mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-14 13:07:31 +00:00
64e14b1679
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@19404 91177308-0d34-0410-b5e6-96231b3b80d8
899 lines
33 KiB
C++
899 lines
33 KiB
C++
//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the SelectionDAGISel class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "isel"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetFrameInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <map>
|
|
#include <iostream>
|
|
using namespace llvm;
|
|
|
|
namespace llvm {
|
|
//===--------------------------------------------------------------------===//
|
|
/// FunctionLoweringInfo - This contains information that is global to a
|
|
/// function that is used when lowering a region of the function.
|
|
class FunctionLoweringInfo {
|
|
public:
|
|
TargetLowering &TLI;
|
|
Function &Fn;
|
|
MachineFunction &MF;
|
|
SSARegMap *RegMap;
|
|
|
|
FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
|
|
|
|
/// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
|
|
std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
|
|
|
|
/// ValueMap - Since we emit code for the function a basic block at a time,
|
|
/// we must remember which virtual registers hold the values for
|
|
/// cross-basic-block values.
|
|
std::map<const Value*, unsigned> ValueMap;
|
|
|
|
/// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
|
|
/// the entry block. This allows the allocas to be efficiently referenced
|
|
/// anywhere in the function.
|
|
std::map<const AllocaInst*, int> StaticAllocaMap;
|
|
|
|
unsigned MakeReg(MVT::ValueType VT) {
|
|
return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
|
|
}
|
|
|
|
unsigned CreateRegForValue(const Value *V) {
|
|
MVT::ValueType VT = TLI.getValueType(V->getType());
|
|
// The common case is that we will only create one register for this
|
|
// value. If we have that case, create and return the virtual register.
|
|
unsigned NV = TLI.getNumElements(VT);
|
|
if (NV == 1) return MakeReg(VT);
|
|
|
|
// If this value is represented with multiple target registers, make sure
|
|
// to create enough consequtive registers of the right (smaller) type.
|
|
unsigned NT = VT-1; // Find the type to use.
|
|
while (TLI.getNumElements((MVT::ValueType)NT) != 1)
|
|
--NT;
|
|
|
|
unsigned R = MakeReg((MVT::ValueType)NT);
|
|
for (unsigned i = 1; i != NV; ++i)
|
|
MakeReg((MVT::ValueType)NT);
|
|
return R;
|
|
}
|
|
|
|
unsigned InitializeRegForValue(const Value *V) {
|
|
unsigned &R = ValueMap[V];
|
|
assert(R == 0 && "Already initialized this value register!");
|
|
return R = CreateRegForValue(V);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
|
|
/// PHI nodes or outside of the basic block that defines it.
|
|
static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
|
|
if (isa<PHINode>(I)) return true;
|
|
BasicBlock *BB = I->getParent();
|
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
|
|
if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
|
|
Function &fn, MachineFunction &mf)
|
|
: TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
|
|
|
|
// Initialize the mapping of values to registers. This is only set up for
|
|
// instruction values that are used outside of the block that defines
|
|
// them.
|
|
for (Function::aiterator AI = Fn.abegin(), E = Fn.aend(); AI != E; ++AI)
|
|
InitializeRegForValue(AI);
|
|
|
|
Function::iterator BB = Fn.begin(), E = Fn.end();
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
|
|
const Type *Ty = AI->getAllocatedType();
|
|
uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
|
|
unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
|
|
TySize *= CUI->getValue(); // Get total allocated size.
|
|
StaticAllocaMap[AI] =
|
|
MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
|
|
}
|
|
|
|
for (; BB != E; ++BB)
|
|
for (BasicBlock::iterator I = BB->begin(), e = BB->end(); I != e; ++I)
|
|
if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
|
|
if (!isa<AllocaInst>(I) ||
|
|
!StaticAllocaMap.count(cast<AllocaInst>(I)))
|
|
InitializeRegForValue(I);
|
|
|
|
// Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
|
|
// also creates the initial PHI MachineInstrs, though none of the input
|
|
// operands are populated.
|
|
for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
|
|
MachineBasicBlock *MBB = new MachineBasicBlock(BB);
|
|
MBBMap[BB] = MBB;
|
|
MF.getBasicBlockList().push_back(MBB);
|
|
|
|
// Create Machine PHI nodes for LLVM PHI nodes, lowering them as
|
|
// appropriate.
