mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-14 11:32:34 +00:00
09f089a39e
The DWARF-4 specification added 2 new fields in the CIE header called address_size and segment_size. Create these 2 new fields when generating dwarf-4 CIE entries, print out the new fields when dumping the CIE and update tests Differential Revision: http://reviews.llvm.org/D9558 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237145 91177308-0d34-0410-b5e6-96231b3b80d8
522 lines
18 KiB
C++
522 lines
18 KiB
C++
//===-- DWARFDebugFrame.h - Parsing of .debug_frame -------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include "llvm/Support/Dwarf.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace dwarf;
|
|
|
|
|
|
/// \brief Abstract frame entry defining the common interface concrete
|
|
/// entries implement.
|
|
class llvm::FrameEntry {
|
|
public:
|
|
enum FrameKind {FK_CIE, FK_FDE};
|
|
FrameEntry(FrameKind K, uint64_t Offset, uint64_t Length)
|
|
: Kind(K), Offset(Offset), Length(Length) {}
|
|
|
|
virtual ~FrameEntry() {
|
|
}
|
|
|
|
FrameKind getKind() const { return Kind; }
|
|
virtual uint64_t getOffset() const { return Offset; }
|
|
|
|
/// \brief Parse and store a sequence of CFI instructions from Data,
|
|
/// starting at *Offset and ending at EndOffset. If everything
|
|
/// goes well, *Offset should be equal to EndOffset when this method
|
|
/// returns. Otherwise, an error occurred.
|
|
virtual void parseInstructions(DataExtractor Data, uint32_t *Offset,
|
|
uint32_t EndOffset);
|
|
|
|
/// \brief Dump the entry header to the given output stream.
|
|
virtual void dumpHeader(raw_ostream &OS) const = 0;
|
|
|
|
/// \brief Dump the entry's instructions to the given output stream.
|
|
virtual void dumpInstructions(raw_ostream &OS) const;
|
|
|
|
protected:
|
|
const FrameKind Kind;
|
|
|
|
/// \brief Offset of this entry in the section.
|
|
uint64_t Offset;
|
|
|
|
/// \brief Entry length as specified in DWARF.
|
|
uint64_t Length;
|
|
|
|
/// An entry may contain CFI instructions. An instruction consists of an
|
|
/// opcode and an optional sequence of operands.
|
|
typedef std::vector<uint64_t> Operands;
|
|
struct Instruction {
|
|
Instruction(uint8_t Opcode)
|
|
: Opcode(Opcode)
|
|
{}
|
|
|
|
uint8_t Opcode;
|
|
Operands Ops;
|
|
};
|
|
|
|
std::vector<Instruction> Instructions;
|
|
|
|
/// Convenience methods to add a new instruction with the given opcode and
|
|
/// operands to the Instructions vector.
|
|
void addInstruction(uint8_t Opcode) {
|
|
Instructions.push_back(Instruction(Opcode));
|
|
}
|
|
|
|
void addInstruction(uint8_t Opcode, uint64_t Operand1) {
|
|
Instructions.push_back(Instruction(Opcode));
|
|
Instructions.back().Ops.push_back(Operand1);
|
|
}
|
|
|
|
void addInstruction(uint8_t Opcode, uint64_t Operand1, uint64_t Operand2) {
|
|
Instructions.push_back(Instruction(Opcode));
|
|
Instructions.back().Ops.push_back(Operand1);
|
|
Instructions.back().Ops.push_back(Operand2);
|
|
}
|
|
};
|
|
|
|
|
|
// See DWARF standard v3, section 7.23
|
|
const uint8_t DWARF_CFI_PRIMARY_OPCODE_MASK = 0xc0;
|
|
const uint8_t DWARF_CFI_PRIMARY_OPERAND_MASK = 0x3f;
|
|
|
|
void FrameEntry::parseInstructions(DataExtractor Data, uint32_t *Offset,
|
|
uint32_t EndOffset) {
|
|
while (*Offset < EndOffset) {
|
|
uint8_t Opcode = Data.getU8(Offset);
|
|
// Some instructions have a primary opcode encoded in the top bits.
