llvm-6502/lib/Target/X86/X86InstrInfo.td
2012-04-03 05:20:24 +00:00

1923 lines
88 KiB
TableGen

//===-- X86InstrInfo.td - Main X86 Instruction Definition --*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 instruction set, defining the instructions, and
// properties of the instructions which are needed for code generation, machine
// code emission, and analysis.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// X86 specific DAG Nodes.
//
def SDTIntShiftDOp: SDTypeProfile<1, 3,
[SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
SDTCisInt<0>, SDTCisInt<3>]>;
def SDTX86CmpTest : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisSameAs<1, 2>]>;
def SDTX86Cmpsd : SDTypeProfile<1, 3, [SDTCisVT<0, f64>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>]>;
def SDTX86Cmpss : SDTypeProfile<1, 3, [SDTCisVT<0, f32>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>]>;
def SDTX86Cmov : SDTypeProfile<1, 4,
[SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>,
SDTCisVT<3, i8>, SDTCisVT<4, i32>]>;
// Unary and binary operator instructions that set EFLAGS as a side-effect.
def SDTUnaryArithWithFlags : SDTypeProfile<2, 1,
[SDTCisInt<0>, SDTCisVT<1, i32>]>;
def SDTBinaryArithWithFlags : SDTypeProfile<2, 2,
[SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>, SDTCisVT<1, i32>]>;
// SDTBinaryArithWithFlagsInOut - RES1, EFLAGS = op LHS, RHS, EFLAGS
def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
[SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>,
SDTCisVT<1, i32>,
SDTCisVT<4, i32>]>;
// RES1, RES2, FLAGS = op LHS, RHS
def SDT2ResultBinaryArithWithFlags : SDTypeProfile<3, 2,
[SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>, SDTCisVT<1, i32>]>;
def SDTX86BrCond : SDTypeProfile<0, 3,
[SDTCisVT<0, OtherVT>,
SDTCisVT<1, i8>, SDTCisVT<2, i32>]>;
def SDTX86SetCC : SDTypeProfile<1, 2,
[SDTCisVT<0, i8>,
SDTCisVT<1, i8>, SDTCisVT<2, i32>]>;
def SDTX86SetCC_C : SDTypeProfile<1, 2,
[SDTCisInt<0>,
SDTCisVT<1, i8>, SDTCisVT<2, i32>]>;
def SDTX86cas : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisInt<1>,
SDTCisVT<2, i8>]>;
def SDTX86caspair : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
def SDTX86atomicBinary : SDTypeProfile<2, 3, [SDTCisInt<0>, SDTCisInt<1>,
SDTCisPtrTy<2>, SDTCisInt<3>,SDTCisInt<4>]>;
def SDTX86Ret : SDTypeProfile<0, -1, [SDTCisVT<0, i16>]>;
def SDT_X86CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
def SDT_X86CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>,
SDTCisVT<1, i32>]>;
def SDT_X86Call : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>;
def SDT_X86VASTART_SAVE_XMM_REGS : SDTypeProfile<0, -1, [SDTCisVT<0, i8>,
SDTCisVT<1, iPTR>,
SDTCisVT<2, iPTR>]>;
def SDT_X86VAARG_64 : SDTypeProfile<1, -1, [SDTCisPtrTy<0>,
SDTCisPtrTy<1>,
SDTCisVT<2, i32>,
SDTCisVT<3, i8>,
SDTCisVT<4, i32>]>;
def SDTX86RepStr : SDTypeProfile<0, 1, [SDTCisVT<0, OtherVT>]>;
def SDTX86Void : SDTypeProfile<0, 0, []>;
def SDTX86Wrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
def SDT_X86TLSADDR : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_X86TLSCALL : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_X86SEG_ALLOCA : SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>, SDTCisVT<1, iPTR>]>;
def SDT_X86WIN_FTOL : SDTypeProfile<0, 1, [SDTCisFP<0>]>;
def SDT_X86EHRET : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_X86TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>;
def SDT_X86MEMBARRIER : SDTypeProfile<0, 0, []>;
def X86MemBarrier : SDNode<"X86ISD::MEMBARRIER", SDT_X86MEMBARRIER,
[SDNPHasChain]>;
def X86MFence : SDNode<"X86ISD::MFENCE", SDT_X86MEMBARRIER,
[SDNPHasChain]>;
def X86SFence : SDNode<"X86ISD::SFENCE", SDT_X86MEMBARRIER,
[SDNPHasChain]>;
def X86LFence : SDNode<"X86ISD::LFENCE", SDT_X86MEMBARRIER,
[SDNPHasChain]>;
def X86bsf : SDNode<"X86ISD::BSF", SDTUnaryArithWithFlags>;
def X86bsr : SDNode<"X86ISD::BSR", SDTUnaryArithWithFlags>;
def X86shld : SDNode<"X86ISD::SHLD", SDTIntShiftDOp>;
def X86shrd : SDNode<"X86ISD::SHRD", SDTIntShiftDOp>;
def X86cmp : SDNode<"X86ISD::CMP" , SDTX86CmpTest>;
def X86bt : SDNode<"X86ISD::BT", SDTX86CmpTest>;
def X86cmov : SDNode<"X86ISD::CMOV", SDTX86Cmov>;
def X86brcond : SDNode<"X86ISD::BRCOND", SDTX86BrCond,
[SDNPHasChain]>;
def X86setcc : SDNode<"X86ISD::SETCC", SDTX86SetCC>;
def X86setcc_c : SDNode<"X86ISD::SETCC_CARRY", SDTX86SetCC_C>;
def X86cas : SDNode<"X86ISD::LCMPXCHG_DAG", SDTX86cas,
[SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86cas8 : SDNode<"X86ISD::LCMPXCHG8_DAG", SDTX86caspair,
[SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86cas16 : SDNode<"X86ISD::LCMPXCHG16_DAG", SDTX86caspair,
[SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86AtomAdd64 : SDNode<"X86ISD::ATOMADD64_DAG", SDTX86atomicBinary,
[SDNPHasChain, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86AtomSub64 : SDNode<"X86ISD::ATOMSUB64_DAG", SDTX86atomicBinary,
[SDNPHasChain, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86AtomOr64 : SDNode<"X86ISD::ATOMOR64_DAG", SDTX86atomicBinary,
[SDNPHasChain, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86AtomXor64 : SDNode<"X86ISD::ATOMXOR64_DAG", SDTX86atomicBinary,
[SDNPHasChain, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86AtomAnd64 : SDNode<"X86ISD::ATOMAND64_DAG", SDTX86atomicBinary,
[SDNPHasChain, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86AtomNand64 : SDNode<"X86ISD::ATOMNAND64_DAG", SDTX86atomicBinary,
[SDNPHasChain, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86AtomSwap64 : SDNode<"X86ISD::ATOMSWAP64_DAG", SDTX86atomicBinary,
[SDNPHasChain, SDNPMayStore,
SDNPMayLoad, SDNPMemOperand]>;
def X86retflag : SDNode<"X86ISD::RET_FLAG", SDTX86Ret,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def X86vastart_save_xmm_regs :
SDNode<"X86ISD::VASTART_SAVE_XMM_REGS",
SDT_X86VASTART_SAVE_XMM_REGS,
[SDNPHasChain, SDNPVariadic]>;
def X86vaarg64 :
SDNode<"X86ISD::VAARG_64", SDT_X86VAARG_64,
[SDNPHasChain, SDNPMayLoad, SDNPMayStore,
SDNPMemOperand]>;
def X86callseq_start :
SDNode<"ISD::CALLSEQ_START", SDT_X86CallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def X86callseq_end :
SDNode<"ISD::CALLSEQ_END", SDT_X86CallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def X86call : SDNode<"X86ISD::CALL", SDT_X86Call,
[SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
SDNPVariadic]>;
def X86rep_stos: SDNode<"X86ISD::REP_STOS", SDTX86RepStr,
[SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore]>;
def X86rep_movs: SDNode<"X86ISD::REP_MOVS", SDTX86RepStr,
[SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore,
SDNPMayLoad]>;
def X86rdtsc : SDNode<"X86ISD::RDTSC_DAG", SDTX86Void,
[SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>;
def X86Wrapper : SDNode<"X86ISD::Wrapper", SDTX86Wrapper>;
def X86WrapperRIP : SDNode<"X86ISD::WrapperRIP", SDTX86Wrapper>;
def X86tlsaddr : SDNode<"X86ISD::TLSADDR", SDT_X86TLSADDR,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def X86ehret : SDNode<"X86ISD::EH_RETURN", SDT_X86EHRET,
[SDNPHasChain]>;
def X86tcret : SDNode<"X86ISD::TC_RETURN", SDT_X86TCRET,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def X86add_flag : SDNode<"X86ISD::ADD", SDTBinaryArithWithFlags,
[SDNPCommutative]>;
def X86sub_flag : SDNode<"X86ISD::SUB", SDTBinaryArithWithFlags>;
def X86smul_flag : SDNode<"X86ISD::SMUL", SDTBinaryArithWithFlags,
[SDNPCommutative]>;
def X86umul_flag : SDNode<"X86ISD::UMUL", SDT2ResultBinaryArithWithFlags,
[SDNPCommutative]>;
def X86adc_flag : SDNode<"X86ISD::ADC", SDTBinaryArithWithFlagsInOut>;
def X86sbb_flag : SDNode<"X86ISD::SBB", SDTBinaryArithWithFlagsInOut>;
def X86inc_flag : SDNode<"X86ISD::INC", SDTUnaryArithWithFlags>;
def X86dec_flag : SDNode<"X86ISD::DEC", SDTUnaryArithWithFlags>;
def X86or_flag : SDNode<"X86ISD::OR", SDTBinaryArithWithFlags,
[SDNPCommutative]>;
def X86xor_flag : SDNode<"X86ISD::XOR", SDTBinaryArithWithFlags,
[SDNPCommutative]>;
def X86and_flag : SDNode<"X86ISD::AND", SDTBinaryArithWithFlags,
[SDNPCommutative]>;
def X86andn_flag : SDNode<"X86ISD::ANDN", SDTBinaryArithWithFlags>;
def X86blsi_flag : SDNode<"X86ISD::BLSI", SDTUnaryArithWithFlags>;
def X86blsmsk_flag : SDNode<"X86ISD::BLSMSK", SDTUnaryArithWithFlags>;
def X86blsr_flag : SDNode<"X86ISD::BLSR", SDTUnaryArithWithFlags>;
def X86mul_imm : SDNode<"X86ISD::MUL_IMM", SDTIntBinOp>;
def X86WinAlloca : SDNode<"X86ISD::WIN_ALLOCA", SDTX86Void,
[SDNPHasChain, SDNPInGlue, SDNPOutGlue]>;
def X86SegAlloca : SDNode<"X86ISD::SEG_ALLOCA", SDT_X86SEG_ALLOCA,
[SDNPHasChain]>;
def X86TLSCall : SDNode<"X86ISD::TLSCALL", SDT_X86TLSCALL,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def X86WinFTOL : SDNode<"X86ISD::WIN_FTOL", SDT_X86WIN_FTOL,
[SDNPHasChain, SDNPOutGlue]>;
//===----------------------------------------------------------------------===//
// X86 Operand Definitions.