|
|
PHINode *PN;
|
|
for (BasicBlock::iterator I = BB->begin();
|
|
(PN = dyn_cast<PHINode>(I)); ++I)
|
|
if (!PN->use_empty()) {
|
|
unsigned NumElements =
|
|
TLI.getNumElements(TLI.getValueType(PN->getType()));
|
|
unsigned PHIReg = ValueMap[PN];
|
|
assert(PHIReg &&"PHI node does not have an assigned virtual register!");
|
|
for (unsigned i = 0; i != NumElements; ++i)
|
|
BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// SelectionDAGLowering - This is the common target-independent lowering
|
|
/// implementation that is parameterized by a TargetLowering object.
|
|
/// Also, targets can overload any lowering method.
|
|
///
|
|
namespace llvm {
|
|
class SelectionDAGLowering {
|
|
MachineBasicBlock *CurMBB;
|
|
|
|
std::map<const Value*, SDOperand> NodeMap;
|
|
|
|
public:
|
|
// TLI - This is information that describes the available target features we
|
|
// need for lowering. This indicates when operations are unavailable,
|
|
// implemented with a libcall, etc.
|
|
TargetLowering &TLI;
|
|
SelectionDAG &DAG;
|
|
const TargetData &TD;
|
|
|
|
/// FuncInfo - Information about the function as a whole.
|
|
///
|
|
FunctionLoweringInfo &FuncInfo;
|
|
|
|
SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
|
|
FunctionLoweringInfo &funcinfo)
|
|
: TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
|
|
FuncInfo(funcinfo) {
|
|
}
|
|
|
|
void visit(Instruction &I) { visit(I.getOpcode(), I); }
|
|
|
|
void visit(unsigned Opcode, User &I) {
|
|
switch (Opcode) {
|
|
default: assert(0 && "Unknown instruction type encountered!");
|
|
abort();
|
|
// Build the switch statement using the Instruction.def file.
|
|
#define HANDLE_INST(NUM, OPCODE, CLASS) \
|
|
case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
|
|
#include "llvm/Instruction.def"
|
|
}
|
|
}
|
|
|
|
void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
|
|
|
|
|
|
SDOperand getIntPtrConstant(uint64_t Val) {
|
|
return DAG.getConstant(Val, TLI.getPointerTy());
|
|
}
|
|
|
|
SDOperand getValue(const Value *V) {
|
|
SDOperand &N = NodeMap[V];
|
|
if (N.Val) return N;
|
|
|
|
MVT::ValueType VT = TLI.getValueType(V->getType());
|
|
if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
visit(CE->getOpcode(), *CE);
|
|
assert(N.Val && "visit didn't populate the ValueMap!");
|
|
return N;
|
|
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
|
|
return N = DAG.getGlobalAddress(GV, VT);
|
|
} else if (isa<ConstantPointerNull>(C)) {
|
|
return N = DAG.getConstant(0, TLI.getPointerTy());
|
|
} else if (isa<UndefValue>(C)) {
|
|
/// FIXME: Implement UNDEFVALUE better.
|
|
if (MVT::isInteger(VT))
|
|
return N = DAG.getConstant(0, VT);
|
|
else if (MVT::isFloatingPoint(VT))
|
|
return N = DAG.getConstantFP(0, VT);
|
|
else
|
|
assert(0 && "Unknown value type!");
|
|
|
|
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
|
|
return N = DAG.getConstantFP(CFP->getValue(), VT);
|
|
} else {
|
|
// Canonicalize all constant ints to be unsigned.
|
|
return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
|
|
}
|
|
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
|
|
std::map<const AllocaInst*, int>::iterator SI =
|
|
FuncInfo.StaticAllocaMap.find(AI);
|
|
if (SI != FuncInfo.StaticAllocaMap.end())
|
|
return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
|
|
}
|
|
|
|
std::map<const Value*, unsigned>::const_iterator VMI =
|
|
FuncInfo.ValueMap.find(V);
|
|
assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
|
|
return N = DAG.getCopyFromReg(VMI->second, VT);
|
|
}
|
|
|
|
const SDOperand &setValue(const Value *V, SDOperand NewN) {
|
|
SDOperand &N = NodeMap[V];
|
|
assert(N.Val == 0 && "Already set a value for this node!");
|
|
return N = NewN;
|
|
}
|
|
|
|
// Terminator instructions.
|
|
void visitRet(ReturnInst &I);
|
|
void visitBr(BranchInst &I);
|
|
void visitUnreachable(UnreachableInst &I) { /* noop */ }
|
|
|
|
// These all get lowered before this pass.