|
|
uint8_t Primary = Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK;
|
|
|
|
if (Primary) {
|
|
// If it's a primary opcode, the first operand is encoded in the bottom
|
|
// bits of the opcode itself.
|
|
uint64_t Op1 = Opcode & DWARF_CFI_PRIMARY_OPERAND_MASK;
|
|
switch (Primary) {
|
|
default: llvm_unreachable("Impossible primary CFI opcode");
|
|
case DW_CFA_advance_loc:
|
|
case DW_CFA_restore:
|
|
addInstruction(Primary, Op1);
|
|
break;
|
|
case DW_CFA_offset:
|
|
addInstruction(Primary, Op1, Data.getULEB128(Offset));
|
|
break;
|
|
}
|
|
} else {
|
|
// Extended opcode - its value is Opcode itself.
|
|
switch (Opcode) {
|
|
default: llvm_unreachable("Invalid extended CFI opcode");
|
|
case DW_CFA_nop:
|
|
case DW_CFA_remember_state:
|
|
case DW_CFA_restore_state:
|
|
case DW_CFA_GNU_window_save:
|
|
// No operands
|
|
addInstruction(Opcode);
|
|
break;
|
|
case DW_CFA_set_loc:
|
|
// Operands: Address
|
|
addInstruction(Opcode, Data.getAddress(Offset));
|
|
break;
|
|
case DW_CFA_advance_loc1:
|
|
// Operands: 1-byte delta
|
|
addInstruction(Opcode, Data.getU8(Offset));
|
|
break;
|
|
case DW_CFA_advance_loc2:
|
|
// Operands: 2-byte delta
|
|
addInstruction(Opcode, Data.getU16(Offset));
|
|
break;
|
|
case DW_CFA_advance_loc4:
|
|
// Operands: 4-byte delta
|
|
addInstruction(Opcode, Data.getU32(Offset));
|
|
break;
|
|
case DW_CFA_restore_extended:
|
|
case DW_CFA_undefined:
|
|
case DW_CFA_same_value:
|
|
case DW_CFA_def_cfa_register:
|
|
case DW_CFA_def_cfa_offset:
|
|
// Operands: ULEB128
|
|
addInstruction(Opcode, Data.getULEB128(Offset));
|
|
break;
|
|
case DW_CFA_def_cfa_offset_sf:
|
|
// Operands: SLEB128
|
|
addInstruction(Opcode, Data.getSLEB128(Offset));
|
|
break;
|
|
case DW_CFA_offset_extended:
|
|
case DW_CFA_register:
|
|
case DW_CFA_def_cfa:
|
|
case DW_CFA_val_offset:
|
|
// Operands: ULEB128, ULEB128
|
|
addInstruction(Opcode, Data.getULEB128(Offset),
|
|
Data.getULEB128(Offset));
|
|
break;
|
|
case DW_CFA_offset_extended_sf:
|
|
case DW_CFA_def_cfa_sf:
|
|
case DW_CFA_val_offset_sf:
|
|
// Operands: ULEB128, SLEB128
|
|
addInstruction(Opcode, Data.getULEB128(Offset),
|
|
Data.getSLEB128(Offset));
|
|
break;
|
|
case DW_CFA_def_cfa_expression:
|
|
case DW_CFA_expression:
|
|
case DW_CFA_val_expression:
|
|
// TODO: implement this
|
|
report_fatal_error("Values with expressions not implemented yet!");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// \brief DWARF Common Information Entry (CIE)
|
|
class CIE : public FrameEntry {
|
|
public:
|
|
// CIEs (and FDEs) are simply container classes, so the only sensible way to
|
|
// create them is by providing the full parsed contents in the constructor.
