mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-10-31 09:11:13 +00:00
6856d11231
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7343 91177308-0d34-0410-b5e6-96231b3b80d8
740 lines
28 KiB
C++
740 lines
28 KiB
C++
//===-- SparcV9CodeEmitter.cpp - --------===//
|
|
//
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunctionInfo.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "Support/Statistic.h"
|
|
#include "Support/hash_set"
|
|
#include "SparcInternals.h"
|
|
#include "SparcV9CodeEmitter.h"
|
|
|
|
bool UltraSparc::addPassesToEmitMachineCode(PassManager &PM,
|
|
MachineCodeEmitter &MCE) {
|
|
MachineCodeEmitter *M = &MCE;
|
|
DEBUG(M = MachineCodeEmitter::createFilePrinterEmitter(MCE));
|
|
PM.add(new SparcV9CodeEmitter(*this, *M));
|
|
PM.add(createMachineCodeDestructionPass()); // Free stuff no longer needed
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
class JITResolver {
|
|
SparcV9CodeEmitter &SparcV9;
|
|
MachineCodeEmitter &MCE;
|
|
|
|
// LazyCodeGenMap - Keep track of call sites for functions that are to be
|
|
// lazily resolved.
|
|
std::map<uint64_t, Function*> LazyCodeGenMap;
|
|
|
|
// LazyResolverMap - Keep track of the lazy resolver created for a
|
|
// particular function so that we can reuse them if necessary.
|
|
std::map<Function*, uint64_t> LazyResolverMap;
|
|
public:
|
|
JITResolver(SparcV9CodeEmitter &V9,
|
|
MachineCodeEmitter &mce) : SparcV9(V9), MCE(mce) {}
|
|
uint64_t getLazyResolver(Function *F);
|
|
uint64_t addFunctionReference(uint64_t Address, Function *F);
|
|
|
|
// Utility functions for accessing data from static callback
|
|
uint64_t getCurrentPCValue() {
|
|
return MCE.getCurrentPCValue();
|
|
}
|
|
unsigned getBinaryCodeForInstr(MachineInstr &MI) {
|
|
return SparcV9.getBinaryCodeForInstr(MI);
|
|
}
|
|
|
|
inline uint64_t insertFarJumpAtAddr(int64_t Value, uint64_t Addr);
|
|
|
|
private:
|
|
uint64_t emitStubForFunction(Function *F);
|
|
static void CompilationCallback();
|
|
uint64_t resolveFunctionReference(uint64_t RetAddr);
|
|
|
|
};
|
|
|
|
JITResolver *TheJITResolver;
|
|
}
|
|
|
|
/// addFunctionReference - This method is called when we need to emit the
|
|
/// address of a function that has not yet been emitted, so we don't know the
|
|
/// address. Instead, we emit a call to the CompilationCallback method, and
|
|
/// keep track of where we are.
|
|
///
|
|
uint64_t JITResolver::addFunctionReference(uint64_t Address, Function *F) {
|
|
LazyCodeGenMap[Address] = F;
|
|
return (intptr_t)&JITResolver::CompilationCallback;
|
|
}
|
|
|
|
uint64_t JITResolver::resolveFunctionReference(uint64_t RetAddr) {
|
|
std::map<uint64_t, Function*>::iterator I = LazyCodeGenMap.find(RetAddr);
|
|
assert(I != LazyCodeGenMap.end() && "Not in map!");
|
|
Function *F = I->second;
|
|
LazyCodeGenMap.erase(I);
|
|
return MCE.forceCompilationOf(F);
|
|
}
|
|
|
|
uint64_t JITResolver::getLazyResolver(Function *F) {
|
|
std::map<Function*, uint64_t>::iterator I = LazyResolverMap.lower_bound(F);
|
|
if (I != LazyResolverMap.end() && I->first == F) return I->second;
|
|
|
|
//std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n";
|
|
|
|
uint64_t Stub = emitStubForFunction(F);
|
|
LazyResolverMap.insert(I, std::make_pair(F, Stub));
|
|
return Stub;
|
|
}
|
|
|
|
uint64_t JITResolver::insertFarJumpAtAddr(int64_t Target, uint64_t Addr) {
|
|
|
|
static const unsigned i1 = SparcIntRegClass::i1, i2 = SparcIntRegClass::i2,
|
|
i7 = SparcIntRegClass::i7,
|
|
o6 = SparcIntRegClass::o6, g0 = SparcIntRegClass::g0;
|
|
|
|
//
|
|
// Save %i1, %i2 to the stack so we can form a 64-bit constant in %i2
|
|
//
|
|
|
|
// stx %i1, [%sp + 2119] ;; save %i1 to the stack, used as temp
|
|
MachineInstr *STX = BuildMI(V9::STXi, 3).addReg(i1).addReg(o6).addSImm(2119);
|
|
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*STX);
|
|
delete STX;
|
|
Addr += 4;
|
|
|
|