|
|
void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
|
|
void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
|
|
void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
|
|
|
|
//
|
|
void visitBinary(User &I, unsigned Opcode);
|
|
void visitAdd(User &I) { visitBinary(I, ISD::ADD); }
|
|
void visitSub(User &I) { visitBinary(I, ISD::SUB); }
|
|
void visitMul(User &I) { visitBinary(I, ISD::MUL); }
|
|
void visitDiv(User &I) {
|
|
visitBinary(I, I.getType()->isUnsigned() ? ISD::UDIV : ISD::SDIV);
|
|
}
|
|
void visitRem(User &I) {
|
|
visitBinary(I, I.getType()->isUnsigned() ? ISD::UREM : ISD::SREM);
|
|
}
|
|
void visitAnd(User &I) { visitBinary(I, ISD::AND); }
|
|
void visitOr (User &I) { visitBinary(I, ISD::OR); }
|
|
void visitXor(User &I) { visitBinary(I, ISD::XOR); }
|
|
void visitShl(User &I) { visitBinary(I, ISD::SHL); }
|
|
void visitShr(User &I) {
|
|
visitBinary(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
|
|
}
|
|
|
|
void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
|
|
void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
|
|
void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
|
|
void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
|
|
void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
|
|
void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
|
|
void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
|
|
|
|
void visitGetElementPtr(User &I);
|
|
void visitCast(User &I);
|
|
void visitSelect(User &I);
|
|
//
|
|
|
|
void visitMalloc(MallocInst &I);
|
|
void visitFree(FreeInst &I);
|
|
void visitAlloca(AllocaInst &I);
|
|
void visitLoad(LoadInst &I);
|
|
void visitStore(StoreInst &I);
|
|
void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
|
|
void visitCall(CallInst &I);
|
|
|
|
// FIXME: These should go through the FunctionLoweringInfo object!!!
|
|
void visitVAStart(CallInst &I);
|
|
void visitVANext(VANextInst &I);
|
|
void visitVAArg(VAArgInst &I);
|
|
void visitVAEnd(CallInst &I);
|
|
void visitVACopy(CallInst &I);
|
|
void visitReturnAddress(CallInst &I);
|
|
void visitFrameAddress(CallInst &I);
|
|
|
|
void visitMemSet(CallInst &I);
|
|
void visitMemCpy(CallInst &I);
|
|
void visitMemMove(CallInst &I);
|
|
|
|
void visitUserOp1(Instruction &I) {
|
|
assert(0 && "UserOp1 should not exist at instruction selection time!");
|
|
abort();
|
|
}
|
|
void visitUserOp2(Instruction &I) {
|
|
assert(0 && "UserOp2 should not exist at instruction selection time!");
|
|
abort();
|
|
}
|
|
};
|
|
} // end namespace llvm
|
|
|
|
void SelectionDAGLowering::visitRet(ReturnInst &I) {
|
|
if (I.getNumOperands() == 0) {
|
|
DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, DAG.getRoot()));
|
|
return;
|
|
}
|
|
|
|
SDOperand Op1 = getValue(I.getOperand(0));
|
|
switch (Op1.getValueType()) {
|
|
default: assert(0 && "Unknown value type!");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
// Extend integer types to 32-bits.
|
|
if (I.getOperand(0)->getType()->isSigned())
|
|
Op1 = DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Op1);
|
|
else
|
|
Op1 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op1);
|
|
break;
|
|
case MVT::f32:
|
|
// Extend float to double.
|
|
Op1 = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Op1);
|
|
break;
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
case MVT::f64:
|
|
break; // No extension needed!
|
|
}
|
|
|
|
DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, DAG.getRoot(), Op1));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitBr(BranchInst &I) {
|
|
// Update machine-CFG edges.
|
|
MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
|
|
CurMBB->addSuccessor(Succ0MBB);
|
|
|
|
// Figure out which block is immediately after the current one.
|
|
MachineBasicBlock *NextBlock = 0;
|
|
MachineFunction::iterator BBI = CurMBB;
|
|
if (++BBI != CurMBB->getParent()->end())
|
|
NextBlock = BBI;
|
|
|
|
if (I.isUnconditional()) {
|
|
// If this is not a fall-through branch, emit the branch.
|
|
if (Succ0MBB != NextBlock)
|
|
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, DAG.getRoot(),
|
|
DAG.getBasicBlock(Succ0MBB)));
|
|
} else {
|
|
MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
|
|
CurMBB->addSuccessor(Succ1MBB);
|
|
|
|
SDOperand Cond = getValue(I.getCondition());
|
|
|
|
if (Succ1MBB == NextBlock) {
|
|
// If the condition is false, fall through. This means we should branch
|
|
// if the condition is true to Succ #0.