//
// A version of ptr_rc which excludes SP, ESP, and RSP. This is used for
// the index operand of an address, to conform to x86 encoding restrictions.
def ptr_rc_nosp : PointerLikeRegClass<1>;
// *mem - Operand definitions for the funky X86 addressing mode operands.
//
def X86MemAsmOperand : AsmOperandClass {
let Name = "Mem"; let PredicateMethod = "isMem";
}
def X86Mem8AsmOperand : AsmOperandClass {
let Name = "Mem8"; let PredicateMethod = "isMem8";
}
def X86Mem16AsmOperand : AsmOperandClass {
let Name = "Mem16"; let PredicateMethod = "isMem16";
}
def X86Mem32AsmOperand : AsmOperandClass {
let Name = "Mem32"; let PredicateMethod = "isMem32";
}
def X86Mem64AsmOperand : AsmOperandClass {
let Name = "Mem64"; let PredicateMethod = "isMem64";
}
def X86Mem80AsmOperand : AsmOperandClass {
let Name = "Mem80"; let PredicateMethod = "isMem80";
}
def X86Mem128AsmOperand : AsmOperandClass {
let Name = "Mem128"; let PredicateMethod = "isMem128";
}
def X86Mem256AsmOperand : AsmOperandClass {
let Name = "Mem256"; let PredicateMethod = "isMem256";
}
def X86AbsMemAsmOperand : AsmOperandClass {
let Name = "AbsMem";
let SuperClasses = [X86MemAsmOperand];
}
class X86MemOperand<string printMethod> : Operand<iPTR> {
let PrintMethod = printMethod;
let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm);
let ParserMatchClass = X86MemAsmOperand;
}
let OperandType = "OPERAND_MEMORY" in {
def opaque32mem : X86MemOperand<"printopaquemem">;
def opaque48mem : X86MemOperand<"printopaquemem">;
def opaque80mem : X86MemOperand<"printopaquemem">;
def opaque512mem : X86MemOperand<"printopaquemem">;
def i8mem : X86MemOperand<"printi8mem"> {
let ParserMatchClass = X86Mem8AsmOperand; }
def i16mem : X86MemOperand<"printi16mem"> {
let ParserMatchClass = X86Mem16AsmOperand; }
def i32mem : X86MemOperand<"printi32mem"> {
let ParserMatchClass = X86Mem32AsmOperand; }
def i64mem : X86MemOperand<"printi64mem"> {
let ParserMatchClass = X86Mem64AsmOperand; }
def i128mem : X86MemOperand<"printi128mem"> {
let ParserMatchClass = X86Mem128AsmOperand; }
def i256mem : X86MemOperand<"printi256mem"> {
let ParserMatchClass = X86Mem256AsmOperand; }
def f32mem : X86MemOperand<"printf32mem"> {
let ParserMatchClass = X86Mem32AsmOperand; }
def f64mem : X86MemOperand<"printf64mem"> {
let ParserMatchClass = X86Mem64AsmOperand; }
def f80mem : X86MemOperand<"printf80mem"> {
let ParserMatchClass = X86Mem80AsmOperand; }
def f128mem : X86MemOperand<"printf128mem"> {
let ParserMatchClass = X86Mem128AsmOperand; }
def f256mem : X86MemOperand<"printf256mem">{
let ParserMatchClass = X86Mem256AsmOperand; }
}
// A version of i8mem for use on x86-64 that uses GR64_NOREX instead of
// plain GR64, so that it doesn't potentially require a REX prefix.
def i8mem_NOREX : Operand<i64> {
let PrintMethod = "printi8mem";
let MIOperandInfo = (ops GR64_NOREX, i8imm, GR64_NOREX_NOSP, i32imm, i8imm);
let ParserMatchClass = X86Mem8AsmOperand;
let OperandType = "OPERAND_MEMORY";
}
// GPRs available for tailcall.
// It represents GR64_TC or GR64_TCW64.
def ptr_rc_tailcall : PointerLikeRegClass<2>;
// Special i32mem for addresses of load folding tail calls. These are not
// allowed to use callee-saved registers since they must be scheduled
// after callee-saved register are popped.
def i32mem_TC : Operand<i32> {
let PrintMethod = "printi32mem";
let MIOperandInfo = (ops GR32_TC, i8imm, GR32_TC, i32imm, i8imm);
let ParserMatchClass = X86Mem32AsmOperand;
let OperandType = "OPERAND_MEMORY";
}
// Special i64mem for addresses of load folding tail calls. These are not
// allowed to use callee-saved registers since they must be scheduled
// after callee-saved register are popped.
def i64mem_TC : Operand<i64> {
let PrintMethod = "printi64mem";
let MIOperandInfo = (ops ptr_rc_tailcall, i8imm,
ptr_rc_tailcall, i32imm, i8imm);
let ParserMatchClass = X86Mem64AsmOperand;
let OperandType = "OPERAND_MEMORY";
}
let OperandType = "OPERAND_PCREL",
ParserMatchClass = X86AbsMemAsmOperand,
PrintMethod = "print_pcrel_imm" in {
def i32imm_pcrel : Operand<i32>;
def i16imm_pcrel : Operand<i16>;
def offset8 : Operand<i64>;
def offset16 : Operand<i64>;
def offset32 : Operand<i64>;
def offset64 : Operand<i64>;
// Branch targets have OtherVT type and print as pc-relative values.
def brtarget : Operand<OtherVT>;
def brtarget8 : Operand<OtherVT>;
}
def SSECC : Operand<i8> {
let PrintMethod = "printSSECC";
let OperandType = "OPERAND_IMMEDIATE";
}
def AVXCC : Operand<i8> {
let PrintMethod = "printSSECC";
let OperandType = "OPERAND_IMMEDIATE";
}
class ImmSExtAsmOperandClass : AsmOperandClass {
let SuperClasses = [ImmAsmOperand];
let RenderMethod = "addImmOperands";
}
class ImmZExtAsmOperandClass : AsmOperandClass {
let SuperClasses = [ImmAsmOperand];
let RenderMethod = "addImmOperands";
}
// Sign-extended immediate classes. We don't need to define the full lattice
// here because there is no instruction with an ambiguity between ImmSExti64i32
// and ImmSExti32i8.
//
// The strange ranges come from the fact that the assembler always works with
// 64-bit immediates, but for a 16-bit target value we want to accept both "-1"
// (which will be a -1ULL), and "0xFF" (-1 in 16-bits).
// [0, 0x7FFFFFFF] |
// [0xFFFFFFFF80000000, 0xFFFFFFFFFFFFFFFF]
def ImmSExti64i32AsmOperand : ImmSExtAsmOperandClass {
let Name = "ImmSExti64i32";
}
// [0, 0x0000007F] | [0x000000000000FF80, 0x000000000000FFFF] |
// [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF]
def ImmSExti16i8AsmOperand : ImmSExtAsmOperandClass {
let Name = "ImmSExti16i8";
let SuperClasses = [ImmSExti64i32AsmOperand];
}
// [0, 0x0000007F] | [0x00000000FFFFFF80, 0x00000000FFFFFFFF] |
// [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF]
def ImmSExti32i8AsmOperand : ImmSExtAsmOperandClass {
let Name = "ImmSExti32i8";
}
// [0, 0x000000FF]
def ImmZExtu32u8AsmOperand : ImmZExtAsmOperandClass {
let Name = "ImmZExtu32u8";
}
// [0, 0x0000007F] |
// [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF]
def ImmSExti64i8AsmOperand : ImmSExtAsmOperandClass {
let Name = "ImmSExti64i8";
let SuperClasses = [ImmSExti16i8AsmOperand, ImmSExti32i8AsmOperand,
ImmSExti64i32AsmOperand];
}
// A couple of more descriptive operand definitions.