// stx %i2, [%sp + 2127] ;; save %i2 to the stack
|
|
STX = BuildMI(V9::STXi, 3).addReg(i2).addReg(o6).addSImm(2127);
|
|
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*STX);
|
|
delete STX;
|
|
Addr += 4;
|
|
|
|
//
|
|
// Get address to branch into %i2, using %i1 as a temporary
|
|
//
|
|
|
|
// sethi %uhi(Target), %i1 ;; get upper 22 bits of Target into %i1
|
|
MachineInstr *SH = BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(i1);
|
|
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SH);
|
|
delete SH;
|
|
Addr += 4;
|
|
|
|
// or %i1, %ulo(Target), %i1 ;; get 10 lower bits of upper word into %1
|
|
MachineInstr *OR = BuildMI(V9::ORi, 3)
|
|
.addReg(i1).addSImm((Target >> 32) & 0x03ff).addReg(i1);
|
|
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR);
|
|
delete OR;
|
|
Addr += 4;
|
|
|
|
// sllx %i1, 32, %i1 ;; shift those 10 bits to the upper word
|
|
MachineInstr *SL = BuildMI(V9::SLLXi6, 3).addReg(i1).addSImm(32).addReg(i1);
|
|
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SL);
|
|
delete SL;
|
|
Addr += 4;
|
|
|
|
// sethi %hi(Target), %i2 ;; extract bits 10-31 into the dest reg
|
|
SH = BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(i2);
|
|
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*SH);
|
|
delete SH;
|
|
Addr += 4;
|
|
|
|
// or %i1, %i2, %i2 ;; get upper word (in %i1) into %i2
|
|
OR = BuildMI(V9::ORr, 3).addReg(i1).addReg(i2).addReg(i2);
|
|
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR);
|
|
delete OR;
|
|
Addr += 4;
|
|
|
|
// or %i2, %lo(Target), %i2 ;; get lowest 10 bits of Target into %i2
|
|
OR = BuildMI(V9::ORi, 3).addReg(i2).addSImm(Target & 0x03ff).addReg(i2);
|
|
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*OR);
|
|
delete OR;
|
|
Addr += 4;
|
|
|
|
// ldx [%sp + 2119], %i1 ;; restore %i1 -> 2119 = BIAS(2047) + 72
|
|
MachineInstr *LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2119).addReg(i1);
|
|
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*LDX);
|
|
delete LDX;
|
|
Addr += 4;
|
|
|
|
// jmpl %i2, %g0, %g0 ;; indirect branch on %i2
|
|
MachineInstr *J = BuildMI(V9::JMPLRETr, 3).addReg(i2).addReg(g0).addReg(g0);
|
|
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*J);
|
|
delete J;
|
|
Addr += 4;
|
|
|
|
// ldx [%sp + 2127], %i2 ;; restore %i2 -> 2127 = BIAS(2047) + 80
|
|
LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2127).addReg(i2);
|
|
*((unsigned*)(intptr_t)Addr) = getBinaryCodeForInstr(*LDX);
|
|
delete LDX;
|
|
Addr += 4;
|
|
|
|
return Addr;
|
|
}
|
|
|
|
void JITResolver::CompilationCallback() {
|
|
uint64_t CameFrom = (uint64_t)(intptr_t)__builtin_return_address(0);
|
|
int64_t Target = (int64_t)TheJITResolver->resolveFunctionReference(CameFrom);
|
|
DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << CameFrom << "\n");
|
|
|
|
// Rewrite the call target... so that we don't fault every time we execute
|
|
// the call.
|
|
#if 0
|
|
int64_t RealCallTarget = (int64_t)
|
|
((NewVal - TheJITResolver->getCurrentPCValue()) >> 4);
|
|
if (RealCallTarget >= (1<<22) || RealCallTarget <= -(1<<22)) {
|
|
std::cerr << "Address out of bounds for 22bit BA: " << RealCallTarget<<"\n";
|
|
abort();
|
|
}
|
|
#endif
|
|
|
|
//uint64_t CurrPC = TheJITResolver->getCurrentPCValue();
|
|
// we will insert 9 instructions before we do the actual jump
|
|
//int64_t NewTarget = (NewVal - 9*4 - InstAddr) >> 2;
|
|
|
|
static const unsigned i1 = SparcIntRegClass::i1, i2 = SparcIntRegClass::i2,
|
|
i7 = SparcIntRegClass::i7, o6 = SparcIntRegClass::o6,
|
|
o7 = SparcIntRegClass::o7, g0 = SparcIntRegClass::g0;
|
|
|
|
// Subtract 4 to overwrite the 'save' that's there now
|
|
uint64_t InstAddr = CameFrom-4;
|
|
|
|
InstAddr = TheJITResolver->insertFarJumpAtAddr(Target, InstAddr);
|
|
|
|
// CODE SHOULD NEVER GO PAST THIS LOAD!! The real function should return to
|
|
// the original caller, not here!!
