
|
|
switch (Ty->getPrimitiveID()) {
|
|
case Type::SByteTyID:
|
|
case Type::UByteTyID: return cByte; // Byte operands are class #0
|
|
case Type::ShortTyID:
|
|
case Type::UShortTyID: return cShort; // Short operands are class #1
|
|
case Type::IntTyID:
|
|
case Type::UIntTyID:
|
|
case Type::PointerTyID: return cInt; // Int's and pointers are class #2
|
|
|
|
case Type::LongTyID:
|
|
case Type::ULongTyID: return cLong; // Longs are class #3
|
|
case Type::FloatTyID: return cFloat; // Float is class #4
|
|
case Type::DoubleTyID: return cDouble; // Doubles are class #5
|
|
default:
|
|
assert(0 && "Invalid type to getClass!");
|
|
return cByte; // not reached
|
|
}
|
|
}
|
|
|
|
|
|
/// copyConstantToRegister - Output the instructions required to put the
|
|
/// specified constant into the specified register.
|
|
///
|
|
void ISel::copyConstantToRegister(Constant *C, unsigned R) {
|
|
assert (!isa<ConstantExpr>(C) && "Constant expressions not yet handled!\n");
|
|
|
|
if (C->getType()->isIntegral()) {
|
|
unsigned Class = getClass(C->getType());
|
|
assert(Class != 3 && "Type not handled yet!");
|
|
|
|
static const unsigned IntegralOpcodeTab[] = {
|
|
X86::MOVir8, X86::MOVir16, X86::MOVir32
|
|
};
|
|
|
|
if (C->getType()->isSigned()) {
|
|
ConstantSInt *CSI = cast<ConstantSInt>(C);
|
|
BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue());
|
|
} else {
|
|
ConstantUInt *CUI = cast<ConstantUInt>(C);
|
|
BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
|
|
}
|
|
} else {
|
|
assert(0 && "Type not handled yet!");
|
|
}
|
|
}
|
|
|
|
|
|
/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
|
|
/// register, then move it to wherever the result should be.
|
|
/// We handle FP setcc instructions by pushing them, doing a
|
|
/// compare-and-pop-twice, and then copying the concodes to the main
|
|
/// processor's concodes (I didn't make this up, it's in the Intel manual)
|
|
///
|
|
void
|
|
ISel::visitSetCondInst (SetCondInst & I)
|
|
{
|
|
// The arguments are already supposed to be of the same type.
|
|
Value *var1 = I.getOperand (0);
|
|
Value *var2 = I.getOperand (1);
|
|
unsigned reg1 = getReg (var1);
|
|
unsigned reg2 = getReg (var2);
|
|
unsigned resultReg = getReg (I);
|
|
unsigned comparisonWidth = var1->getType ()->getPrimitiveSize ();
|
|
unsigned unsignedComparison = var1->getType ()->isUnsigned ();
|
|
unsigned resultWidth = I.getType ()->getPrimitiveSize ();
|
|
bool fpComparison = var1->getType ()->isFloatingPoint ();
|
|
if (fpComparison)
|
|
{
|
|
// Push the variables on the stack with fldl opcodes.
|
|
// FIXME: assuming var1, var2 are in memory, if not, spill to
|
|
// stack first
|
|
switch (comparisonWidth)
|
|
{
|
|
case 4:
|
|
BuildMI (BB, X86::FLDr4, 1, X86::NoReg).addReg (reg1);
|
|
break;
|
|
case 8:
|
|
BuildMI (BB, X86::FLDr8, 1, X86::NoReg).addReg (reg1);
|
|
break;
|
|
default:
|
|
visitInstruction (I);
|
|
break;
|
|
}
|
|
switch (comparisonWidth)
|
|
{
|
|
case 4:
|
|
BuildMI (BB, X86::FLDr4, 1, X86::NoReg).addReg (reg2);
|
|
break;
|
|
case 8:
|
|
BuildMI (BB, X86::FLDr8, 1, X86::NoReg).addReg (reg2);
|
|
break;
|
|
default:
|
|
visitInstruction (I);
|
|
break;
|
|
}
|
|
// (Non-trapping) compare and pop twice.