// 16-bits but only 8 bits are significant.
def i16i8imm : Operand<i16> {
let ParserMatchClass = ImmSExti16i8AsmOperand;
let OperandType = "OPERAND_IMMEDIATE";
}
// 32-bits but only 8 bits are significant.
def i32i8imm : Operand<i32> {
let ParserMatchClass = ImmSExti32i8AsmOperand;
let OperandType = "OPERAND_IMMEDIATE";
}
// 32-bits but only 8 bits are significant, and those 8 bits are unsigned.
def u32u8imm : Operand<i32> {
let ParserMatchClass = ImmZExtu32u8AsmOperand;
let OperandType = "OPERAND_IMMEDIATE";
}
// 64-bits but only 32 bits are significant.
def i64i32imm : Operand<i64> {
let ParserMatchClass = ImmSExti64i32AsmOperand;
let OperandType = "OPERAND_IMMEDIATE";
}
// 64-bits but only 32 bits are significant, and those bits are treated as being
// pc relative.
def i64i32imm_pcrel : Operand<i64> {
let PrintMethod = "print_pcrel_imm";
let ParserMatchClass = X86AbsMemAsmOperand;
let OperandType = "OPERAND_PCREL";
}
// 64-bits but only 8 bits are significant.
def i64i8imm : Operand<i64> {
let ParserMatchClass = ImmSExti64i8AsmOperand;
let OperandType = "OPERAND_IMMEDIATE";
}
def lea64_32mem : Operand<i32> {
let PrintMethod = "printi32mem";
let AsmOperandLowerMethod = "lower_lea64_32mem";
let MIOperandInfo = (ops GR32, i8imm, GR32_NOSP, i32imm, i8imm);
let ParserMatchClass = X86MemAsmOperand;
}
//===----------------------------------------------------------------------===//
// X86 Complex Pattern Definitions.
//
// Define X86 specific addressing mode.
def addr : ComplexPattern<iPTR, 5, "SelectAddr", [], [SDNPWantParent]>;
def lea32addr : ComplexPattern<i32, 5, "SelectLEAAddr",
[add, sub, mul, X86mul_imm, shl, or, frameindex],
[]>;
def tls32addr : ComplexPattern<i32, 5, "SelectTLSADDRAddr",
[tglobaltlsaddr], []>;
def lea64addr : ComplexPattern<i64, 5, "SelectLEAAddr",
[add, sub, mul, X86mul_imm, shl, or, frameindex,
X86WrapperRIP], []>;
def tls64addr : ComplexPattern<i64, 5, "SelectTLSADDRAddr",
[tglobaltlsaddr], []>;
//===----------------------------------------------------------------------===//
// X86 Instruction Predicate Definitions.
def HasCMov : Predicate<"Subtarget->hasCMov()">;
def NoCMov : Predicate<"!Subtarget->hasCMov()">;
def HasMMX : Predicate<"Subtarget->hasMMX()">;
def Has3DNow : Predicate<"Subtarget->has3DNow()">;
def Has3DNowA : Predicate<"Subtarget->has3DNowA()">;
def HasSSE1 : Predicate<"Subtarget->hasSSE1()">;
def HasSSE2 : Predicate<"Subtarget->hasSSE2()">;
def HasSSE3 : Predicate<"Subtarget->hasSSE3()">;
def HasSSSE3 : Predicate<"Subtarget->hasSSSE3()">;
def HasSSE41 : Predicate<"Subtarget->hasSSE41()">;
def HasSSE42 : Predicate<"Subtarget->hasSSE42()">;
def HasSSE4A : Predicate<"Subtarget->hasSSE4A()">;
def HasAVX : Predicate<"Subtarget->hasAVX()">;
def HasAVX2 : Predicate<"Subtarget->hasAVX2()">;
def HasPOPCNT : Predicate<"Subtarget->hasPOPCNT()">;
def HasAES : Predicate<"Subtarget->hasAES()">;
def HasCLMUL : Predicate<"Subtarget->hasCLMUL()">;
def HasFMA3 : Predicate<"Subtarget->hasFMA3()">;
def HasFMA4 : Predicate<"Subtarget->hasFMA4()">;
def HasXOP : Predicate<"Subtarget->hasXOP()">;
def HasMOVBE : Predicate<"Subtarget->hasMOVBE()">;
def HasRDRAND : Predicate<"Subtarget->hasRDRAND()">;
def HasF16C : Predicate<"Subtarget->hasF16C()">;
def HasFSGSBase : Predicate<"Subtarget->hasFSGSBase()">;
def HasLZCNT : Predicate<"Subtarget->hasLZCNT()">;
def HasBMI : Predicate<"Subtarget->hasBMI()">;
def HasBMI2 : Predicate<"Subtarget->hasBMI2()">;
def FPStackf32 : Predicate<"!Subtarget->hasSSE1()">;
def FPStackf64 : Predicate<"!Subtarget->hasSSE2()">;
def HasCmpxchg16b: Predicate<"Subtarget->hasCmpxchg16b()">;
def In32BitMode : Predicate<"!Subtarget->is64Bit()">,
AssemblerPredicate<"!Mode64Bit">;
def In64BitMode : Predicate<"Subtarget->is64Bit()">,
AssemblerPredicate<"Mode64Bit">;
def IsWin64 : Predicate<"Subtarget->isTargetWin64()">;
def IsNaCl : Predicate<"Subtarget->isTargetNaCl()">;
def NotNaCl : Predicate<"!Subtarget->isTargetNaCl()">;
def SmallCode : Predicate<"TM.getCodeModel() == CodeModel::Small">;
def KernelCode : Predicate<"TM.getCodeModel() == CodeModel::Kernel">;
def FarData : Predicate<"TM.getCodeModel() != CodeModel::Small &&"
"TM.getCodeModel() != CodeModel::Kernel">;
def NearData : Predicate<"TM.getCodeModel() == CodeModel::Small ||"
"TM.getCodeModel() == CodeModel::Kernel">;
def IsStatic : Predicate<"TM.getRelocationModel() == Reloc::Static">;
def IsNotPIC : Predicate<"TM.getRelocationModel() != Reloc::PIC_">;
def OptForSize : Predicate<"OptForSize">;
def OptForSpeed : Predicate<"!OptForSize">;
def FastBTMem : Predicate<"!Subtarget->isBTMemSlow()">;
def CallImmAddr : Predicate<"Subtarget->IsLegalToCallImmediateAddr(TM)">;
//===----------------------------------------------------------------------===//
// X86 Instruction Format Definitions.
//
include "X86InstrFormats.td"
//===----------------------------------------------------------------------===//
// Pattern fragments.
//
// X86 specific condition code. These correspond to CondCode in
// X86InstrInfo.h. They must be kept in synch.
def X86_COND_A : PatLeaf<(i8 0)>; // alt. COND_NBE
def X86_COND_AE : PatLeaf<(i8 1)>; // alt. COND_NC
def X86_COND_B : PatLeaf<(i8 2)>; // alt. COND_C
def X86_COND_BE : PatLeaf<(i8 3)>; // alt. COND_NA
def X86_COND_E : PatLeaf<(i8 4)>; // alt. COND_Z
def X86_COND_G : PatLeaf<(i8 5)>; // alt. COND_NLE
def X86_COND_GE : PatLeaf<(i8 6)>; // alt. COND_NL
def X86_COND_L : PatLeaf<(i8 7)>; // alt. COND_NGE
def X86_COND_LE : PatLeaf<(i8 8)>; // alt. COND_NG
def X86_COND_NE : PatLeaf<(i8 9)>; // alt. COND_NZ
def X86_COND_NO : PatLeaf<(i8 10)>;
def X86_COND_NP : PatLeaf<(i8 11)>; // alt. COND_PO
def X86_COND_NS : PatLeaf<(i8 12)>;
def X86_COND_O : PatLeaf<(i8 13)>;
def X86_COND_P : PatLeaf<(i8 14)>; // alt. COND_PE
def X86_COND_S : PatLeaf<(i8 15)>;
let FastIselShouldIgnore = 1 in { // FastIsel should ignore all simm8 instrs.
def i16immSExt8 : ImmLeaf<i16, [{ return Imm == (int8_t)Imm; }]>;
def i32immSExt8 : ImmLeaf<i32, [{ return Imm == (int8_t)Imm; }]>;
def i64immSExt8 : ImmLeaf<i64, [{ return Imm == (int8_t)Imm; }]>;
}
def i64immSExt32 : ImmLeaf<i64, [{ return Imm == (int32_t)Imm; }]>;
// i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit
// unsigned field.
def i64immZExt32 : ImmLeaf<i64, [{ return (uint64_t)Imm == (uint32_t)Imm; }]>;
def i64immZExt32SExt8 : ImmLeaf<i64, [{
return (uint64_t)Imm == (uint32_t)Imm && (int32_t)Imm == (int8_t)Imm;
}]>;
// Helper fragments for loads.