|
|
|
|
// FIXME: add call 0 to make sure?!?
|
|
|
|
// =============== THE REAL STUB ENDS HERE =========================
|
|
|
|
// What follows below is one-time restore code, because this callback may be
|
|
// changing registers in unpredictible ways. However, since it is executed
|
|
// only once per function (after the function is resolved, the callback is no
|
|
// longer in the path), this has to be done only once.
|
|
//
|
|
// Thus, it is after the regular stub code. The call back returns to THIS
|
|
// point, but every other call to the target function will execute the code
|
|
// above. Hence, this code is one-time use.
|
|
|
|
uint64_t OneTimeRestore = InstAddr;
|
|
|
|
// restore %g0, 0, %g0
|
|
//MachineInstr *R = BuildMI(V9::RESTOREi, 3).addMReg(g0).addSImm(0)
|
|
// .addMReg(g0, MOTy::Def);
|
|
//*((unsigned*)(intptr_t)InstAddr)=TheJITResolver->getBinaryCodeForInstr(*R);
|
|
//delete R;
|
|
|
|
// FIXME: BuildMI() above crashes. Encode the instruction directly.
|
|
// restore %g0, 0, %g0
|
|
*((unsigned*)(intptr_t)InstAddr) = 0x81e82000U;
|
|
InstAddr += 4;
|
|
|
|
InstAddr = TheJITResolver->insertFarJumpAtAddr(Target, InstAddr);
|
|
|
|
// FIXME: if the target function is close enough to fit into the 19bit disp of
|
|
// BA, we should use this version, as its much cheaper to generate.
|
|
/*
|
|
MachineInstr *MI = BuildMI(V9::BA, 1).addSImm(RealCallTarget);
|
|
*((unsigned*)(intptr_t)InstAddr) = TheJITResolver->getBinaryCodeForInstr(*MI);
|
|
delete MI;
|
|
InstAddr += 4;
|
|
|
|
// Add another NOP
|
|
MachineInstr *Nop = BuildMI(V9::NOP, 0);
|
|
*((unsigned*)(intptr_t)InstAddr)=TheJITResolver->getBinaryCodeForInstr(*Nop);
|
|
delete Nop;
|
|
InstAddr += 4;
|
|
|
|
MachineInstr *BA = BuildMI(V9::BA, 1).addSImm(RealCallTarget-2);
|
|
*((unsigned*)(intptr_t)InstAddr) = TheJITResolver->getBinaryCodeForInstr(*BA);
|
|
delete BA;
|
|
*/
|
|
|
|
// Change the return address to reexecute the call instruction...
|
|
// The return address is really %o7, but will disappear after this function
|
|
// returns, and the register windows are rotated away.
|
|
#if defined(sparc) || defined(__sparc__) || defined(__sparcv9)
|
|
__asm__ __volatile__ ("or %%g0, %0, %%i7" : : "r" (OneTimeRestore-8));
|
|
#endif
|
|
}
|
|
|
|
/// emitStubForFunction - This method is used by the JIT when it needs to emit
|
|
/// the address of a function for a function whose code has not yet been
|
|
/// generated. In order to do this, it generates a stub which jumps to the lazy
|
|
/// function compiler, which will eventually get fixed to call the function
|
|
/// directly.