|
|
CIE(uint64_t Offset, uint64_t Length, uint8_t Version,
|
|
SmallString<8> Augmentation, uint8_t AddressSize,
|
|
uint8_t SegmentDescriptorSize, uint64_t CodeAlignmentFactor,
|
|
int64_t DataAlignmentFactor, uint64_t ReturnAddressRegister)
|
|
: FrameEntry(FK_CIE, Offset, Length), Version(Version),
|
|
Augmentation(std::move(Augmentation)),
|
|
AddressSize(AddressSize),
|
|
SegmentDescriptorSize(SegmentDescriptorSize),
|
|
CodeAlignmentFactor(CodeAlignmentFactor),
|
|
DataAlignmentFactor(DataAlignmentFactor),
|
|
ReturnAddressRegister(ReturnAddressRegister) {}
|
|
|
|
~CIE() override {}
|
|
|
|
uint64_t getCodeAlignmentFactor() const { return CodeAlignmentFactor; }
|
|
int64_t getDataAlignmentFactor() const { return DataAlignmentFactor; }
|
|
|
|
void dumpHeader(raw_ostream &OS) const override {
|
|
OS << format("%08x %08x %08x CIE",
|
|
(uint32_t)Offset, (uint32_t)Length, DW_CIE_ID)
|
|
<< "\n";
|
|
OS << format(" Version: %d\n", Version);
|
|
OS << " Augmentation: \"" << Augmentation << "\"\n";
|
|
if (Version >= 4) {
|
|
OS << format(" Address size: %u\n",
|
|
(uint32_t)AddressSize);
|
|
OS << format(" Segment desc size: %u\n",
|
|
(uint32_t)SegmentDescriptorSize);
|
|
}
|
|
OS << format(" Code alignment factor: %u\n",
|
|
(uint32_t)CodeAlignmentFactor);
|
|
OS << format(" Data alignment factor: %d\n",
|
|
(int32_t)DataAlignmentFactor);
|
|
OS << format(" Return address column: %d\n",
|
|
(int32_t)ReturnAddressRegister);
|
|
OS << "\n";
|
|
}
|
|
|
|
static bool classof(const FrameEntry *FE) {
|
|
return FE->getKind() == FK_CIE;
|
|
}
|
|
|
|
private:
|
|
/// The following fields are defined in section 6.4.1 of the DWARF standard v4
|
|
uint8_t Version;
|
|
SmallString<8> Augmentation;
|
|
uint8_t AddressSize;
|
|
uint8_t SegmentDescriptorSize;
|
|
uint64_t CodeAlignmentFactor;
|
|
int64_t DataAlignmentFactor;
|
|
uint64_t ReturnAddressRegister;
|
|
};
|
|
|
|
|
|
/// \brief DWARF Frame Description Entry (FDE)
|
|
class FDE : public FrameEntry {
|
|
public:
|
|
// Each FDE has a CIE it's "linked to". Our FDE contains is constructed with
|
|
// an offset to the CIE (provided by parsing the FDE header). The CIE itself
|
|
// is obtained lazily once it's actually required.
|
|
FDE(uint64_t Offset, uint64_t Length, int64_t LinkedCIEOffset,
|
|
uint64_t InitialLocation, uint64_t AddressRange,
|
|
CIE *Cie)
|
|
: FrameEntry(FK_FDE, Offset, Length), LinkedCIEOffset(LinkedCIEOffset),
|
|
InitialLocation(InitialLocation), AddressRange(AddressRange),
|
|
LinkedCIE(Cie) {}
|
|
|
|
~FDE() override {}
|
|
|
|
CIE *getLinkedCIE() const { return LinkedCIE; }
|
|
|
|
void dumpHeader(raw_ostream &OS) const override {
|
|
OS << format("%08x %08x %08x FDE ",
|
|
(uint32_t)Offset, (uint32_t)Length, (int32_t)LinkedCIEOffset);
|
|
OS << format("cie=%08x pc=%08x...%08x\n",
|
|
(int32_t)LinkedCIEOffset,
|
|
(uint32_t)InitialLocation,
|
|
(uint32_t)InitialLocation + (uint32_t)AddressRange);
|
|
}
|
|
|
|
static bool classof(const FrameEntry *FE) {
|
|
return FE->getKind() == FK_FDE;
|
|
}
|
|
|
|
private:
|
|
/// The following fields are defined in section 6.4.1 of the DWARF standard v3
|
|
uint64_t LinkedCIEOffset;
|
|
uint64_t InitialLocation;
|
|
uint64_t AddressRange;
|
|
CIE *LinkedCIE;
|
|
};
|
|
|
|
/// \brief Types of operands to CF instructions.
