llvm-6502/lib/CodeGen/MachineCSE.cpp

187 lines
6.2 KiB
C++

//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs global common subexpression elimination on machine
// instructions using a scoped hash table based value numbering scheme. It
// must be run while the machine function is still in SSA form.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "machine-cse"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
STATISTIC(NumCoalesces, "Number of copies coalesced");
STATISTIC(NumCSEs, "Number of common subexpression eliminated");
namespace {
class MachineCSE : public MachineFunctionPass {
const TargetInstrInfo *TII;
MachineRegisterInfo *MRI;
MachineDominatorTree *DT;
public:
static char ID; // Pass identification
MachineCSE() : MachineFunctionPass(&ID), CurrVN(0) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
}
private:
unsigned CurrVN;
ScopedHashTable<MachineInstr*, unsigned, MachineInstrExpressionTrait> VNT;
SmallVector<MachineInstr*, 64> Exps;
bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
bool ProcessBlock(MachineDomTreeNode *Node);
};
} // end anonymous namespace
char MachineCSE::ID = 0;
static RegisterPass<MachineCSE>
X("machine-cse", "Machine Common Subexpression Elimination");
FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); }
bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
MachineBasicBlock *MBB) {
bool Changed = false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isUse())
continue;
unsigned Reg = MO.getReg();
if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
continue;
if (!MRI->hasOneUse(Reg))
// Only coalesce single use copies. This ensure the copy will be
// deleted.
continue;
MachineInstr *DefMI = MRI->getVRegDef(Reg);
if (DefMI->getParent() != MBB)
continue;
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
if (TII->isMoveInstr(*DefMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
TargetRegisterInfo::isVirtualRegister(SrcReg) &&
!SrcSubIdx && !DstSubIdx) {
MO.setReg(SrcReg);
DefMI->eraseFromParent();
++NumCoalesces;
Changed = true;
}
}
return Changed;
}
static bool hasLivePhysRegDefUse(MachineInstr *MI) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
// FIXME: This is obviously overly conservative. On x86 lots of instructions
// will def EFLAGS and they are not marked dead at this point.
if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
!(MO.isDef() && MO.isDead()))
return true;
}
return false;
}
bool MachineCSE::ProcessBlock(MachineDomTreeNode *Node) {
bool Changed = false;
ScopedHashTableScope<MachineInstr*, unsigned,
MachineInstrExpressionTrait> VNTS(VNT);
MachineBasicBlock *MBB = Node->getBlock();
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
MachineInstr *MI = &*I;
++I;
bool SawStore = false;
if (!MI->isSafeToMove(TII, 0, SawStore))
continue;
// Ignore copies or instructions that read / write physical registers
// (except for dead defs of physical registers).
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
if (TII->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) ||
MI->isExtractSubreg() || MI->isInsertSubreg() || MI->isSubregToReg())
continue;
bool FoundCSE = VNT.count(MI);
if (!FoundCSE) {
// Look for trivial copy coalescing opportunities.
if (PerformTrivialCoalescing(MI, MBB))
FoundCSE = VNT.count(MI);
}
// If the instruction defines a physical register and the value *may* be
// used, then it's not safe to replace it with a common subexpression.
if (FoundCSE && hasLivePhysRegDefUse(MI))
FoundCSE = false;
if (!FoundCSE) {
VNT.insert(MI, CurrVN++);
Exps.push_back(MI);
continue;
}
// Found a common subexpression, eliminate it.
unsigned CSVN = VNT.lookup(MI);
MachineInstr *CSMI = Exps[CSVN];
DEBUG(dbgs() << "Examining: " << *MI);
DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
unsigned NumDefs = MI->getDesc().getNumDefs();
for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isDef())
continue;
unsigned OldReg = MO.getReg();
unsigned NewReg = CSMI->getOperand(i).getReg();
assert(OldReg != NewReg &&
TargetRegisterInfo::isVirtualRegister(OldReg) &&
TargetRegisterInfo::isVirtualRegister(NewReg) &&
"Do not CSE physical register defs!");
MRI->replaceRegWith(OldReg, NewReg);
--NumDefs;
}
MI->eraseFromParent();
++NumCSEs;
}
// Recursively call ProcessBlock with childred.
const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
for (unsigned i = 0, e = Children.size(); i != e; ++i)
Changed |= ProcessBlock(Children[i]);
return Changed;
}
bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
TII = MF.getTarget().getInstrInfo();
MRI = &MF.getRegInfo();
DT = &getAnalysis<MachineDominatorTree>();
return ProcessBlock(DT->getRootNode());
}