|
|
///
|
|
uint64_t JITResolver::emitStubForFunction(Function *F) {
|
|
MCE.startFunctionStub(*F, 6);
|
|
|
|
DEBUG(std::cerr << "Emitting stub at addr: 0x"
|
|
<< std::hex << MCE.getCurrentPCValue() << "\n");
|
|
|
|
unsigned o6 = SparcIntRegClass::o6;
|
|
// save %sp, -192, %sp
|
|
MachineInstr *SV = BuildMI(V9::SAVEi, 3).addReg(o6).addSImm(-192).addReg(o6);
|
|
SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*SV));
|
|
delete SV;
|
|
|
|
int64_t CurrPC = MCE.getCurrentPCValue();
|
|
int64_t Addr = (int64_t)addFunctionReference(CurrPC, F);
|
|
|
|
int64_t CallTarget = (Addr-CurrPC) >> 2;
|
|
if (CallTarget >= (1 << 30) || CallTarget <= -(1 << 30)) {
|
|
std::cerr << "Call target beyond 30 bit limit of CALL: "
|
|
<< CallTarget << "\n";
|
|
abort();
|
|
}
|
|
// call CallTarget ;; invoke the callback
|
|
MachineInstr *Call = BuildMI(V9::CALL, 1).addSImm(CallTarget);
|
|
SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Call));
|
|
delete Call;
|
|
|
|
// nop ;; call delay slot
|
|
MachineInstr *Nop = BuildMI(V9::NOP, 0);
|
|
SparcV9.emitWord(SparcV9.getBinaryCodeForInstr(*Nop));
|
|
delete Nop;
|
|
|
|
SparcV9.emitWord(0xDEADBEEF); // marker so that we know it's really a stub
|
|
return (intptr_t)MCE.finishFunctionStub(*F);
|
|
}
|
|
|
|
|
|
SparcV9CodeEmitter::SparcV9CodeEmitter(TargetMachine &tm,
|
|
MachineCodeEmitter &M): TM(tm), MCE(M)
|
|
{
|
|
TheJITResolver = new JITResolver(*this, M);
|
|
}
|
|
|
|
SparcV9CodeEmitter::~SparcV9CodeEmitter() {
|
|
delete TheJITResolver;
|
|
}
|
|
|
|
void SparcV9CodeEmitter::emitWord(unsigned Val) {
|
|
// Output the constant in big endian byte order...
|
|
unsigned byteVal;
|
|
for (int i = 3; i >= 0; --i) {
|
|
byteVal = Val >> 8*i;
|
|
MCE.emitByte(byteVal & 255);
|
|
}
|
|
}
|
|
|
|
unsigned
|
|
SparcV9CodeEmitter::getRealRegNum(unsigned fakeReg,
|
|
MachineInstr &MI) {
|
|
const TargetRegInfo &RI = TM.getRegInfo();
|
|
unsigned regClass, regType = RI.getRegType(fakeReg);
|
|
// At least map fakeReg into its class
|
|
fakeReg = RI.getClassRegNum(fakeReg, regClass);
|
|
|
|
switch (regClass) {
|
|
case UltraSparcRegInfo::IntRegClassID: {
|
|
// Sparc manual, p31
|
|
static const unsigned IntRegMap[] = {
|
|
// "o0", "o1", "o2", "o3", "o4", "o5", "o7",
|
|
8, 9, 10, 11, 12, 13, 15,
|
|
// "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
|
|
16, 17, 18, 19, 20, 21, 22, 23,
|
|
// "i0", "i1", "i2", "i3", "i4", "i5", "i6", "i7",
|
|
24, 25, 26, 27, 28, 29, 30, 31,
|
|
// "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
|
|
0, 1, 2, 3, 4, 5, 6, 7,
|
|
// "o6"
|
|
14
|
|
};
|
|
|
|
return IntRegMap[fakeReg];
|
|
break;
|
|
}
|
|
case UltraSparcRegInfo::FloatRegClassID: {
|
|
DEBUG(std::cerr << "FP reg: " << fakeReg << "\n");
|
|
if (regType == UltraSparcRegInfo::FPSingleRegType) {
|
|
// only numbered 0-31, hence can already fit into 5 bits (and 6)
|
|
DEBUG(std::cerr << "FP single reg, returning: " << fakeReg << "\n");
|
|
} else if (regType == UltraSparcRegInfo::FPDoubleRegType) {
|
|
// FIXME: This assumes that we only have 5-bit register fiels!
|
|
// From Sparc Manual, page 40.
|
|
// The bit layout becomes: b[4], b[3], b[2], b[1], b[5]
|
|
fakeReg |= (fakeReg >> 5) & 1;
|
|
fakeReg &= 0x1f;
|
|
DEBUG(std::cerr << "FP double reg, returning: " << fakeReg << "\n");
|
|
}
|
|
return fakeReg;
|
|
}
|
|
case UltraSparcRegInfo::IntCCRegClassID: {
|
|
/* xcc, icc, ccr */
|
|
static const unsigned IntCCReg[] = { 6, 4, 2 };
|
|
|
|
assert(fakeReg < sizeof(IntCCReg)/sizeof(IntCCReg[0])
|
|
&& "CC register out of bounds for IntCCReg map");
|
|
DEBUG(std::cerr << "IntCC reg: " << IntCCReg[fakeReg] << "\n");
|
|
return IntCCReg[fakeReg];
|
|
}
|
|
case UltraSparcRegInfo::FloatCCRegClassID: {
|
|
/* These are laid out %fcc0 - %fcc3 => 0 - 3, so are correct */
|
|
DEBUG(std::cerr << "FP CC reg: " << fakeReg << "\n");
|
|
return fakeReg;
|
|
}
|
|
default:
|
|
assert(0 && "Invalid unified register number in getRegType");
|
|
return fakeReg;
|
|
}
|
|
}
|
|
|
|
|
|
// WARNING: if the call used the delay slot to do meaningful work, that's not
|
|
// being accounted for, and the behavior will be incorrect!!