// It's always safe to treat a anyext i16 load as a i32 load if the i16 is
// known to be 32-bit aligned or better. Ditto for i8 to i16.
def loadi16 : PatFrag<(ops node:$ptr), (i16 (unindexedload node:$ptr)), [{
LoadSDNode *LD = cast<LoadSDNode>(N);
ISD::LoadExtType ExtType = LD->getExtensionType();
if (ExtType == ISD::NON_EXTLOAD)
return true;
if (ExtType == ISD::EXTLOAD)
return LD->getAlignment() >= 2 && !LD->isVolatile();
return false;
}]>;
def loadi16_anyext : PatFrag<(ops node:$ptr), (i32 (unindexedload node:$ptr)),[{
LoadSDNode *LD = cast<LoadSDNode>(N);
ISD::LoadExtType ExtType = LD->getExtensionType();
if (ExtType == ISD::EXTLOAD)
return LD->getAlignment() >= 2 && !LD->isVolatile();
return false;
}]>;
def loadi32 : PatFrag<(ops node:$ptr), (i32 (unindexedload node:$ptr)), [{
LoadSDNode *LD = cast<LoadSDNode>(N);
ISD::LoadExtType ExtType = LD->getExtensionType();
if (ExtType == ISD::NON_EXTLOAD)
return true;
if (ExtType == ISD::EXTLOAD)
return LD->getAlignment() >= 4 && !LD->isVolatile();
return false;
}]>;
def loadi8 : PatFrag<(ops node:$ptr), (i8 (load node:$ptr))>;
def loadi64 : PatFrag<(ops node:$ptr), (i64 (load node:$ptr))>;
def loadf32 : PatFrag<(ops node:$ptr), (f32 (load node:$ptr))>;
def loadf64 : PatFrag<(ops node:$ptr), (f64 (load node:$ptr))>;
def loadf80 : PatFrag<(ops node:$ptr), (f80 (load node:$ptr))>;
def sextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (sextloadi8 node:$ptr))>;
def sextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (sextloadi8 node:$ptr))>;
def sextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>;
def sextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>;
def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>;
def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>;
def zextloadi8i1 : PatFrag<(ops node:$ptr), (i8 (zextloadi1 node:$ptr))>;
def zextloadi16i1 : PatFrag<(ops node:$ptr), (i16 (zextloadi1 node:$ptr))>;
def zextloadi32i1 : PatFrag<(ops node:$ptr), (i32 (zextloadi1 node:$ptr))>;
def zextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (zextloadi8 node:$ptr))>;
def zextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (zextloadi8 node:$ptr))>;
def zextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>;
def zextloadi64i1 : PatFrag<(ops node:$ptr), (i64 (zextloadi1 node:$ptr))>;
def zextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>;
def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>;
def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>;
def extloadi8i1 : PatFrag<(ops node:$ptr), (i8 (extloadi1 node:$ptr))>;
def extloadi16i1 : PatFrag<(ops node:$ptr), (i16 (extloadi1 node:$ptr))>;
def extloadi32i1 : PatFrag<(ops node:$ptr), (i32 (extloadi1 node:$ptr))>;
def extloadi16i8 : PatFrag<(ops node:$ptr), (i16 (extloadi8 node:$ptr))>;
def extloadi32i8 : PatFrag<(ops node:$ptr), (i32 (extloadi8 node:$ptr))>;
def extloadi32i16 : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>;
def extloadi64i1 : PatFrag<(ops node:$ptr), (i64 (extloadi1 node:$ptr))>;
def extloadi64i8 : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>;
def extloadi64i16 : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>;
def extloadi64i32 : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>;
// An 'and' node with a single use.
def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{
return N->hasOneUse();
}]>;
// An 'srl' node with a single use.
def srl_su : PatFrag<(ops node:$lhs, node:$rhs), (srl node:$lhs, node:$rhs), [{
return N->hasOneUse();
}]>;
// An 'trunc' node with a single use.
def trunc_su : PatFrag<(ops node:$src), (trunc node:$src), [{
return N->hasOneUse();
}]>;
//===----------------------------------------------------------------------===//
// Instruction list.
//
// Nop
let neverHasSideEffects = 1 in {
def NOOP : I<0x90, RawFrm, (outs), (ins), "nop", []>;
def NOOPW : I<0x1f, MRM0m, (outs), (ins i16mem:$zero),
"nop{w}\t$zero", []>, TB, OpSize;
def NOOPL : I<0x1f, MRM0m, (outs), (ins i32mem:$zero),
"nop{l}\t$zero", []>, TB;
}
// Constructing a stack frame.
def ENTER : Ii16<0xC8, RawFrmImm8, (outs), (ins i16imm:$len, i8imm:$lvl),
"enter\t$len, $lvl", []>;
let Defs = [EBP, ESP], Uses = [EBP, ESP], mayLoad = 1, neverHasSideEffects=1 in
def LEAVE : I<0xC9, RawFrm,
(outs), (ins), "leave", []>, Requires<[In32BitMode]>;
let Defs = [RBP,RSP], Uses = [RBP,RSP], mayLoad = 1, neverHasSideEffects = 1 in
def LEAVE64 : I<0xC9, RawFrm,
(outs), (ins), "leave", []>, Requires<[In64BitMode]>;
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions.
//
let Defs = [ESP], Uses = [ESP], neverHasSideEffects=1 in {
let mayLoad = 1 in {
def POP16r : I<0x58, AddRegFrm, (outs GR16:$reg), (ins), "pop{w}\t$reg", []>,
OpSize;
def POP32r : I<0x58, AddRegFrm, (outs GR32:$reg), (ins), "pop{l}\t$reg", []>;
def POP16rmr: I<0x8F, MRM0r, (outs GR16:$reg), (ins), "pop{w}\t$reg", []>,
OpSize;
def POP16rmm: I<0x8F, MRM0m, (outs i16mem:$dst), (ins), "pop{w}\t$dst", []>,
OpSize;
def POP32rmr: I<0x8F, MRM0r, (outs GR32:$reg), (ins), "pop{l}\t$reg", []>;
def POP32rmm: I<0x8F, MRM0m, (outs i32mem:$dst), (ins), "pop{l}\t$dst", []>;
def POPF16 : I<0x9D, RawFrm, (outs), (ins), "popf{w}", []>, OpSize;
def POPF32 : I<0x9D, RawFrm, (outs), (ins), "popf{l|d}", []>,
Requires<[In32BitMode]>;
}
let mayStore = 1 in {
def PUSH16r : I<0x50, AddRegFrm, (outs), (ins GR16:$reg), "push{w}\t$reg",[]>,
OpSize;
def PUSH32r : I<0x50, AddRegFrm, (outs), (ins GR32:$reg), "push{l}\t$reg",[]>;
def PUSH16rmr: I<0xFF, MRM6r, (outs), (ins GR16:$reg), "push{w}\t$reg",[]>,
OpSize;
def PUSH16rmm: I<0xFF, MRM6m, (outs), (ins i16mem:$src), "push{w}\t$src",[]>,
OpSize;
def PUSH32rmr: I<0xFF, MRM6r, (outs), (ins GR32:$reg), "push{l}\t$reg",[]>;
def PUSH32rmm: I<0xFF, MRM6m, (outs), (ins i32mem:$src), "push{l}\t$src",[]>;
def PUSHi8 : Ii8<0x6a, RawFrm, (outs), (ins i32i8imm:$imm),
"push{l}\t$imm", []>;
def PUSHi16 : Ii16<0x68, RawFrm, (outs), (ins i16imm:$imm),
"push{w}\t$imm", []>, OpSize;
def PUSHi32 : Ii32<0x68, RawFrm, (outs), (ins i32imm:$imm),
"push{l}\t$imm", []>;
def PUSHF16 : I<0x9C, RawFrm, (outs), (ins), "pushf{w}", []>, OpSize;
def PUSHF32 : I<0x9C, RawFrm, (outs), (ins), "pushf{l|d}", []>,
Requires<[In32BitMode]>;
}
}
let Defs = [RSP], Uses = [RSP], neverHasSideEffects=1 in {
let mayLoad = 1 in {
def POP64r : I<0x58, AddRegFrm,
(outs GR64:$reg), (ins), "pop{q}\t$reg", []>;
def POP64rmr: I<0x8F, MRM0r, (outs GR64:$reg), (ins), "pop{q}\t$reg", []>;
def POP64rmm: I<0x8F, MRM0m, (outs i64mem:$dst), (ins), "pop{q}\t$dst", []>;
}
let mayStore = 1 in {
def PUSH64r : I<0x50, AddRegFrm,
(outs), (ins GR64:$reg), "push{q}\t$reg", []>;
def PUSH64rmr: I<0xFF, MRM6r, (outs), (ins GR64:$reg), "push{q}\t$reg", []>;
def PUSH64rmm: I<0xFF, MRM6m, (outs), (ins i64mem:$src), "push{q}\t$src", []>;
}
}
let Defs = [RSP], Uses = [RSP], neverHasSideEffects = 1, mayStore = 1 in {
def PUSH64i8 : Ii8<0x6a, RawFrm, (outs), (ins i64i8imm:$imm),
"push{q}\t$imm", []>;
def PUSH64i16 : Ii16<0x68, RawFrm, (outs), (ins i16imm:$imm),
"push{q}\t$imm", []>;
def PUSH64i32 : Ii32<0x68, RawFrm, (outs), (ins i64i32imm:$imm),
"push{q}\t$imm", []>;
}
let Defs = [RSP, EFLAGS], Uses = [RSP], mayLoad = 1, neverHasSideEffects=1 in
def POPF64 : I<0x9D, RawFrm, (outs), (ins), "popfq", []>,
Requires<[In64BitMode]>;
let Defs = [RSP], Uses = [RSP, EFLAGS], mayStore = 1, neverHasSideEffects=1 in
def PUSHF64 : I<0x9C, RawFrm, (outs), (ins), "pushfq", []>,
Requires<[In64BitMode]>;
let Defs = [EDI, ESI, EBP, EBX, EDX, ECX, EAX, ESP], Uses = [ESP],
mayLoad=1, neverHasSideEffects=1 in {
def POPA32 : I<0x61, RawFrm, (outs), (ins), "popa{l}", []>,
Requires<[In32BitMode]>;
}
let Defs = [ESP], Uses = [EDI, ESI, EBP, EBX, EDX, ECX, EAX, ESP],
mayStore=1, neverHasSideEffects=1 in {
def PUSHA32 : I<0x60, RawFrm, (outs), (ins), "pusha{l}", []>,
Requires<[In32BitMode]>;
}
let Constraints = "$src = $dst" in { // GR32 = bswap GR32
def BSWAP32r : I<0xC8, AddRegFrm,
(outs GR32:$dst), (ins GR32:$src),
"bswap{l}\t$dst",
[(set GR32:$dst, (bswap GR32:$src))]>, TB;
def BSWAP64r : RI<0xC8, AddRegFrm, (outs GR64:$dst), (ins GR64:$src),
"bswap{q}\t$dst",
[(set GR64:$dst, (bswap GR64:$src))]>, TB;
} // Constraints = "$src = $dst"
// Bit scan instructions.