|
|
enum OperandType {
|
|
OT_Unset,
|
|
OT_None,
|
|
OT_Address,
|
|
OT_Offset,
|
|
OT_FactoredCodeOffset,
|
|
OT_SignedFactDataOffset,
|
|
OT_UnsignedFactDataOffset,
|
|
OT_Register,
|
|
OT_Expression
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// \brief Initialize the array describing the types of operands.
|
|
static ArrayRef<OperandType[2]> getOperandTypes() {
|
|
static OperandType OpTypes[DW_CFA_restore+1][2];
|
|
|
|
#define DECLARE_OP2(OP, OPTYPE0, OPTYPE1) \
|
|
do { \
|
|
OpTypes[OP][0] = OPTYPE0; \
|
|
OpTypes[OP][1] = OPTYPE1; \
|
|
} while (0)
|
|
#define DECLARE_OP1(OP, OPTYPE0) DECLARE_OP2(OP, OPTYPE0, OT_None)
|
|
#define DECLARE_OP0(OP) DECLARE_OP1(OP, OT_None)
|
|
|
|
DECLARE_OP1(DW_CFA_set_loc, OT_Address);
|
|
DECLARE_OP1(DW_CFA_advance_loc, OT_FactoredCodeOffset);
|
|
DECLARE_OP1(DW_CFA_advance_loc1, OT_FactoredCodeOffset);
|
|
DECLARE_OP1(DW_CFA_advance_loc2, OT_FactoredCodeOffset);
|
|
DECLARE_OP1(DW_CFA_advance_loc4, OT_FactoredCodeOffset);
|
|
DECLARE_OP1(DW_CFA_MIPS_advance_loc8, OT_FactoredCodeOffset);
|
|
DECLARE_OP2(DW_CFA_def_cfa, OT_Register, OT_Offset);
|
|
DECLARE_OP2(DW_CFA_def_cfa_sf, OT_Register, OT_SignedFactDataOffset);
|
|
DECLARE_OP1(DW_CFA_def_cfa_register, OT_Register);
|
|
DECLARE_OP1(DW_CFA_def_cfa_offset, OT_Offset);
|
|
DECLARE_OP1(DW_CFA_def_cfa_offset_sf, OT_SignedFactDataOffset);
|
|
DECLARE_OP1(DW_CFA_def_cfa_expression, OT_Expression);
|
|
DECLARE_OP1(DW_CFA_undefined, OT_Register);
|
|
DECLARE_OP1(DW_CFA_same_value, OT_Register);
|
|
DECLARE_OP2(DW_CFA_offset, OT_Register, OT_UnsignedFactDataOffset);
|
|
DECLARE_OP2(DW_CFA_offset_extended, OT_Register, OT_UnsignedFactDataOffset);
|
|
DECLARE_OP2(DW_CFA_offset_extended_sf, OT_Register, OT_SignedFactDataOffset);
|
|
DECLARE_OP2(DW_CFA_val_offset, OT_Register, OT_UnsignedFactDataOffset);
|
|
DECLARE_OP2(DW_CFA_val_offset_sf, OT_Register, OT_SignedFactDataOffset);
|
|
DECLARE_OP2(DW_CFA_register, OT_Register, OT_Register);
|
|
DECLARE_OP2(DW_CFA_expression, OT_Register, OT_Expression);
|
|
DECLARE_OP2(DW_CFA_val_expression, OT_Register, OT_Expression);
|
|
DECLARE_OP1(DW_CFA_restore, OT_Register);
|
|
DECLARE_OP1(DW_CFA_restore_extended, OT_Register);
|
|
DECLARE_OP0(DW_CFA_remember_state);
|
|
DECLARE_OP0(DW_CFA_restore_state);
|
|
DECLARE_OP0(DW_CFA_GNU_window_save);
|
|
DECLARE_OP1(DW_CFA_GNU_args_size, OT_Offset);
|
|
DECLARE_OP0(DW_CFA_nop);
|
|
|
|
#undef DECLARE_OP0
|
|
#undef DECLARE_OP1
|
|
#undef DECLARE_OP2
|
|
return ArrayRef<OperandType[2]>(&OpTypes[0], DW_CFA_restore+1);
|
|
}
|
|
|
|
static ArrayRef<OperandType[2]> OpTypes = getOperandTypes();
|
|
|
|
/// \brief Print \p Opcode's operand number \p OperandIdx which has
|
|
/// value \p Operand.