|
|
inline void SparcV9CodeEmitter::emitFarCall(uint64_t Target) {
|
|
static const unsigned i1 = SparcIntRegClass::i1, i2 = SparcIntRegClass::i2,
|
|
i7 = SparcIntRegClass::i7,
|
|
o6 = SparcIntRegClass::o6, g0 = SparcIntRegClass::g0;
|
|
|
|
//
|
|
// Save %i1, %i2 to the stack so we can form a 64-bit constant in %i2
|
|
//
|
|
|
|
// stx %i1, [%sp + 2119] ;; save %i1 to the stack, used as temp
|
|
MachineInstr *STX = BuildMI(V9::STXi, 3).addReg(i1).addReg(o6).addSImm(2119);
|
|
emitWord(getBinaryCodeForInstr(*STX));
|
|
delete STX;
|
|
|
|
// stx %i2, [%sp + 2127] ;; save %i2 to the stack
|
|
STX = BuildMI(V9::STXi, 3).addReg(i2).addReg(o6).addSImm(2127);
|
|
emitWord(getBinaryCodeForInstr(*STX));
|
|
delete STX;
|
|
|
|
//
|
|
// Get address to branch into %i2, using %i1 as a temporary
|
|
//
|
|
|
|
// sethi %uhi(Target), %i1 ;; get upper 22 bits of Target into %i1
|
|
MachineInstr *SH = BuildMI(V9::SETHI, 2).addSImm(Target >> 42).addReg(i1);
|
|
emitWord(getBinaryCodeForInstr(*SH));
|
|
delete SH;
|
|
|
|
// or %i1, %ulo(Target), %i1 ;; get 10 lower bits of upper word into %1
|
|
MachineInstr *OR = BuildMI(V9::ORi, 3)
|
|
.addReg(i1).addSImm((Target >> 32) & 0x03ff).addReg(i1);
|
|
emitWord(getBinaryCodeForInstr(*OR));
|
|
delete OR;
|
|
|
|
// sllx %i1, 32, %i1 ;; shift those 10 bits to the upper word
|
|
MachineInstr *SL = BuildMI(V9::SLLXi6, 3).addReg(i1).addSImm(32).addReg(i1);
|
|
emitWord(getBinaryCodeForInstr(*SL));
|
|
delete SL;
|
|
|
|
// sethi %hi(Target), %i2 ;; extract bits 10-31 into the dest reg
|
|
SH = BuildMI(V9::SETHI, 2).addSImm((Target >> 10) & 0x03fffff).addReg(i2);
|
|
emitWord(getBinaryCodeForInstr(*SH));
|
|
delete SH;
|
|
|
|
// or %i1, %i2, %i2 ;; get upper word (in %i1) into %i2
|
|
OR = BuildMI(V9::ORr, 3).addReg(i1).addReg(i2).addReg(i2);
|
|
emitWord(getBinaryCodeForInstr(*OR));
|
|
delete OR;
|
|
|
|
// or %i2, %lo(Target), %i2 ;; get lowest 10 bits of Target into %i2
|
|
OR = BuildMI(V9::ORi, 3).addReg(i2).addSImm(Target & 0x03ff).addReg(i2);
|
|
emitWord(getBinaryCodeForInstr(*OR));
|
|
delete OR;
|
|
|
|
// ldx [%sp + 2119], %i1 ;; restore %i1 -> 2119 = BIAS(2047) + 72
|
|
MachineInstr *LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2119).addReg(i1);
|
|
emitWord(getBinaryCodeForInstr(*LDX));
|
|
delete LDX;
|
|
|
|
// jmpl %i2, %g0, %07 ;; indirect call on %i2
|
|
MachineInstr *J = BuildMI(V9::JMPLRETr, 3).addReg(i2).addReg(g0).addReg(07);
|
|
emitWord(getBinaryCodeForInstr(*J));
|
|
delete J;
|
|
|
|
// ldx [%sp + 2127], %i2 ;; restore %i2 -> 2127 = BIAS(2047) + 80
|
|
LDX = BuildMI(V9::LDXi, 3).addReg(o6).addSImm(2127).addReg(i2);
|
|
emitWord(getBinaryCodeForInstr(*LDX));
|
|
delete LDX;
|
|
}
|
|
|
|
|
|
int64_t SparcV9CodeEmitter::getMachineOpValue(MachineInstr &MI,
|
|
MachineOperand &MO) {
|
|
int64_t rv = 0; // Return value; defaults to 0 for unhandled cases
|
|
// or things that get fixed up later by the JIT.