|
|
BuildMI (BB, X86::FUCOMPP, 0);
|
|
// Move fp status word (concodes) to ax.
|
|
BuildMI (BB, X86::FNSTSWr8, 1, X86::AX);
|
|
// Load real concodes from ax.
|
|
BuildMI (BB, X86::SAHF, 1, X86::EFLAGS).addReg(X86::AH);
|
|
}
|
|
else
|
|
{ // integer comparison
|
|
// Emit: cmp <var1>, <var2> (do the comparison). We can
|
|
// compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
|
|
// 32-bit.
|
|
switch (comparisonWidth)
|
|
{
|
|
case 1:
|
|
BuildMI (BB, X86::CMPrr8, 2,
|
|
X86::EFLAGS).addReg (reg1).addReg (reg2);
|
|
break;
|
|
case 2:
|
|
BuildMI (BB, X86::CMPrr16, 2,
|
|
X86::EFLAGS).addReg (reg1).addReg (reg2);
|
|
break;
|
|
case 4:
|
|
BuildMI (BB, X86::CMPrr32, 2,
|
|
X86::EFLAGS).addReg (reg1).addReg (reg2);
|
|
break;
|
|
case 8:
|
|
default:
|
|
visitInstruction (I);
|
|
break;
|
|
}
|
|
}
|
|
// Emit setOp instruction (extract concode; clobbers ax),
|
|
// using the following mapping:
|
|
// LLVM -> X86 signed X86 unsigned
|
|
// ----- ----- -----
|
|
// seteq -> sete sete
|
|
// setne -> setne setne
|
|
// setlt -> setl setb
|
|
// setgt -> setg seta
|
|
// setle -> setle setbe
|
|
// setge -> setge setae
|
|
switch (I.getOpcode ())
|
|
{
|
|
case Instruction::SetEQ:
|
|
BuildMI (BB, X86::SETE, 0, X86::AL);
|
|
break;
|
|
case Instruction::SetGE:
|
|
if (unsignedComparison)
|
|
BuildMI (BB, X86::SETAE, 0, X86::AL);
|
|
else
|
|
BuildMI (BB, X86::SETGE, 0, X86::AL);
|
|
break;
|
|
case Instruction::SetGT:
|
|
if (unsignedComparison)
|
|
BuildMI (BB, X86::SETA, 0, X86::AL);
|
|
else
|
|
BuildMI (BB, X86::SETG, 0, X86::AL);
|
|
break;
|
|
case Instruction::SetLE:
|
|
if (unsignedComparison)
|
|
BuildMI (BB, X86::SETBE, 0, X86::AL);
|
|
else
|
|
BuildMI (BB, X86::SETLE, 0, X86::AL);
|
|
break;
|
|
case Instruction::SetLT:
|
|
if (unsignedComparison)
|
|
BuildMI (BB, X86::SETB, 0, X86::AL);
|
|
else
|
|
BuildMI (BB, X86::SETL, 0, X86::AL);
|
|
break;
|
|
case Instruction::SetNE:
|
|
BuildMI (BB, X86::SETNE, 0, X86::AL);
|
|
break;
|
|
default:
|
|
visitInstruction (I);
|
|
break;
|
|
}
|
|
// Put it in the result using a move.