|
|
DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, DAG.getRoot(),
|
|
Cond, DAG.getBasicBlock(Succ0MBB)));
|
|
} else if (Succ0MBB == NextBlock) {
|
|
// If the condition is true, fall through. This means we should branch if
|
|
// the condition is false to Succ #1. Invert the condition first.
|
|
SDOperand True = DAG.getConstant(1, Cond.getValueType());
|
|
Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
|
|
DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, DAG.getRoot(),
|
|
Cond, DAG.getBasicBlock(Succ1MBB)));
|
|
} else {
|
|
// Neither edge is a fall through. If the comparison is true, jump to
|
|
// Succ#0, otherwise branch unconditionally to succ #1.
|
|
DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, DAG.getRoot(),
|
|
Cond, DAG.getBasicBlock(Succ0MBB)));
|
|
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, DAG.getRoot(),
|
|
DAG.getBasicBlock(Succ1MBB)));
|
|
}
|
|
}
|
|
}
|
|
|
|
void SelectionDAGLowering::visitBinary(User &I, unsigned Opcode) {
|
|
SDOperand Op1 = getValue(I.getOperand(0));
|
|
SDOperand Op2 = getValue(I.getOperand(1));
|
|
setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
|
|
ISD::CondCode UnsignedOpcode) {
|
|
SDOperand Op1 = getValue(I.getOperand(0));
|
|
SDOperand Op2 = getValue(I.getOperand(1));
|
|
ISD::CondCode Opcode = SignedOpcode;
|
|
if (I.getOperand(0)->getType()->isUnsigned())
|
|
Opcode = UnsignedOpcode;
|
|
setValue(&I, DAG.getSetCC(Opcode, Op1, Op2));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitSelect(User &I) {
|
|
SDOperand Cond = getValue(I.getOperand(0));
|
|
SDOperand TrueVal = getValue(I.getOperand(1));
|
|
SDOperand FalseVal = getValue(I.getOperand(2));
|
|
setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
|
|
TrueVal, FalseVal));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitCast(User &I) {
|
|
SDOperand N = getValue(I.getOperand(0));
|
|
MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
|
|
MVT::ValueType DestTy = TLI.getValueType(I.getType());
|
|
|
|
if (N.getValueType() == DestTy) {
|
|
setValue(&I, N); // noop cast.
|
|
} else if (isInteger(SrcTy)) {
|
|
if (isInteger(DestTy)) { // Int -> Int cast
|
|
if (DestTy < SrcTy) // Truncating cast?
|
|
setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
|
|
else if (I.getOperand(0)->getType()->isSigned())
|
|
setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
|
|
else
|
|
setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
|
|
} else { // Int -> FP cast
|
|
if (I.getOperand(0)->getType()->isSigned())
|
|
setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N));
|
|
else
|
|
setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N));
|
|
}
|
|
} else {
|
|
assert(isFloatingPoint(SrcTy) && "Unknown value type!");
|
|
if (isFloatingPoint(DestTy)) { // FP -> FP cast
|
|
if (DestTy < SrcTy) // Rounding cast?
|
|
setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
|
|
else
|
|
setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
|
|
} else { // FP -> Int cast.
|
|
if (I.getType()->isSigned())
|
|
setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N));
|
|
else
|
|
setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N));
|
|
}
|
|
}
|
|
}
|
|
|
|
void SelectionDAGLowering::visitGetElementPtr(User &I) {
|
|
SDOperand N = getValue(I.getOperand(0));
|
|
const Type *Ty = I.getOperand(0)->getType();
|
|
const Type *UIntPtrTy = TD.getIntPtrType();
|
|
|
|
for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
|
|
OI != E; ++OI) {
|
|
Value *Idx = *OI;
|
|
if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
|
|
unsigned Field = cast<ConstantUInt>(Idx)->getValue();
|
|
if (Field) {
|
|
// N = N + Offset
|
|
uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
|
|
N = DAG.getNode(ISD::ADD, N.getValueType(), N,
|
|
getIntPtrConstant(Offset));
|
|
}
|
|
Ty = StTy->getElementType(Field);
|
|
} else {
|
|
Ty = cast<SequentialType>(Ty)->getElementType();
|
|
if (!isa<Constant>(Idx) || !cast<Constant>(Idx)->isNullValue()) {
|
|
// N = N + Idx * ElementSize;
|
|
uint64_t ElementSize = TD.getTypeSize(Ty);
|
|
SDOperand IdxN = getValue(Idx), Scale = getIntPtrConstant(ElementSize);
|
|
|
|
// If the index is smaller or larger than intptr_t, truncate or extend
|
|
// it.