let Defs = [EFLAGS] in {
def BSF16rr : I<0xBC, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"bsf{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, EFLAGS, (X86bsf GR16:$src))]>, TB, OpSize;
def BSF16rm : I<0xBC, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"bsf{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, EFLAGS, (X86bsf (loadi16 addr:$src)))]>, TB,
OpSize;
def BSF32rr : I<0xBC, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"bsf{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, EFLAGS, (X86bsf GR32:$src))]>, TB;
def BSF32rm : I<0xBC, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"bsf{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, EFLAGS, (X86bsf (loadi32 addr:$src)))]>, TB;
def BSF64rr : RI<0xBC, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"bsf{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, EFLAGS, (X86bsf GR64:$src))]>, TB;
def BSF64rm : RI<0xBC, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"bsf{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, EFLAGS, (X86bsf (loadi64 addr:$src)))]>, TB;
def BSR16rr : I<0xBD, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"bsr{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, EFLAGS, (X86bsr GR16:$src))]>, TB, OpSize;
def BSR16rm : I<0xBD, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"bsr{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, EFLAGS, (X86bsr (loadi16 addr:$src)))]>, TB,
OpSize;
def BSR32rr : I<0xBD, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"bsr{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, EFLAGS, (X86bsr GR32:$src))]>, TB;
def BSR32rm : I<0xBD, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"bsr{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, EFLAGS, (X86bsr (loadi32 addr:$src)))]>, TB;
def BSR64rr : RI<0xBD, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"bsr{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, EFLAGS, (X86bsr GR64:$src))]>, TB;
def BSR64rm : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"bsr{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, EFLAGS, (X86bsr (loadi64 addr:$src)))]>, TB;
} // Defs = [EFLAGS]
// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
let Defs = [EDI,ESI], Uses = [EDI,ESI,EFLAGS] in {
def MOVSB : I<0xA4, RawFrm, (outs), (ins), "movsb", []>;
def MOVSW : I<0xA5, RawFrm, (outs), (ins), "movsw", []>, OpSize;
def MOVSD : I<0xA5, RawFrm, (outs), (ins), "movs{l|d}", []>;
def MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "movsq", []>;
}
// These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI
let Defs = [EDI], Uses = [AL,EDI,EFLAGS] in
def STOSB : I<0xAA, RawFrm, (outs), (ins), "stosb", []>;
let Defs = [EDI], Uses = [AX,EDI,EFLAGS] in
def STOSW : I<0xAB, RawFrm, (outs), (ins), "stosw", []>, OpSize;
let Defs = [EDI], Uses = [EAX,EDI,EFLAGS] in
def STOSD : I<0xAB, RawFrm, (outs), (ins), "stos{l|d}", []>;
let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI,EFLAGS] in
def STOSQ : RI<0xAB, RawFrm, (outs), (ins), "stosq", []>;
def SCAS8 : I<0xAE, RawFrm, (outs), (ins), "scasb", []>;
def SCAS16 : I<0xAF, RawFrm, (outs), (ins), "scasw", []>, OpSize;
def SCAS32 : I<0xAF, RawFrm, (outs), (ins), "scas{l|d}", []>;
def SCAS64 : RI<0xAF, RawFrm, (outs), (ins), "scasq", []>;
def CMPS8 : I<0xA6, RawFrm, (outs), (ins), "cmpsb", []>;
def CMPS16 : I<0xA7, RawFrm, (outs), (ins), "cmpsw", []>, OpSize;
def CMPS32 : I<0xA7, RawFrm, (outs), (ins), "cmps{l|d}", []>;
def CMPS64 : RI<0xA7, RawFrm, (outs), (ins), "cmpsq", []>;
//===----------------------------------------------------------------------===//
// Move Instructions.
//
let neverHasSideEffects = 1 in {
def MOV8rr : I<0x88, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src),
"mov{b}\t{$src, $dst|$dst, $src}", []>;
def MOV16rr : I<0x89, MRMDestReg, (outs GR16:$dst), (ins GR16:$src),
"mov{w}\t{$src, $dst|$dst, $src}", []>, OpSize;
def MOV32rr : I<0x89, MRMDestReg, (outs GR32:$dst), (ins GR32:$src),
"mov{l}\t{$src, $dst|$dst, $src}", []>;
def MOV64rr : RI<0x89, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
"mov{q}\t{$src, $dst|$dst, $src}", []>;
}
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def MOV8ri : Ii8 <0xB0, AddRegFrm, (outs GR8 :$dst), (ins i8imm :$src),
"mov{b}\t{$src, $dst|$dst, $src}",
[(set GR8:$dst, imm:$src)]>;
def MOV16ri : Ii16<0xB8, AddRegFrm, (outs GR16:$dst), (ins i16imm:$src),
"mov{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, imm:$src)]>, OpSize;
def MOV32ri : Ii32<0xB8, AddRegFrm, (outs GR32:$dst), (ins i32imm:$src),
"mov{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, imm:$src)]>;
def MOV64ri : RIi64<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64imm:$src),
"movabs{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, imm:$src)]>;
def MOV64ri32 : RIi32<0xC7, MRM0r, (outs GR64:$dst), (ins i64i32imm:$src),
"mov{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, i64immSExt32:$src)]>;
}
def MOV8mi : Ii8 <0xC6, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src),
"mov{b}\t{$src, $dst|$dst, $src}",
[(store (i8 imm:$src), addr:$dst)]>;
def MOV16mi : Ii16<0xC7, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src),
"mov{w}\t{$src, $dst|$dst, $src}",
[(store (i16 imm:$src), addr:$dst)]>, OpSize;
def MOV32mi : Ii32<0xC7, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src),
"mov{l}\t{$src, $dst|$dst, $src}",
[(store (i32 imm:$src), addr:$dst)]>;
def MOV64mi32 : RIi32<0xC7, MRM0m, (outs), (ins i64mem:$dst, i64i32imm:$src),
"mov{q}\t{$src, $dst|$dst, $src}",
[(store i64immSExt32:$src, addr:$dst)]>;
/// moffs8, moffs16 and moffs32 versions of moves. The immediate is a
/// 32-bit offset from the PC. These are only valid in x86-32 mode.
def MOV8o8a : Ii32 <0xA0, RawFrm, (outs), (ins offset8:$src),
"mov{b}\t{$src, %al|AL, $src}", []>,
Requires<[In32BitMode]>;
def MOV16o16a : Ii32 <0xA1, RawFrm, (outs), (ins offset16:$src),
"mov{w}\t{$src, %ax|AL, $src}", []>, OpSize,
Requires<[In32BitMode]>;
def MOV32o32a : Ii32 <0xA1, RawFrm, (outs), (ins offset32:$src),
"mov{l}\t{$src, %eax|EAX, $src}", []>,
Requires<[In32BitMode]>;
def MOV8ao8 : Ii32 <0xA2, RawFrm, (outs offset8:$dst), (ins),
"mov{b}\t{%al, $dst|$dst, AL}", []>,
Requires<[In32BitMode]>;
def MOV16ao16 : Ii32 <0xA3, RawFrm, (outs offset16:$dst), (ins),
"mov{w}\t{%ax, $dst|$dst, AL}", []>, OpSize,
Requires<[In32BitMode]>;
def MOV32ao32 : Ii32 <0xA3, RawFrm, (outs offset32:$dst), (ins),
"mov{l}\t{%eax, $dst|$dst, EAX}", []>,
Requires<[In32BitMode]>;
// FIXME: These definitions are utterly broken
// Just leave them commented out for now because they're useless outside
// of the large code model, and most compilers won't generate the instructions
// in question.