|
|
switch (resultWidth)
|
|
{
|
|
case 1:
|
|
BuildMI (BB, X86::MOVrr8, 1, resultReg).addReg (X86::AL);
|
|
break;
|
|
case 2:
|
|
BuildMI (BB, X86::MOVZXr16r8, 1, resultReg).addReg (X86::AL);
|
|
break;
|
|
case 4:
|
|
BuildMI (BB, X86::MOVZXr32r8, 1, resultReg).addReg (X86::AL);
|
|
break;
|
|
case 8:
|
|
default:
|
|
visitInstruction (I);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
|
|
/// we have the following possibilities:
|
|
///
|
|
/// ret void: No return value, simply emit a 'ret' instruction
|
|
/// ret sbyte, ubyte : Extend value into EAX and return
|
|
/// ret short, ushort: Extend value into EAX and return
|
|
/// ret int, uint : Move value into EAX and return
|
|
/// ret pointer : Move value into EAX and return
|
|
/// ret long, ulong : Move value into EAX/EDX and return
|
|
/// ret float/double : Top of FP stack
|
|
///
|
|
void ISel::visitReturnInst (ReturnInst &I) {
|
|
if (I.getNumOperands() == 0) {
|
|
// Emit a 'ret' instruction
|
|
BuildMI(BB, X86::RET, 0);
|
|
return;
|
|
}
|
|
|
|
unsigned val = getReg(I.getOperand(0));
|
|
unsigned Class = getClass(I.getOperand(0)->getType());
|
|
bool isUnsigned = I.getOperand(0)->getType()->isUnsigned();
|
|
switch (Class) {
|
|
case cByte:
|
|
// ret sbyte, ubyte: Extend value into EAX and return
|
|
if (isUnsigned)
|
|
BuildMI (BB, X86::MOVZXr32r8, 1, X86::EAX).addReg (val);
|
|
else
|
|
BuildMI (BB, X86::MOVSXr32r8, 1, X86::EAX).addReg (val);
|
|
break;
|
|
case cShort:
|
|
// ret short, ushort: Extend value into EAX and return
|
|
if (isUnsigned)
|
|
BuildMI (BB, X86::MOVZXr32r16, 1, X86::EAX).addReg (val);
|
|
else
|
|
BuildMI (BB, X86::MOVSXr32r16, 1, X86::EAX).addReg (val);
|
|
break;
|
|
case cInt:
|
|
// ret int, uint, ptr: Move value into EAX and return
|
|
// MOV EAX, <val>
|
|
BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(val);
|
|
break;
|
|
|
|
// ret float/double: top of FP stack
|
|
// FLD <val>
|
|
case cFloat: // Floats
|
|
BuildMI(BB, X86::FLDr4, 1).addReg(val);
|
|
break;
|
|
case cDouble: // Doubles
|
|
BuildMI(BB, X86::FLDr8, 1).addReg(val);
|
|
break;
|
|
case cLong:
|
|
// ret long: use EAX(least significant 32 bits)/EDX (most
|
|
// significant 32)...uh, I think so Brain, but how do i call
|
|
// up the two parts of the value from inside this mouse
|
|
// cage? *zort*
|
|
default:
|
|
visitInstruction(I);
|
|
}
|
|
|
|
// Emit a 'ret' instruction
|
|
BuildMI(BB, X86::RET, 0);
|
|
}
|
|
|
|
/// visitBranchInst - Handle conditional and unconditional branches here. Note
|
|
/// that since code layout is frozen at this point, that if we are trying to
|
|
/// jump to a block that is the immediate successor of the current block, we can
|
|
/// just make a fall-through. (but we don't currently).
|
|
///
|
|
void
|
|
ISel::visitBranchInst (BranchInst & BI)
|
|
{
|
|
if (BI.isConditional ())
|
|
{
|
|
BasicBlock *ifTrue = BI.getSuccessor (0);
|
|
BasicBlock *ifFalse = BI.getSuccessor (1); // this is really unobvious
|
|
|
|
// simplest thing I can think of: compare condition with zero,
|
|
// followed by jump-if-equal to ifFalse, and jump-if-nonequal to
|
|
// ifTrue
|
|
unsigned int condReg = getReg (BI.getCondition ());
|
|
BuildMI (BB, X86::CMPri8, 2, X86::EFLAGS).addReg (condReg).addZImm (0);
|
|
BuildMI (BB, X86::JNE, 1).addPCDisp (BI.getSuccessor (0));
|
|
BuildMI (BB, X86::JE, 1).addPCDisp (BI.getSuccessor (1));
|
|
}
|
|
else // unconditional branch
|
|
{
|
|
BuildMI (BB, X86::JMP, 1).addPCDisp (BI.getSuccessor (0));
|
|
}
|
|
}
|
|
|
|
|
|
/// visitSimpleBinary - Implement simple binary operators for integral types...
|
|
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
|
|
/// 4 for Xor.