|
|
|
|
if (MO.isVirtualRegister()) {
|
|
std::cerr << "ERROR: virtual register found in machine code.\n";
|
|
abort();
|
|
} else if (MO.isPCRelativeDisp()) {
|
|
DEBUG(std::cerr << "PCRelativeDisp: ");
|
|
Value *V = MO.getVRegValue();
|
|
if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
|
|
DEBUG(std::cerr << "Saving reference to BB (VReg)\n");
|
|
unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue();
|
|
BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
|
|
} else if (const Constant *C = dyn_cast<Constant>(V)) {
|
|
if (ConstantMap.find(C) != ConstantMap.end()) {
|
|
rv = (int64_t)MCE.getConstantPoolEntryAddress(ConstantMap[C]);
|
|
DEBUG(std::cerr << "const: 0x" << std::hex << rv << "\n");
|
|
} else {
|
|
std::cerr << "ERROR: constant not in map:" << MO << "\n";
|
|
abort();
|
|
}
|
|
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
// same as MO.isGlobalAddress()
|
|
DEBUG(std::cerr << "GlobalValue: ");
|
|
// external function calls, etc.?
|
|
if (Function *F = dyn_cast<Function>(GV)) {
|
|
DEBUG(std::cerr << "Function: ");
|
|
if (F->isExternal()) {
|
|
// Sparc backend broken: this MO should be `ExternalSymbol'
|
|
rv = (int64_t)MCE.getGlobalValueAddress(F->getName());
|
|
} else {
|
|
rv = (int64_t)MCE.getGlobalValueAddress(F);
|
|
}
|
|
if (rv == 0) {
|
|
DEBUG(std::cerr << "not yet generated\n");
|
|
// Function has not yet been code generated!
|
|
TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), F);
|
|
// Delayed resolution...
|
|
rv = TheJITResolver->getLazyResolver(F);
|
|
} else {
|
|
DEBUG(std::cerr << "already generated: 0x" << std::hex << rv << "\n");
|
|
}
|
|
} else {
|
|
rv = (int64_t)MCE.getGlobalValueAddress(GV);
|
|
if (rv == 0) {
|
|
if (Constant *C = ConstantPointerRef::get(GV)) {
|
|
if (ConstantMap.find(C) != ConstantMap.end()) {
|
|
rv = MCE.getConstantPoolEntryAddress(ConstantMap[C]);
|
|
} else {
|
|
std::cerr << "Constant: 0x" << std::hex << (intptr_t)C
|
|
<< ", " << *V << " not found in ConstantMap!\n";
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
DEBUG(std::cerr << "Global addr: " << rv << "\n");
|
|
}
|
|
// The real target of the call is Addr = PC + (rv * 4)
|
|
// So undo that: give the instruction (Addr - PC) / 4
|
|
if (MI.getOpcode() == V9::CALL) {
|
|
int64_t CurrPC = MCE.getCurrentPCValue();
|
|
DEBUG(std::cerr << "rv addr: 0x" << std::hex << rv << "\n"
|
|
<< "curr PC: 0x" << CurrPC << "\n");
|
|
int64_t CallInstTarget = (rv - CurrPC) >> 2;
|
|
if (CallInstTarget >= (1<<29) || CallInstTarget <= -(1<<29)) {
|
|
DEBUG(std::cerr << "Making far call!\n");
|
|
// addresss is out of bounds for the 30-bit call,
|
|
// make an indirect jump-and-link
|
|
emitFarCall(rv);
|
|
// this invalidates the instruction so that the call with an incorrect
|
|
// address will not be emitted
|
|
rv = 0;
|
|
} else {
|
|
// The call fits into 30 bits, so just return the corrected address
|
|
rv = CallInstTarget;
|
|
}
|
|
DEBUG(std::cerr << "returning addr: 0x" << rv << "\n");
|
|
}
|
|
} else {
|
|
std::cerr << "ERROR: PC relative disp unhandled:" << MO << "\n";
|
|
abort();
|
|
}
|
|
} else if (MO.isPhysicalRegister() ||
|
|
MO.getType() == MachineOperand::MO_CCRegister)
|
|
{
|
|
// This is necessary because the Sparc backend doesn't actually lay out
|
|
// registers in the real fashion -- it skips those that it chooses not to
|
|
// allocate, i.e. those that are the FP, SP, etc.