|
|
if (IdxN.getValueType() < Scale.getValueType()) {
|
|
if (Idx->getType()->isSigned())
|
|
IdxN = DAG.getNode(ISD::SIGN_EXTEND, Scale.getValueType(), IdxN);
|
|
else
|
|
IdxN = DAG.getNode(ISD::ZERO_EXTEND, Scale.getValueType(), IdxN);
|
|
} else if (IdxN.getValueType() > Scale.getValueType())
|
|
IdxN = DAG.getNode(ISD::TRUNCATE, Scale.getValueType(), IdxN);
|
|
|
|
IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
|
|
|
|
N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
|
|
}
|
|
}
|
|
}
|
|
setValue(&I, N);
|
|
}
|
|
|
|
void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
|
|
// If this is a fixed sized alloca in the entry block of the function,
|
|
// allocate it statically on the stack.
|
|
if (FuncInfo.StaticAllocaMap.count(&I))
|
|
return; // getValue will auto-populate this.
|
|
|
|
const Type *Ty = I.getAllocatedType();
|
|
uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
|
|
unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
|
|
|
|
SDOperand AllocSize = getValue(I.getArraySize());
|
|
|
|
assert(AllocSize.getValueType() == TLI.getPointerTy() &&
|
|
"FIXME: should extend or truncate to pointer size!");
|
|
|
|
AllocSize = DAG.getNode(ISD::MUL, TLI.getPointerTy(), AllocSize,
|
|
getIntPtrConstant(TySize));
|
|
|
|
// Handle alignment. If the requested alignment is less than or equal to the
|
|
// stack alignment, ignore it and round the size of the allocation up to the
|
|
// stack alignment size. If the size is greater than the stack alignment, we
|
|
// note this in the DYNAMIC_STACKALLOC node.
|
|
unsigned StackAlign =
|
|
TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
|
|
if (Align <= StackAlign) {
|
|
Align = 0;
|
|
// Add SA-1 to the size.
|
|
AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
|
|
getIntPtrConstant(StackAlign-1));
|
|
// Mask out the low bits for alignment purposes.
|
|
AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
|
|
getIntPtrConstant(~(uint64_t)(StackAlign-1)));
|
|
}
|
|
|
|
SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, AllocSize.getValueType(),
|
|
DAG.getRoot(), AllocSize,
|
|
getIntPtrConstant(Align));
|
|
DAG.setRoot(setValue(&I, DSA).getValue(1));
|
|
|
|
// Inform the Frame Information that we have just allocated a variable-sized
|
|
// object.
|
|
CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
|
|
}
|
|
|
|
|
|
void SelectionDAGLowering::visitLoad(LoadInst &I) {
|
|
SDOperand Ptr = getValue(I.getOperand(0));
|
|
SDOperand L = DAG.getLoad(TLI.getValueType(I.getType()), DAG.getRoot(), Ptr);
|
|
DAG.setRoot(setValue(&I, L).getValue(1));
|
|
}
|
|
|
|
|
|
void SelectionDAGLowering::visitStore(StoreInst &I) {
|
|
Value *SrcV = I.getOperand(0);
|
|
SDOperand Src = getValue(SrcV);
|
|
SDOperand Ptr = getValue(I.getOperand(1));
|
|
DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, DAG.getRoot(), Src, Ptr));
|
|
return;
|
|
}
|
|
|
|
void SelectionDAGLowering::visitCall(CallInst &I) {
|
|
const char *RenameFn = 0;
|
|
if (Function *F = I.getCalledFunction())
|
|
switch (F->getIntrinsicID()) {
|
|
case 0: break; // Not an intrinsic.
|
|
case Intrinsic::vastart: visitVAStart(I); return;
|
|
case Intrinsic::vaend: visitVAEnd(I); return;
|
|
case Intrinsic::vacopy: visitVACopy(I); return;
|
|
case Intrinsic::returnaddress:
|
|
visitReturnAddress(I); return;
|
|
case Intrinsic::frameaddress:
|
|
visitFrameAddress(I); return;
|
|
default:
|
|
// FIXME: IMPLEMENT THESE.