/*
def MOV64o8a : RIi8<0xA0, RawFrm, (outs), (ins offset8:$src),
"mov{q}\t{$src, %rax|RAX, $src}", []>;
def MOV64o64a : RIi32<0xA1, RawFrm, (outs), (ins offset64:$src),
"mov{q}\t{$src, %rax|RAX, $src}", []>;
def MOV64ao8 : RIi8<0xA2, RawFrm, (outs offset8:$dst), (ins),
"mov{q}\t{%rax, $dst|$dst, RAX}", []>;
def MOV64ao64 : RIi32<0xA3, RawFrm, (outs offset64:$dst), (ins),
"mov{q}\t{%rax, $dst|$dst, RAX}", []>;
*/
let isCodeGenOnly = 1 in {
def MOV8rr_REV : I<0x8A, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src),
"mov{b}\t{$src, $dst|$dst, $src}", []>;
def MOV16rr_REV : I<0x8B, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"mov{w}\t{$src, $dst|$dst, $src}", []>, OpSize;
def MOV32rr_REV : I<0x8B, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"mov{l}\t{$src, $dst|$dst, $src}", []>;
def MOV64rr_REV : RI<0x8B, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"mov{q}\t{$src, $dst|$dst, $src}", []>;
}
let canFoldAsLoad = 1, isReMaterializable = 1 in {
def MOV8rm : I<0x8A, MRMSrcMem, (outs GR8 :$dst), (ins i8mem :$src),
"mov{b}\t{$src, $dst|$dst, $src}",
[(set GR8:$dst, (loadi8 addr:$src))]>;
def MOV16rm : I<0x8B, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"mov{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, (loadi16 addr:$src))]>, OpSize;
def MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"mov{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (loadi32 addr:$src))]>;
def MOV64rm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"mov{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (load addr:$src))]>;
}
def MOV8mr : I<0x88, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src),
"mov{b}\t{$src, $dst|$dst, $src}",
[(store GR8:$src, addr:$dst)]>;
def MOV16mr : I<0x89, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
"mov{w}\t{$src, $dst|$dst, $src}",
[(store GR16:$src, addr:$dst)]>, OpSize;
def MOV32mr : I<0x89, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
"mov{l}\t{$src, $dst|$dst, $src}",
[(store GR32:$src, addr:$dst)]>;
def MOV64mr : RI<0x89, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
"mov{q}\t{$src, $dst|$dst, $src}",
[(store GR64:$src, addr:$dst)]>;
// Versions of MOV8rr, MOV8mr, and MOV8rm that use i8mem_NOREX and GR8_NOREX so
// that they can be used for copying and storing h registers, which can't be
// encoded when a REX prefix is present.
let isCodeGenOnly = 1 in {
let neverHasSideEffects = 1 in
def MOV8rr_NOREX : I<0x88, MRMDestReg,
(outs GR8_NOREX:$dst), (ins GR8_NOREX:$src),
"mov{b}\t{$src, $dst|$dst, $src} # NOREX", []>;
let mayStore = 1 in
def MOV8mr_NOREX : I<0x88, MRMDestMem,
(outs), (ins i8mem_NOREX:$dst, GR8_NOREX:$src),
"mov{b}\t{$src, $dst|$dst, $src} # NOREX", []>;
let mayLoad = 1, neverHasSideEffects = 1,
canFoldAsLoad = 1, isReMaterializable = 1 in
def MOV8rm_NOREX : I<0x8A, MRMSrcMem,
(outs GR8_NOREX:$dst), (ins i8mem_NOREX:$src),
"mov{b}\t{$src, $dst|$dst, $src} # NOREX", []>;
}
// Condition code ops, incl. set if equal/not equal/...
let Defs = [EFLAGS], Uses = [AH], neverHasSideEffects = 1 in
def SAHF : I<0x9E, RawFrm, (outs), (ins), "sahf", []>; // flags = AH
let Defs = [AH], Uses = [EFLAGS], neverHasSideEffects = 1 in
def LAHF : I<0x9F, RawFrm, (outs), (ins), "lahf", []>; // AH = flags
//===----------------------------------------------------------------------===//
// Bit tests instructions: BT, BTS, BTR, BTC.
let Defs = [EFLAGS] in {
def BT16rr : I<0xA3, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2),
"bt{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt GR16:$src1, GR16:$src2))]>, OpSize, TB;
def BT32rr : I<0xA3, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2),
"bt{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt GR32:$src1, GR32:$src2))]>, TB;
def BT64rr : RI<0xA3, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
"bt{q}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt GR64:$src1, GR64:$src2))]>, TB;
// Unlike with the register+register form, the memory+register form of the
// bt instruction does not ignore the high bits of the index. From ISel's
// perspective, this is pretty bizarre. Make these instructions disassembly
// only for now.
def BT16mr : I<0xA3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
"bt{w}\t{$src2, $src1|$src1, $src2}",
// [(X86bt (loadi16 addr:$src1), GR16:$src2),
// (implicit EFLAGS)]
[]
>, OpSize, TB, Requires<[FastBTMem]>;
def BT32mr : I<0xA3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
"bt{l}\t{$src2, $src1|$src1, $src2}",
// [(X86bt (loadi32 addr:$src1), GR32:$src2),
// (implicit EFLAGS)]
[]
>, TB, Requires<[FastBTMem]>;
def BT64mr : RI<0xA3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
"bt{q}\t{$src2, $src1|$src1, $src2}",
// [(X86bt (loadi64 addr:$src1), GR64:$src2),
// (implicit EFLAGS)]
[]
>, TB;
def BT16ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR16:$src1, i16i8imm:$src2),
"bt{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt GR16:$src1, i16immSExt8:$src2))]>,
OpSize, TB;
def BT32ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR32:$src1, i32i8imm:$src2),
"bt{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt GR32:$src1, i32immSExt8:$src2))]>, TB;
def BT64ri8 : RIi8<0xBA, MRM4r, (outs), (ins GR64:$src1, i64i8imm:$src2),
"bt{q}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt GR64:$src1, i64immSExt8:$src2))]>, TB;
// Note that these instructions don't need FastBTMem because that
// only applies when the other operand is in a register. When it's
// an immediate, bt is still fast.
def BT16mi8 : Ii8<0xBA, MRM4m, (outs), (ins i16mem:$src1, i16i8imm:$src2),
"bt{w}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt (loadi16 addr:$src1), i16immSExt8:$src2))
]>, OpSize, TB;
def BT32mi8 : Ii8<0xBA, MRM4m, (outs), (ins i32mem:$src1, i32i8imm:$src2),
"bt{l}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt (loadi32 addr:$src1), i32immSExt8:$src2))
]>, TB;
def BT64mi8 : RIi8<0xBA, MRM4m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
"bt{q}\t{$src2, $src1|$src1, $src2}",
[(set EFLAGS, (X86bt (loadi64 addr:$src1),
i64immSExt8:$src2))]>, TB;
def BTC16rr : I<0xBB, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2),
"btc{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTC32rr : I<0xBB, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2),
"btc{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTC64rr : RI<0xBB, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
"btc{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTC16mr : I<0xBB, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
"btc{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTC32mr : I<0xBB, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
"btc{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTC64mr : RI<0xBB, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
"btc{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTC16ri8 : Ii8<0xBA, MRM7r, (outs), (ins GR16:$src1, i16i8imm:$src2),
"btc{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTC32ri8 : Ii8<0xBA, MRM7r, (outs), (ins GR32:$src1, i32i8imm:$src2),
"btc{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTC64ri8 : RIi8<0xBA, MRM7r, (outs), (ins GR64:$src1, i64i8imm:$src2),
"btc{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTC16mi8 : Ii8<0xBA, MRM7m, (outs), (ins i16mem:$src1, i16i8imm:$src2),
"btc{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTC32mi8 : Ii8<0xBA, MRM7m, (outs), (ins i32mem:$src1, i32i8imm:$src2),
"btc{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTC64mi8 : RIi8<0xBA, MRM7m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
"btc{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTR16rr : I<0xB3, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2),
"btr{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTR32rr : I<0xB3, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2),
"btr{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTR64rr : RI<0xB3, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
"btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTR16mr : I<0xB3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
"btr{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTR32mr : I<0xB3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
"btr{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTR64mr : RI<0xB3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
"btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTR16ri8 : Ii8<0xBA, MRM6r, (outs), (ins GR16:$src1, i16i8imm:$src2),
"btr{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTR32ri8 : Ii8<0xBA, MRM6r, (outs), (ins GR32:$src1, i32i8imm:$src2),
"btr{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTR64ri8 : RIi8<0xBA, MRM6r, (outs), (ins GR64:$src1, i64i8imm:$src2),
"btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTR16mi8 : Ii8<0xBA, MRM6m, (outs), (ins i16mem:$src1, i16i8imm:$src2),
"btr{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTR32mi8 : Ii8<0xBA, MRM6m, (outs), (ins i32mem:$src1, i32i8imm:$src2),
"btr{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTR64mi8 : RIi8<0xBA, MRM6m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
"btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTS16rr : I<0xAB, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2),
"bts{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTS32rr : I<0xAB, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2),
"bts{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTS64rr : RI<0xAB, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
"bts{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTS16mr : I<0xAB, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2),
"bts{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTS32mr : I<0xAB, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2),
"bts{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTS64mr : RI<0xAB, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
"bts{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTS16ri8 : Ii8<0xBA, MRM5r, (outs), (ins GR16:$src1, i16i8imm:$src2),
"bts{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTS32ri8 : Ii8<0xBA, MRM5r, (outs), (ins GR32:$src1, i32i8imm:$src2),
"bts{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTS64ri8 : RIi8<0xBA, MRM5r, (outs), (ins GR64:$src1, i64i8imm:$src2),
"bts{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTS16mi8 : Ii8<0xBA, MRM5m, (outs), (ins i16mem:$src1, i16i8imm:$src2),
"bts{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB;
def BTS32mi8 : Ii8<0xBA, MRM5m, (outs), (ins i32mem:$src1, i32i8imm:$src2),
"bts{l}\t{$src2, $src1|$src1, $src2}", []>, TB;
def BTS64mi8 : RIi8<0xBA, MRM5m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
"bts{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
} // Defs = [EFLAGS]
//===----------------------------------------------------------------------===//
// Atomic support
//
// Atomic swap. These are just normal xchg instructions. But since a memory
// operand is referenced, the atomicity is ensured.