|
|
///
|
|
void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
|
|
if (B.getType() == Type::BoolTy) // FIXME: Handle bools for logicals
|
|
visitInstruction(B);
|
|
|
|
unsigned Class = getClass(B.getType());
|
|
if (Class > 2) // FIXME: Handle longs
|
|
visitInstruction(B);
|
|
|
|
static const unsigned OpcodeTab[][4] = {
|
|
// Arithmetic operators
|
|
{ X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 }, // ADD
|
|
{ X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 }, // SUB
|
|
|
|
// Bitwise operators
|
|
{ X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
|
|
{ X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
|
|
{ X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
|
|
};
|
|
|
|
unsigned Opcode = OpcodeTab[OperatorClass][Class];
|
|
unsigned Op0r = getReg(B.getOperand(0));
|
|
unsigned Op1r = getReg(B.getOperand(1));
|
|
BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r);
|
|
}
|
|
|
|
/// visitMul - Multiplies are not simple binary operators because they must deal
|
|
/// with the EAX register explicitly.
|
|
///
|
|
void ISel::visitMul(BinaryOperator &I) {
|
|
unsigned Class = getClass(I.getType());
|
|
if (Class > 2) // FIXME: Handle longs
|
|
visitInstruction(I);
|
|
|
|
static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
|
|
static const unsigned Clobbers[] ={ X86::AH , X86::DX , X86::EDX };
|
|
static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 };
|
|
static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
|
|
|
|
unsigned Reg = Regs[Class];
|
|
unsigned Clobber = Clobbers[Class];
|
|
unsigned Op0Reg = getReg(I.getOperand(0));
|
|
unsigned Op1Reg = getReg(I.getOperand(1));
|
|
|
|
// Put the first operand into one of the A registers...
|
|
BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
|
|
|
|
// Emit the appropriate multiply instruction...
|
|
BuildMI(BB, MulOpcode[Class], 3)
|
|
.addReg(Reg, UseAndDef).addReg(Op1Reg).addClobber(Clobber);
|
|
|
|
// Put the result into the destination register...
|
|
BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(Reg);
|
|
}
|
|
|
|
|
|
/// visitDivRem - Handle division and remainder instructions... these
|
|
/// instruction both require the same instructions to be generated, they just
|
|
/// select the result from a different register. Note that both of these
|
|
/// instructions work differently for signed and unsigned operands.
|
|
///
|
|
void ISel::visitDivRem(BinaryOperator &I) {
|
|
unsigned Class = getClass(I.getType());
|
|
if (Class > 2) // FIXME: Handle longs
|
|
visitInstruction(I);
|
|
|
|
static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
|
|
static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
|
|
static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
|
|
static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
|
|
static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
|
|
|
|
static const unsigned DivOpcode[][4] = {
|
|
{ X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 }, // Unsigned division
|
|
{ X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 }, // Signed division
|
|
};
|
|
|
|
bool isSigned = I.getType()->isSigned();
|
|
unsigned Reg = Regs[Class];
|
|
unsigned ExtReg = ExtRegs[Class];
|
|
unsigned Op0Reg = getReg(I.getOperand(0));
|
|
unsigned Op1Reg = getReg(I.getOperand(1));
|
|
|
|
// Put the first operand into one of the A registers...
|
|
BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
|
|
|
|
if (isSigned) {
|
|
// Emit a sign extension instruction...
|
|
BuildMI(BB, ExtOpcode[Class], 1, ExtReg).addReg(Reg);
|
|
} else {
|
|
// If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
|
|
BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
|
|
}
|
|
|
|
// Emit the appropriate divide or remainder instruction...
|
|
BuildMI(BB, DivOpcode[isSigned][Class], 2)
|
|
.addReg(Reg, UseAndDef).addReg(ExtReg, UseAndDef).addReg(Op1Reg);
|
|
|
|
// Figure out which register we want to pick the result out of...
|
|
unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
|
|
|
|
// Put the result into the destination register...
|
|
BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(DestReg);
|
|
}
|
|
|
|
|
|
/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
|
|
/// for constant immediate shift values, and for constant immediate
|
|
/// shift values equal to 1. Even the general case is sort of special,
|
|
/// because the shift amount has to be in CL, not just any old register.