|
|
// readport, writeport, readio, writeio
|
|
assert(0 && "This intrinsic is not implemented yet!");
|
|
return;
|
|
case Intrinsic::setjmp: RenameFn = "setjmp"; break;
|
|
case Intrinsic::longjmp: RenameFn = "longjmp"; break;
|
|
case Intrinsic::memcpy: visitMemCpy(I); return;
|
|
case Intrinsic::memset: visitMemSet(I); return;
|
|
case Intrinsic::memmove: visitMemMove(I); return;
|
|
|
|
case Intrinsic::isunordered:
|
|
setValue(&I, DAG.getSetCC(ISD::SETUO, getValue(I.getOperand(1)),
|
|
getValue(I.getOperand(2))));
|
|
return;
|
|
}
|
|
|
|
SDOperand Callee;
|
|
if (!RenameFn)
|
|
Callee = getValue(I.getOperand(0));
|
|
else
|
|
Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
|
|
std::vector<std::pair<SDOperand, const Type*> > Args;
|
|
|
|
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
|
|
Value *Arg = I.getOperand(i);
|
|
SDOperand ArgNode = getValue(Arg);
|
|
Args.push_back(std::make_pair(ArgNode, Arg->getType()));
|
|
}
|
|
|
|
std::pair<SDOperand,SDOperand> Result =
|
|
TLI.LowerCallTo(DAG.getRoot(), I.getType(), Callee, Args, DAG);
|
|
if (I.getType() != Type::VoidTy)
|
|
setValue(&I, Result.first);
|
|
DAG.setRoot(Result.second);
|
|
}
|
|
|
|
void SelectionDAGLowering::visitMalloc(MallocInst &I) {
|
|
SDOperand Src = getValue(I.getOperand(0));
|
|
|
|
MVT::ValueType IntPtr = TLI.getPointerTy();
|
|
// FIXME: Extend or truncate to the intptr size.
|
|
assert(Src.getValueType() == IntPtr && "Need to adjust the amount!");
|
|
|
|
// Scale the source by the type size.
|
|
uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
|
|
Src = DAG.getNode(ISD::MUL, Src.getValueType(),
|
|
Src, getIntPtrConstant(ElementSize));
|
|
|
|
std::vector<std::pair<SDOperand, const Type*> > Args;
|
|
Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
|
|
|
|
std::pair<SDOperand,SDOperand> Result =
|
|
TLI.LowerCallTo(DAG.getRoot(), I.getType(),
|
|
DAG.getExternalSymbol("malloc", IntPtr),
|
|
Args, DAG);
|
|
setValue(&I, Result.first); // Pointers always fit in registers
|
|
DAG.setRoot(Result.second);
|
|
}
|
|
|
|
void SelectionDAGLowering::visitFree(FreeInst &I) {
|
|
std::vector<std::pair<SDOperand, const Type*> > Args;
|
|
Args.push_back(std::make_pair(getValue(I.getOperand(0)),
|
|
TLI.getTargetData().getIntPtrType()));
|
|
MVT::ValueType IntPtr = TLI.getPointerTy();
|
|
std::pair<SDOperand,SDOperand> Result =
|
|
TLI.LowerCallTo(DAG.getRoot(), Type::VoidTy,
|
|
DAG.getExternalSymbol("free", IntPtr), Args, DAG);
|
|
DAG.setRoot(Result.second);
|
|
}
|
|
|
|
void SelectionDAGLowering::visitVAStart(CallInst &I) {
|
|
// We have no sane default behavior, just emit a useful error message and bail
|
|
// out.
|
|
std::cerr << "Variable arguments support not implemented for this target!\n";
|
|
abort();
|
|
}
|
|
|
|
void SelectionDAGLowering::visitVANext(VANextInst &I) {
|
|
// We have no sane default behavior, just emit a useful error message and bail
|
|
// out.
|
|
std::cerr << "Variable arguments support not implemented for this target!\n";
|
|
abort();
|
|
}
|
|
void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
|
|
// We have no sane default behavior, just emit a useful error message and bail
|
|
// out.
|
|
std::cerr << "Variable arguments support not implemented for this target!\n";
|
|
abort();
|
|
}
|
|
|
|
void SelectionDAGLowering::visitVAEnd(CallInst &I) {
|
|
// By default, this is a noop. On almost all targets, this is fine.
|
|
}
|
|
|
|
void SelectionDAGLowering::visitVACopy(CallInst &I) {
|
|
// By default, vacopy just does a simple pointer copy.
|
|
setValue(&I, getValue(I.getOperand(1)));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitReturnAddress(CallInst &I) {
|
|
// It is always conservatively correct for llvm.returnaddress to return 0.
|
|
setValue(&I, getIntPtrConstant(0));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitFrameAddress(CallInst &I) {
|
|
// It is always conservatively correct for llvm.frameaddress to return 0.