|
|
static void printOperand(raw_ostream &OS, uint8_t Opcode, unsigned OperandIdx,
|
|
uint64_t Operand, uint64_t CodeAlignmentFactor,
|
|
int64_t DataAlignmentFactor) {
|
|
assert(OperandIdx < 2);
|
|
OperandType Type = OpTypes[Opcode][OperandIdx];
|
|
|
|
switch (Type) {
|
|
case OT_Unset:
|
|
OS << " Unsupported " << (OperandIdx ? "second" : "first") << " operand to";
|
|
if (const char *OpcodeName = CallFrameString(Opcode))
|
|
OS << " " << OpcodeName;
|
|
else
|
|
OS << format(" Opcode %x", Opcode);
|
|
break;
|
|
case OT_None:
|
|
break;
|
|
case OT_Address:
|
|
OS << format(" %" PRIx64, Operand);
|
|
break;
|
|
case OT_Offset:
|
|
// The offsets are all encoded in a unsigned form, but in practice
|
|
// consumers use them signed. It's most certainly legacy due to
|
|
// the lack of signed variants in the first Dwarf standards.
|
|
OS << format(" %+" PRId64, int64_t(Operand));
|
|
break;
|
|
case OT_FactoredCodeOffset: // Always Unsigned
|
|
if (CodeAlignmentFactor)
|
|
OS << format(" %" PRId64, Operand * CodeAlignmentFactor);
|
|
else
|
|
OS << format(" %" PRId64 "*code_alignment_factor" , Operand);
|
|
break;
|
|
case OT_SignedFactDataOffset:
|
|
if (DataAlignmentFactor)
|
|
OS << format(" %" PRId64, int64_t(Operand) * DataAlignmentFactor);
|
|
else
|
|
OS << format(" %" PRId64 "*data_alignment_factor" , int64_t(Operand));
|
|
break;
|
|
case OT_UnsignedFactDataOffset:
|
|
if (DataAlignmentFactor)
|
|
OS << format(" %" PRId64, Operand * DataAlignmentFactor);
|
|
else
|
|
OS << format(" %" PRId64 "*data_alignment_factor" , Operand);
|
|
break;
|
|
case OT_Register:
|
|
OS << format(" reg%" PRId64, Operand);
|
|
break;
|
|
case OT_Expression:
|
|
OS << " expression";
|
|
break;
|
|
}
|
|
}
|
|
|
|
void FrameEntry::dumpInstructions(raw_ostream &OS) const {
|
|
uint64_t CodeAlignmentFactor = 0;
|
|
int64_t DataAlignmentFactor = 0;
|
|
const CIE *Cie = dyn_cast<CIE>(this);
|
|
|
|
if (!Cie)
|
|
Cie = cast<FDE>(this)->getLinkedCIE();
|
|
if (Cie) {
|
|
CodeAlignmentFactor = Cie->getCodeAlignmentFactor();
|
|
DataAlignmentFactor = Cie->getDataAlignmentFactor();
|
|
}
|
|
|
|
for (const auto &Instr : Instructions) {
|
|
uint8_t Opcode = Instr.Opcode;
|
|
if (Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK)
|
|
Opcode &= DWARF_CFI_PRIMARY_OPCODE_MASK;
|
|
OS << " " << CallFrameString(Opcode) << ":";
|
|
for (unsigned i = 0; i < Instr.Ops.size(); ++i)
|
|
printOperand(OS, Opcode, i, Instr.Ops[i], CodeAlignmentFactor,
|
|
DataAlignmentFactor);
|
|
OS << '\n';
|
|
}
|
|
}
|
|
|
|
DWARFDebugFrame::DWARFDebugFrame() {
|
|
}
|
|
|
|
DWARFDebugFrame::~DWARFDebugFrame() {
|
|
}
|
|
|
|
static void LLVM_ATTRIBUTE_UNUSED dumpDataAux(DataExtractor Data,
|
|
uint32_t Offset, int Length) {
|
|
errs() << "DUMP: ";
|
|
for (int i = 0; i < Length; ++i) {
|
|
uint8_t c = Data.getU8(&Offset);
|
|
errs().write_hex(c); errs() << " ";
|
|
}
|
|
errs() << "\n";
|
|
}
|
|
|
|
|
|
void DWARFDebugFrame::parse(DataExtractor Data) {
|
|
uint32_t Offset = 0;
|
|
DenseMap<uint32_t, CIE *> CIEs;
|
|
|
|
while (Data.isValidOffset(Offset)) {
|
|
uint32_t StartOffset = Offset;
|
|
|
|
bool IsDWARF64 = false;
|
|
uint64_t Length = Data.getU32(&Offset);
|
|
uint64_t Id;
|
|
|
|
if (Length == UINT32_MAX) {
|
|
// DWARF-64 is distinguished by the first 32 bits of the initial length
|
|
// field being 0xffffffff. Then, the next 64 bits are the actual entry
|
|
// length.