let Constraints = "$val = $dst" in {
def XCHG8rm : I<0x86, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr),
"xchg{b}\t{$val, $ptr|$ptr, $val}",
[(set GR8:$dst, (atomic_swap_8 addr:$ptr, GR8:$val))]>;
def XCHG16rm : I<0x87, MRMSrcMem, (outs GR16:$dst),(ins GR16:$val, i16mem:$ptr),
"xchg{w}\t{$val, $ptr|$ptr, $val}",
[(set GR16:$dst, (atomic_swap_16 addr:$ptr, GR16:$val))]>,
OpSize;
def XCHG32rm : I<0x87, MRMSrcMem, (outs GR32:$dst),(ins GR32:$val, i32mem:$ptr),
"xchg{l}\t{$val, $ptr|$ptr, $val}",
[(set GR32:$dst, (atomic_swap_32 addr:$ptr, GR32:$val))]>;
def XCHG64rm : RI<0x87, MRMSrcMem, (outs GR64:$dst),(ins GR64:$val,i64mem:$ptr),
"xchg{q}\t{$val, $ptr|$ptr, $val}",
[(set GR64:$dst, (atomic_swap_64 addr:$ptr, GR64:$val))]>;
def XCHG8rr : I<0x86, MRMSrcReg, (outs GR8:$dst), (ins GR8:$val, GR8:$src),
"xchg{b}\t{$val, $src|$src, $val}", []>;
def XCHG16rr : I<0x87, MRMSrcReg, (outs GR16:$dst), (ins GR16:$val, GR16:$src),
"xchg{w}\t{$val, $src|$src, $val}", []>, OpSize;
def XCHG32rr : I<0x87, MRMSrcReg, (outs GR32:$dst), (ins GR32:$val, GR32:$src),
"xchg{l}\t{$val, $src|$src, $val}", []>;
def XCHG64rr : RI<0x87, MRMSrcReg, (outs GR64:$dst), (ins GR64:$val,GR64:$src),
"xchg{q}\t{$val, $src|$src, $val}", []>;
}
def XCHG16ar : I<0x90, AddRegFrm, (outs), (ins GR16:$src),
"xchg{w}\t{$src, %ax|AX, $src}", []>, OpSize;
def XCHG32ar : I<0x90, AddRegFrm, (outs), (ins GR32:$src),
"xchg{l}\t{$src, %eax|EAX, $src}", []>, Requires<[In32BitMode]>;
// Uses GR32_NOAX in 64-bit mode to prevent encoding using the 0x90 NOP encoding.
// xchg %eax, %eax needs to clear upper 32-bits of RAX so is not a NOP.
def XCHG32ar64 : I<0x90, AddRegFrm, (outs), (ins GR32_NOAX:$src),
"xchg{l}\t{$src, %eax|EAX, $src}", []>, Requires<[In64BitMode]>;
def XCHG64ar : RI<0x90, AddRegFrm, (outs), (ins GR64:$src),
"xchg{q}\t{$src, %rax|RAX, $src}", []>;
def XADD8rr : I<0xC0, MRMDestReg, (outs GR8:$dst), (ins GR8:$src),
"xadd{b}\t{$src, $dst|$dst, $src}", []>, TB;
def XADD16rr : I<0xC1, MRMDestReg, (outs GR16:$dst), (ins GR16:$src),
"xadd{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
def XADD32rr : I<0xC1, MRMDestReg, (outs GR32:$dst), (ins GR32:$src),
"xadd{l}\t{$src, $dst|$dst, $src}", []>, TB;
def XADD64rr : RI<0xC1, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
"xadd{q}\t{$src, $dst|$dst, $src}", []>, TB;
let mayLoad = 1, mayStore = 1 in {
def XADD8rm : I<0xC0, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src),
"xadd{b}\t{$src, $dst|$dst, $src}", []>, TB;
def XADD16rm : I<0xC1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
"xadd{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
def XADD32rm : I<0xC1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
"xadd{l}\t{$src, $dst|$dst, $src}", []>, TB;
def XADD64rm : RI<0xC1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
"xadd{q}\t{$src, $dst|$dst, $src}", []>, TB;
}
def CMPXCHG8rr : I<0xB0, MRMDestReg, (outs GR8:$dst), (ins GR8:$src),
"cmpxchg{b}\t{$src, $dst|$dst, $src}", []>, TB;
def CMPXCHG16rr : I<0xB1, MRMDestReg, (outs GR16:$dst), (ins GR16:$src),
"cmpxchg{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
def CMPXCHG32rr : I<0xB1, MRMDestReg, (outs GR32:$dst), (ins GR32:$src),
"cmpxchg{l}\t{$src, $dst|$dst, $src}", []>, TB;
def CMPXCHG64rr : RI<0xB1, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
"cmpxchg{q}\t{$src, $dst|$dst, $src}", []>, TB;
let mayLoad = 1, mayStore = 1 in {
def CMPXCHG8rm : I<0xB0, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src),
"cmpxchg{b}\t{$src, $dst|$dst, $src}", []>, TB;
def CMPXCHG16rm : I<0xB1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
"cmpxchg{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize;
def CMPXCHG32rm : I<0xB1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
"cmpxchg{l}\t{$src, $dst|$dst, $src}", []>, TB;
def CMPXCHG64rm : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
"cmpxchg{q}\t{$src, $dst|$dst, $src}", []>, TB;
}
let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in
def CMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$dst),
"cmpxchg8b\t$dst", []>, TB;
let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX] in
def CMPXCHG16B : RI<0xC7, MRM1m, (outs), (ins i128mem:$dst),
"cmpxchg16b\t$dst", []>, TB, Requires<[HasCmpxchg16b]>;
// Lock instruction prefix
def LOCK_PREFIX : I<0xF0, RawFrm, (outs), (ins), "lock", []>;
// Rex64 instruction prefix
def REX64_PREFIX : I<0x48, RawFrm, (outs), (ins), "rex64", []>;
// Data16 instruction prefix
def DATA16_PREFIX : I<0x66, RawFrm, (outs), (ins), "data16", []>;
// Repeat string operation instruction prefixes
// These uses the DF flag in the EFLAGS register to inc or dec ECX
let Defs = [ECX], Uses = [ECX,EFLAGS] in {
// Repeat (used with INS, OUTS, MOVS, LODS and STOS)
def REP_PREFIX : I<0xF3, RawFrm, (outs), (ins), "rep", []>;
// Repeat while not equal (used with CMPS and SCAS)
def REPNE_PREFIX : I<0xF2, RawFrm, (outs), (ins), "repne", []>;
}
// String manipulation instructions
def LODSB : I<0xAC, RawFrm, (outs), (ins), "lodsb", []>;
def LODSW : I<0xAD, RawFrm, (outs), (ins), "lodsw", []>, OpSize;
def LODSD : I<0xAD, RawFrm, (outs), (ins), "lods{l|d}", []>;
def LODSQ : RI<0xAD, RawFrm, (outs), (ins), "lodsq", []>;
def OUTSB : I<0x6E, RawFrm, (outs), (ins), "outsb", []>;
def OUTSW : I<0x6F, RawFrm, (outs), (ins), "outsw", []>, OpSize;
def OUTSD : I<0x6F, RawFrm, (outs), (ins), "outs{l|d}", []>;
// Flag instructions
def CLC : I<0xF8, RawFrm, (outs), (ins), "clc", []>;
def STC : I<0xF9, RawFrm, (outs), (ins), "stc", []>;
def CLI : I<0xFA, RawFrm, (outs), (ins), "cli", []>;
def STI : I<0xFB, RawFrm, (outs), (ins), "sti", []>;
def CLD : I<0xFC, RawFrm, (outs), (ins), "cld", []>;
def STD : I<0xFD, RawFrm, (outs), (ins), "std", []>;
def CMC : I<0xF5, RawFrm, (outs), (ins), "cmc", []>;
def CLTS : I<0x06, RawFrm, (outs), (ins), "clts", []>, TB;
// Table lookup instructions
def XLAT : I<0xD7, RawFrm, (outs), (ins), "xlatb", []>;
// ASCII Adjust After Addition
// sets AL, AH and CF and AF of EFLAGS and uses AL and AF of EFLAGS
def AAA : I<0x37, RawFrm, (outs), (ins), "aaa", []>, Requires<[In32BitMode]>;
// ASCII Adjust AX Before Division
// sets AL, AH and EFLAGS and uses AL and AH
def AAD8i8 : Ii8<0xD5, RawFrm, (outs), (ins i8imm:$src),
"aad\t$src", []>, Requires<[In32BitMode]>;
// ASCII Adjust AX After Multiply
// sets AL, AH and EFLAGS and uses AL
def AAM8i8 : Ii8<0xD4, RawFrm, (outs), (ins i8imm:$src),
"aam\t$src", []>, Requires<[In32BitMode]>;
// ASCII Adjust AL After Subtraction - sets
// sets AL, AH and CF and AF of EFLAGS and uses AL and AF of EFLAGS
def AAS : I<0x3F, RawFrm, (outs), (ins), "aas", []>, Requires<[In32BitMode]>;
// Decimal Adjust AL after Addition
// sets AL, CF and AF of EFLAGS and uses AL, CF and AF of EFLAGS
def DAA : I<0x27, RawFrm, (outs), (ins), "daa", []>, Requires<[In32BitMode]>;
// Decimal Adjust AL after Subtraction
// sets AL, CF and AF of EFLAGS and uses AL, CF and AF of EFLAGS
def DAS : I<0x2F, RawFrm, (outs), (ins), "das", []>, Requires<[In32BitMode]>;
// Check Array Index Against Bounds
def BOUNDS16rm : I<0x62, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"bound\t{$src, $dst|$dst, $src}", []>, OpSize,
Requires<[In32BitMode]>;
def BOUNDS32rm : I<0x62, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"bound\t{$src, $dst|$dst, $src}", []>,