|
|
setValue(&I, getIntPtrConstant(0));
|
|
}
|
|
|
|
|
|
void SelectionDAGLowering::visitMemSet(CallInst &I) {
|
|
MVT::ValueType IntPtr = TLI.getPointerTy();
|
|
const Type *IntPtrTy = TLI.getTargetData().getIntPtrType();
|
|
|
|
// Extend the ubyte argument to be an int value for the call.
|
|
SDOperand Val = getValue(I.getOperand(2));
|
|
Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Val);
|
|
|
|
std::vector<std::pair<SDOperand, const Type*> > Args;
|
|
Args.push_back(std::make_pair(getValue(I.getOperand(1)), IntPtrTy));
|
|
Args.push_back(std::make_pair(Val, Type::IntTy));
|
|
Args.push_back(std::make_pair(getValue(I.getOperand(3)), IntPtrTy));
|
|
|
|
std::pair<SDOperand,SDOperand> Result =
|
|
TLI.LowerCallTo(DAG.getRoot(), Type::VoidTy,
|
|
DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
|
|
DAG.setRoot(Result.second);
|
|
}
|
|
|
|
void SelectionDAGLowering::visitMemCpy(CallInst &I) {
|
|
MVT::ValueType IntPtr = TLI.getPointerTy();
|
|
const Type *IntPtrTy = TLI.getTargetData().getIntPtrType();
|
|
|
|
std::vector<std::pair<SDOperand, const Type*> > Args;
|
|
Args.push_back(std::make_pair(getValue(I.getOperand(1)), IntPtrTy));
|
|
Args.push_back(std::make_pair(getValue(I.getOperand(2)), IntPtrTy));
|
|
Args.push_back(std::make_pair(getValue(I.getOperand(3)), IntPtrTy));
|
|
|
|
std::pair<SDOperand,SDOperand> Result =
|
|
TLI.LowerCallTo(DAG.getRoot(), Type::VoidTy,
|
|
DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
|
|
DAG.setRoot(Result.second);
|
|
}
|
|
|
|
void SelectionDAGLowering::visitMemMove(CallInst &I) {
|
|
MVT::ValueType IntPtr = TLI.getPointerTy();
|
|
const Type *IntPtrTy = TLI.getTargetData().getIntPtrType();
|
|
|
|
std::vector<std::pair<SDOperand, const Type*> > Args;
|
|
Args.push_back(std::make_pair(getValue(I.getOperand(1)), IntPtrTy));
|
|
Args.push_back(std::make_pair(getValue(I.getOperand(2)), IntPtrTy));
|
|
Args.push_back(std::make_pair(getValue(I.getOperand(3)), IntPtrTy));
|
|
|
|
std::pair<SDOperand,SDOperand> Result =
|
|
TLI.LowerCallTo(DAG.getRoot(), Type::VoidTy,
|
|
DAG.getExternalSymbol("memmove", IntPtr), Args, DAG);
|
|
DAG.setRoot(Result.second);
|
|
}
|
|
|
|
unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
|
|
return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
|
|
}
|
|
|
|
|
|
|
|
bool SelectionDAGISel::runOnFunction(Function &Fn) {
|
|
MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
|
|
RegMap = MF.getSSARegMap();
|
|
DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
|
|
|
|
FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
|
|
|
|
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
|
|
SelectBasicBlock(I, MF, FuncInfo);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void SelectionDAGISel::CopyValueToVirtualRegister(SelectionDAGLowering &SDL,
|
|
Value *V, unsigned Reg) {
|
|
SelectionDAG &DAG = SDL.DAG;
|
|
DAG.setRoot(DAG.getCopyToReg(DAG.getRoot(), SDL.getValue(V), Reg));
|
|
}
|
|
|
|
void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
|
|
std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
|
|
FunctionLoweringInfo &FuncInfo) {
|
|
SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
|
|
|
|
// If this is the entry block, emit arguments.
|
|
Function *F = LLVMBB->getParent();
|
|
if (LLVMBB == &F->front()) {
|
|
// FIXME: If an argument is only used in one basic block, we could directly
|
|
// emit it (ONLY) into that block, not emitting the COPY_TO_VREG node. This
|
|
// would improve codegen in several cases on X86 by allowing the loads to be
|
|
// folded into the user operation.
|
|
std::vector<SDOperand> Args = TLI.LowerArguments(*LLVMBB->getParent(), DAG);
|
|
|
|
unsigned a = 0;
|
|
for (Function::aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI,++a)
|
|
if (!AI->use_empty()) {
|
|
SDL.setValue(AI, Args[a]);
|
|
CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
|
|
}
|
|
}
|
|
|
|
BB = FuncInfo.MBBMap[LLVMBB];
|
|
SDL.setCurrentBasicBlock(BB);
|
|
|
|
// Lower all of the non-terminator instructions.