|
|
IsDWARF64 = true;
|
|
Length = Data.getU64(&Offset);
|
|
}
|
|
|
|
// At this point, Offset points to the next field after Length.
|
|
// Length is the structure size excluding itself. Compute an offset one
|
|
// past the end of the structure (needed to know how many instructions to
|
|
// read).
|
|
// TODO: For honest DWARF64 support, DataExtractor will have to treat
|
|
// offset_ptr as uint64_t*
|
|
uint32_t EndStructureOffset = Offset + static_cast<uint32_t>(Length);
|
|
|
|
// The Id field's size depends on the DWARF format
|
|
Id = Data.getUnsigned(&Offset, IsDWARF64 ? 8 : 4);
|
|
bool IsCIE = ((IsDWARF64 && Id == DW64_CIE_ID) || Id == DW_CIE_ID);
|
|
|
|
if (IsCIE) {
|
|
uint8_t Version = Data.getU8(&Offset);
|
|
const char *Augmentation = Data.getCStr(&Offset);
|
|
uint8_t AddressSize = Version < 4 ? Data.getAddressSize() : Data.getU8(&Offset);
|
|
Data.setAddressSize(AddressSize);
|
|
uint8_t SegmentDescriptorSize = Version < 4 ? 0 : Data.getU8(&Offset);
|
|
uint64_t CodeAlignmentFactor = Data.getULEB128(&Offset);
|
|
int64_t DataAlignmentFactor = Data.getSLEB128(&Offset);
|
|
uint64_t ReturnAddressRegister = Data.getULEB128(&Offset);
|
|
|
|
auto Cie = make_unique<CIE>(StartOffset, Length, Version,
|
|
StringRef(Augmentation), AddressSize,
|
|
SegmentDescriptorSize, CodeAlignmentFactor,
|
|
DataAlignmentFactor, ReturnAddressRegister);
|
|
CIEs[StartOffset] = Cie.get();
|
|
Entries.emplace_back(std::move(Cie));
|
|
} else {
|
|
// FDE
|
|
uint64_t CIEPointer = Id;
|
|
uint64_t InitialLocation = Data.getAddress(&Offset);
|
|
uint64_t AddressRange = Data.getAddress(&Offset);
|
|
|
|
Entries.emplace_back(new FDE(StartOffset, Length, CIEPointer,
|
|
InitialLocation, AddressRange,
|
|
CIEs[CIEPointer]));
|
|
}
|
|
|
|
Entries.back()->parseInstructions(Data, &Offset, EndStructureOffset);
|
|
|
|
if (Offset != EndStructureOffset) {
|
|
std::string Str;
|
|
raw_string_ostream OS(Str);
|
|
OS << format("Parsing entry instructions at %lx failed", StartOffset);
|
|
report_fatal_error(Str);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void DWARFDebugFrame::dump(raw_ostream &OS) const {
|
|
OS << "\n";
|
|
for (const auto &Entry : Entries) {
|
|
Entry->dumpHeader(OS);
|
|
Entry->dumpInstructions(OS);
|
|
OS << "\n";
|
|
}
|
|
}
|
|
|