|
|
unsigned fakeReg = MO.getAllocatedRegNum();
|
|
unsigned realRegByClass = getRealRegNum(fakeReg, MI);
|
|
DEBUG(std::cerr << MO << ": Reg[" << std::dec << fakeReg << "] => "
|
|
<< realRegByClass << " (LLC: "
|
|
<< TM.getRegInfo().getUnifiedRegName(fakeReg) << ")\n");
|
|
rv = realRegByClass;
|
|
} else if (MO.isImmediate()) {
|
|
rv = MO.getImmedValue();
|
|
DEBUG(std::cerr << "immed: " << rv << "\n");
|
|
} else if (MO.isGlobalAddress()) {
|
|
DEBUG(std::cerr << "GlobalAddress: not PC-relative\n");
|
|
rv = (int64_t)
|
|
(intptr_t)getGlobalAddress(cast<GlobalValue>(MO.getVRegValue()),
|
|
MI, MO.isPCRelative());
|
|
} else if (MO.isMachineBasicBlock()) {
|
|
// Duplicate code of the above case for VirtualRegister, BasicBlock...
|
|
// It should really hit this case, but Sparc backend uses VRegs instead
|
|
DEBUG(std::cerr << "Saving reference to MBB\n");
|
|
const BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock();
|
|
unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue();
|
|
BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI)));
|
|
} else if (MO.isExternalSymbol()) {
|
|
// Sparc backend doesn't generate this (yet...)
|
|
std::cerr << "ERROR: External symbol unhandled: " << MO << "\n";
|
|
abort();
|
|
} else if (MO.isFrameIndex()) {
|
|
// Sparc backend doesn't generate this (yet...)
|
|
int FrameIndex = MO.getFrameIndex();
|
|
std::cerr << "ERROR: Frame index unhandled.\n";
|
|
abort();
|
|
} else if (MO.isConstantPoolIndex()) {
|
|
// Sparc backend doesn't generate this (yet...)
|
|
std::cerr << "ERROR: Constant Pool index unhandled.\n";
|
|
abort();
|
|
} else {
|
|
std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
|
|
abort();
|
|
}
|
|
|
|
// Finally, deal with the various bitfield-extracting functions that
|
|
// are used in SPARC assembly. (Some of these make no sense in combination
|
|
// with some of the above; we'll trust that the instruction selector
|
|
// will not produce nonsense, and not check for valid combinations here.)
|
|
if (MO.opLoBits32()) { // %lo(val) == %lo() in Sparc ABI doc
|
|
return rv & 0x03ff;
|
|
} else if (MO.opHiBits32()) { // %lm(val) == %hi() in Sparc ABI doc
|
|
return (rv >> 10) & 0x03fffff;
|
|
} else if (MO.opLoBits64()) { // %hm(val) == %ulo() in Sparc ABI doc
|
|
return (rv >> 32) & 0x03ff;
|
|
} else if (MO.opHiBits64()) { // %hh(val) == %uhi() in Sparc ABI doc
|
|
return rv >> 42;
|
|
} else { // (unadorned) val
|
|
return rv;
|
|
}
|
|
}
|
|
|
|
unsigned SparcV9CodeEmitter::getValueBit(int64_t Val, unsigned bit) {
|
|
Val >>= bit;
|
|
return (Val & 1);
|
|
}
|
|
|
|
bool SparcV9CodeEmitter::runOnMachineFunction(MachineFunction &MF) {
|
|
MCE.startFunction(MF);
|
|
DEBUG(std::cerr << "Starting function " << MF.getFunction()->getName()
|
|
<< ", address: " << "0x" << std::hex
|
|
<< (long)MCE.getCurrentPCValue() << "\n");
|
|
|
|
// The Sparc backend does not use MachineConstantPool;
|
|
// instead, it has its own constant pool implementation.
|
|
// We create a new MachineConstantPool here to be compatible with the emitter.