|
|
for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
|
|
I != E; ++I)
|
|
SDL.visit(*I);
|
|
|
|
// Ensure that all instructions which are used outside of their defining
|
|
// blocks are available as virtual registers.
|
|
for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
|
|
if (!I->use_empty()) {
|
|
std::map<const Value*, unsigned>::iterator VMI =
|
|
FuncInfo.ValueMap.find(I);
|
|
if (VMI != FuncInfo.ValueMap.end())
|
|
CopyValueToVirtualRegister(SDL, I, VMI->second);
|
|
}
|
|
|
|
// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
|
|
// ensure constants are generated when needed. Remember the virtual registers
|
|
// that need to be added to the Machine PHI nodes as input. We cannot just
|
|
// directly add them, because expansion might result in multiple MBB's for one
|
|
// BB. As such, the start of the BB might correspond to a different MBB than
|
|
// the end.
|
|
//
|
|
|
|
// Emit constants only once even if used by multiple PHI nodes.
|
|
std::map<Constant*, unsigned> ConstantsOut;
|
|
|
|
// Check successor nodes PHI nodes that expect a constant to be available from
|
|
// this block.
|
|
TerminatorInst *TI = LLVMBB->getTerminator();
|
|
for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
|
|
BasicBlock *SuccBB = TI->getSuccessor(succ);
|
|
MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
|
|
PHINode *PN;
|
|
|
|
// At this point we know that there is a 1-1 correspondence between LLVM PHI
|
|
// nodes and Machine PHI nodes, but the incoming operands have not been
|
|
// emitted yet.
|
|
for (BasicBlock::iterator I = SuccBB->begin();
|
|
(PN = dyn_cast<PHINode>(I)); ++I)
|
|
if (!PN->use_empty()) {
|
|
unsigned Reg;
|
|
Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
|
|
if (Constant *C = dyn_cast<Constant>(PHIOp)) {
|
|
unsigned &RegOut = ConstantsOut[C];
|
|
if (RegOut == 0) {
|
|
RegOut = FuncInfo.CreateRegForValue(C);
|
|
CopyValueToVirtualRegister(SDL, C, RegOut);
|
|
}
|
|
Reg = RegOut;
|
|
} else {
|
|
Reg = FuncInfo.ValueMap[PHIOp];
|
|
assert(Reg && "Didn't codegen value into a register!??");
|
|
}
|
|
|
|
// Remember that this register needs to added to the machine PHI node as
|
|
// the input for this MBB.
|
|
unsigned NumElements =
|
|
TLI.getNumElements(TLI.getValueType(PN->getType()));
|
|
for (unsigned i = 0, e = NumElements; i != e; ++i)
|
|
PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
|
|
}
|
|
}
|
|
ConstantsOut.clear();
|
|
|
|
// Lower the terminator after the copies are emitted.
|
|
SDL.visit(*LLVMBB->getTerminator());
|
|
}
|
|
|
|
void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
|
|
FunctionLoweringInfo &FuncInfo) {
|
|
SelectionDAG DAG(TLI.getTargetMachine(), MF);
|
|
CurDAG = &DAG;
|
|
std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
|
|
|
|
// First step, lower LLVM code to some DAG. This DAG may use operations and
|
|
// types that are not supported by the target.
|
|
BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
|
|
|
|
DEBUG(std::cerr << "Lowered selection DAG:\n");
|
|
DEBUG(DAG.dump());
|
|
|
|
// Second step, hack on the DAG until it only uses operations and types that
|
|
// the target supports.
|
|
DAG.Legalize(TLI);
|
|
|
|
DEBUG(std::cerr << "Legalized selection DAG:\n");
|
|
DEBUG(DAG.dump());
|
|
|
|
// Finally, instruction select all of the operations to machine code, adding
|
|
// the code to the MachineBasicBlock.
|
|
InstructionSelectBasicBlock(DAG);
|
|
|
|
DEBUG(std::cerr << "Selected machine code:\n");
|
|
DEBUG(BB->dump());
|
|
|
|
// Finally, now that we know what the last MBB the LLVM BB expanded is, update
|
|
// PHI nodes in successors.
|
|
for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
|
|
MachineInstr *PHI = PHINodesToUpdate[i].first;
|
|
assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
|
|
"This is not a machine PHI node that we are updating!");
|
|
PHI->addRegOperand(PHINodesToUpdate[i].second);
|
|
PHI->addMachineBasicBlockOperand(BB);
|
|
}
|
|
}
|