|
|
///
|
|
void ISel::visitShiftInst (ShiftInst &I) {
|
|
unsigned Op0r = getReg (I.getOperand(0));
|
|
unsigned DestReg = getReg(I);
|
|
bool isLeftShift = I.getOpcode() == Instruction::Shl;
|
|
bool isOperandSigned = I.getType()->isUnsigned();
|
|
unsigned OperandClass = getClass(I.getType());
|
|
|
|
if (OperandClass > 2)
|
|
visitInstruction(I); // Can't handle longs yet!
|
|
|
|
if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
|
|
{
|
|
// The shift amount is constant, guaranteed to be a ubyte. Get its value.
|
|
assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
|
|
unsigned char shAmt = CUI->getValue();
|
|
|
|
static const unsigned ConstantOperand[][4] = {
|
|
{ X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR
|
|
{ X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR
|
|
{ X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL
|
|
{ X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL
|
|
};
|
|
|
|
const unsigned *OpTab = // Figure out the operand table to use
|
|
ConstantOperand[isLeftShift*2+isOperandSigned];
|
|
|
|
// Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.)
|
|
BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt);
|
|
}
|
|
else
|
|
{
|
|
// The shift amount is non-constant.
|
|
//
|
|
// In fact, you can only shift with a variable shift amount if
|
|
// that amount is already in the CL register, so we have to put it
|
|
// there first.
|
|
//
|
|
|
|
// Emit: move cl, shiftAmount (put the shift amount in CL.)
|
|
BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
|
|
|
|
// This is a shift right (SHR).
|
|
static const unsigned NonConstantOperand[][4] = {
|
|
{ X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR
|
|
{ X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR
|
|
{ X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL
|
|
{ X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL
|
|
};
|
|
|
|
const unsigned *OpTab = // Figure out the operand table to use
|
|
NonConstantOperand[isLeftShift*2+isOperandSigned];
|
|
|
|
BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addReg(X86::CL);
|
|
}
|
|
}
|
|
|
|
|
|
/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
|
|
/// instruction.
|
|
///
|
|
void ISel::visitLoadInst(LoadInst &I) {
|
|
unsigned Class = getClass(I.getType());
|
|
if (Class > 2) // FIXME: Handle longs and others...
|
|
visitInstruction(I);
|
|
|
|
static const unsigned Opcode[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
|
|
|
|
unsigned AddressReg = getReg(I.getOperand(0));
|
|
addDirectMem(BuildMI(BB, Opcode[Class], 4, getReg(I)), AddressReg);
|
|
}
|
|
|
|
|
|
/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
|
|
/// instruction.
|
|
///
|
|
void ISel::visitStoreInst(StoreInst &I) {
|
|
unsigned Class = getClass(I.getOperand(0)->getType());
|
|
if (Class > 2) // FIXME: Handle longs and others...
|
|
visitInstruction(I);
|
|
|
|
static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
|
|
|
|
unsigned ValReg = getReg(I.getOperand(0));
|
|
unsigned AddressReg = getReg(I.getOperand(1));
|
|
addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
|
|
}
|
|
|
|
|
|
/// visitPHINode - Turn an LLVM PHI node into an X86 PHI node...
|
|
///
|
|
void ISel::visitPHINode(PHINode &PN) {
|
|
MachineInstr *MI = BuildMI(BB, X86::PHI, PN.getNumOperands(), getReg(PN));
|
|
|
|
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
|
|
// FIXME: This will put constants after the PHI nodes in the block, which
|
|
// is invalid. They should be put inline into the PHI node eventually.
|
|
//
|
|
MI->addRegOperand(getReg(PN.getIncomingValue(i)));
|
|
MI->addPCDispOperand(PN.getIncomingBlock(i));
|
|
}
|
|
}
|
|
|
|
|
|
/// createSimpleX86InstructionSelector - This pass converts an LLVM function
|
|
/// into a machine code representation is a very simple peep-hole fashion. The
|
|
/// generated code sucks but the implementation is nice and simple.
|
|
///
|
|
Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
|
|
return new ISel(TM);
|
|
}
|