|
|
MachineConstantPool MCP;
|
|
const hash_set<const Constant*> &pool = MF.getInfo()->getConstantPoolValues();
|
|
for (hash_set<const Constant*>::const_iterator I = pool.begin(),
|
|
E = pool.end(); I != E; ++I)
|
|
{
|
|
Constant *C = (Constant*)*I;
|
|
unsigned idx = MCP.getConstantPoolIndex(C);
|
|
DEBUG(std::cerr << "Constant[" << idx << "] = 0x" << (intptr_t)C << "\n");
|
|
ConstantMap[C] = idx;
|
|
}
|
|
MCE.emitConstantPool(&MCP);
|
|
|
|
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
|
|
emitBasicBlock(*I);
|
|
MCE.finishFunction(MF);
|
|
|
|
DEBUG(std::cerr << "Finishing fn " << MF.getFunction()->getName() << "\n");
|
|
ConstantMap.clear();
|
|
|
|
// Resolve branches to BasicBlocks for the entire function
|
|
for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
|
|
long Location = BBLocations[BBRefs[i].first];
|
|
unsigned *Ref = BBRefs[i].second.first;
|
|
MachineInstr *MI = BBRefs[i].second.second;
|
|
DEBUG(std::cerr << "Fixup @ " << std::hex << Ref << " to 0x" << Location
|
|
<< " in instr: " << std::dec << *MI);
|
|
for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) {
|
|
MachineOperand &op = MI->getOperand(ii);
|
|
if (op.isPCRelativeDisp()) {
|
|
// the instruction's branch target is made such that it branches to
|
|
// PC + (branchTarget * 4), so undo that arithmetic here:
|
|
// Location is the target of the branch
|
|
// Ref is the location of the instruction, and hence the PC
|
|
int64_t branchTarget = (Location - (long)Ref) >> 2;
|
|
// Save the flags.
|
|
bool loBits32=false, hiBits32=false, loBits64=false, hiBits64=false;
|
|
if (op.opLoBits32()) { loBits32=true; }
|
|
if (op.opHiBits32()) { hiBits32=true; }
|
|
if (op.opLoBits64()) { loBits64=true; }
|
|
if (op.opHiBits64()) { hiBits64=true; }
|
|
MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed,
|
|
branchTarget);
|
|
if (loBits32) { MI->setOperandLo32(ii); }
|
|
else if (hiBits32) { MI->setOperandHi32(ii); }
|
|
else if (loBits64) { MI->setOperandLo64(ii); }
|
|
else if (hiBits64) { MI->setOperandHi64(ii); }
|
|
DEBUG(std::cerr << "Rewrote BB ref: ");
|
|
unsigned fixedInstr = SparcV9CodeEmitter::getBinaryCodeForInstr(*MI);
|
|
*Ref = fixedInstr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
BBRefs.clear();
|
|
BBLocations.clear();
|
|
|
|
return false;
|
|
}
|
|
|
|
void SparcV9CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
|
|
currBB = MBB.getBasicBlock();
|
|
BBLocations[currBB] = MCE.getCurrentPCValue();
|
|
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I){
|
|
unsigned binCode = getBinaryCodeForInstr(**I);
|
|
if (binCode == (1 << 30)) {
|
|
// this is an invalid call: the addr is out of bounds. that means a code
|
|
// sequence has already been emitted, and this is a no-op
|
|
DEBUG(std::cerr << "Call supressed: already emitted far call.\n");
|
|
} else {
|
|
emitWord(binCode);
|
|
}
|
|
}
|
|
}
|
|
|
|
void* SparcV9CodeEmitter::getGlobalAddress(GlobalValue *V, MachineInstr &MI,
|
|
bool isPCRelative)
|
|
{
|
|
if (isPCRelative) { // must be a call, this is a major hack!
|
|
// Try looking up the function to see if it is already compiled!
|
|
if (void *Addr = (void*)(intptr_t)MCE.getGlobalValueAddress(V)) {
|
|
intptr_t CurByte = MCE.getCurrentPCValue();
|
|
// The real target of the call is Addr = PC + (target * 4)
|
|
// CurByte is the PC, Addr we just received
|
|
return (void*) (((long)Addr - (long)CurByte) >> 2);
|
|
} else {
|
|
if (Function *F = dyn_cast<Function>(V)) {
|
|
// Function has not yet been code generated!
|
|
TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(),
|
|
cast<Function>(V));
|
|
// Delayed resolution...
|
|
return
|
|
(void*)(intptr_t)TheJITResolver->getLazyResolver(cast<Function>(V));
|
|
|
|
} else if (Constant *C = ConstantPointerRef::get(V)) {
|
|
if (ConstantMap.find(C) != ConstantMap.end()) {
|
|
return (void*)
|
|
(intptr_t)MCE.getConstantPoolEntryAddress(ConstantMap[C]);
|
|
} else {
|
|
std::cerr << "Constant: 0x" << std::hex << &*C << std::dec
|
|
<< ", " << *V << " not found in ConstantMap!\n";
|
|
abort();
|
|
}
|
|
} else {
|
|
std::cerr << "Unhandled global: " << *V << "\n";
|
|
abort();
|
|
}
|
|
}
|
|
} else {
|
|
return (void*)(intptr_t)MCE.getGlobalValueAddress(V);
|
|
}
|
|
}
|
|
|
|
|
|
#include "SparcV9CodeEmitter.inc"
|