Requires<[In32BitMode]>;
// Adjust RPL Field of Segment Selector
def ARPL16rr : I<0x63, MRMDestReg, (outs GR16:$src), (ins GR16:$dst),
"arpl\t{$src, $dst|$dst, $src}", []>, Requires<[In32BitMode]>;
def ARPL16mr : I<0x63, MRMSrcMem, (outs GR16:$src), (ins i16mem:$dst),
"arpl\t{$src, $dst|$dst, $src}", []>, Requires<[In32BitMode]>;
//===----------------------------------------------------------------------===//
// MOVBE Instructions
//
let Predicates = [HasMOVBE] in {
def MOVBE16rm : I<0xF0, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"movbe{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, (bswap (loadi16 addr:$src)))]>, OpSize, T8;
def MOVBE32rm : I<0xF0, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"movbe{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (bswap (loadi32 addr:$src)))]>, T8;
def MOVBE64rm : RI<0xF0, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"movbe{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (bswap (loadi64 addr:$src)))]>, T8;
def MOVBE16mr : I<0xF1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src),
"movbe{w}\t{$src, $dst|$dst, $src}",
[(store (bswap GR16:$src), addr:$dst)]>, OpSize, T8;
def MOVBE32mr : I<0xF1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
"movbe{l}\t{$src, $dst|$dst, $src}",
[(store (bswap GR32:$src), addr:$dst)]>, T8;
def MOVBE64mr : RI<0xF1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
"movbe{q}\t{$src, $dst|$dst, $src}",
[(store (bswap GR64:$src), addr:$dst)]>, T8;
}
//===----------------------------------------------------------------------===//
// RDRAND Instruction
//
let Predicates = [HasRDRAND], Defs = [EFLAGS] in {
def RDRAND16r : I<0xC7, MRM6r, (outs GR16:$dst), (ins),
"rdrand{w}\t$dst", []>, OpSize, TB;
def RDRAND32r : I<0xC7, MRM6r, (outs GR32:$dst), (ins),
"rdrand{l}\t$dst", []>, TB;
def RDRAND64r : RI<0xC7, MRM6r, (outs GR64:$dst), (ins),
"rdrand{q}\t$dst", []>, TB;
}
//===----------------------------------------------------------------------===//
// LZCNT Instruction
//
let Predicates = [HasLZCNT], Defs = [EFLAGS] in {
def LZCNT16rr : I<0xBD, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"lzcnt{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, (ctlz GR16:$src)), (implicit EFLAGS)]>, XS,
OpSize;
def LZCNT16rm : I<0xBD, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"lzcnt{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, (ctlz (loadi16 addr:$src))),
(implicit EFLAGS)]>, XS, OpSize;
def LZCNT32rr : I<0xBD, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"lzcnt{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (ctlz GR32:$src)), (implicit EFLAGS)]>, XS;
def LZCNT32rm : I<0xBD, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"lzcnt{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (ctlz (loadi32 addr:$src))),
(implicit EFLAGS)]>, XS;
def LZCNT64rr : RI<0xBD, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"lzcnt{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (ctlz GR64:$src)), (implicit EFLAGS)]>,
XS;
def LZCNT64rm : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"lzcnt{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (ctlz (loadi64 addr:$src))),
(implicit EFLAGS)]>, XS;
}
//===----------------------------------------------------------------------===//
// BMI Instructions
//
let Predicates = [HasBMI], Defs = [EFLAGS] in {
def TZCNT16rr : I<0xBC, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
"tzcnt{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, (cttz GR16:$src)), (implicit EFLAGS)]>, XS,
OpSize;
def TZCNT16rm : I<0xBC, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
"tzcnt{w}\t{$src, $dst|$dst, $src}",
[(set GR16:$dst, (cttz (loadi16 addr:$src))),
(implicit EFLAGS)]>, XS, OpSize;
def TZCNT32rr : I<0xBC, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
"tzcnt{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (cttz GR32:$src)), (implicit EFLAGS)]>, XS;
def TZCNT32rm : I<0xBC, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
"tzcnt{l}\t{$src, $dst|$dst, $src}",
[(set GR32:$dst, (cttz (loadi32 addr:$src))),
(implicit EFLAGS)]>, XS;
def TZCNT64rr : RI<0xBC, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"tzcnt{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (cttz GR64:$src)), (implicit EFLAGS)]>,
XS;
def TZCNT64rm : RI<0xBC, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"tzcnt{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (cttz (loadi64 addr:$src))),
(implicit EFLAGS)]>, XS;
}
multiclass bmi_bls<string mnemonic, Format RegMRM, Format MemMRM,
RegisterClass RC, X86MemOperand x86memop, SDNode OpNode,
PatFrag ld_frag> {
def rr : I<0xF3, RegMRM, (outs RC:$dst), (ins RC:$src),
!strconcat(mnemonic, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, EFLAGS, (OpNode RC:$src))]>, T8, VEX_4V;
def rm : I<0xF3, MemMRM, (outs RC:$dst), (ins x86memop:$src),
!strconcat(mnemonic, "\t{$src, $dst|$dst, $src}"),
[(set RC:$dst, EFLAGS, (OpNode (ld_frag addr:$src)))]>,
T8, VEX_4V;
}
let Predicates = [HasBMI], Defs = [EFLAGS] in {
defm BLSR32 : bmi_bls<"blsr{l}", MRM1r, MRM1m, GR32, i32mem,
X86blsr_flag, loadi32>;
defm BLSR64 : bmi_bls<"blsr{q}", MRM1r, MRM1m, GR64, i64mem,
X86blsr_flag, loadi64>, VEX_W;
defm BLSMSK32 : bmi_bls<"blsmsk{l}", MRM2r, MRM2m, GR32, i32mem,
X86blsmsk_flag, loadi32>;
defm BLSMSK64 : bmi_bls<"blsmsk{q}", MRM2r, MRM2m, GR64, i64mem,
X86blsmsk_flag, loadi64>, VEX_W;
defm BLSI32 : bmi_bls<"blsi{l}", MRM3r, MRM3m, GR32, i32mem,
X86blsi_flag, loadi32>;
defm BLSI64 : bmi_bls<"blsi{q}", MRM3r, MRM3m, GR64, i64mem,
X86blsi_flag, loadi64>, VEX_W;
}
multiclass bmi_bextr_bzhi<bits<8> opc, string mnemonic, RegisterClass RC,
X86MemOperand x86memop, Intrinsic Int,
PatFrag ld_frag> {
def rr : I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (Int RC:$src1, RC:$src2)), (implicit EFLAGS)]>,
T8, VEX_4VOp3;
def rm : I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src1, RC:$src2),
!strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (Int (ld_frag addr:$src1), RC:$src2)),
(implicit EFLAGS)]>, T8, VEX_4VOp3;
}
let Predicates = [HasBMI], Defs = [EFLAGS] in {
defm BEXTR32 : bmi_bextr_bzhi<0xF7, "bextr{l}", GR32, i32mem,
int_x86_bmi_bextr_32, loadi32>;
defm BEXTR64 : bmi_bextr_bzhi<0xF7, "bextr{q}", GR64, i64mem,
int_x86_bmi_bextr_64, loadi64>, VEX_W;
}
let Predicates = [HasBMI2], Defs = [EFLAGS] in {
defm BZHI32 : bmi_bextr_bzhi<0xF5, "bzhi{l}", GR32, i32mem,
int_x86_bmi_bzhi_32, loadi32>;
defm BZHI64 : bmi_bextr_bzhi<0xF5, "bzhi{q}", GR64, i64mem,
int_x86_bmi_bzhi_64, loadi64>, VEX_W;
}
multiclass bmi_pdep_pext<string mnemonic, RegisterClass RC,
X86MemOperand x86memop, Intrinsic Int,
PatFrag ld_frag> {
def rr : I<0xF5, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
!strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (Int RC:$src1, RC:$src2))]>,
VEX_4V;
def rm : I<0xF5, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
!strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set RC:$dst, (Int RC:$src1, (ld_frag addr:$src2)))]>, VEX_4V;
}
let Predicates = [HasBMI2] in {
defm PDEP32 : bmi_pdep_pext<"pdep{l}", GR32, i32mem,
int_x86_bmi_pdep_32, loadi32>, T8XD;
defm PDEP64 : bmi_pdep_pext<"pdep{q}", GR64, i64mem,
int_x86_bmi_pdep_64, loadi64>, T8XD, VEX_W;
defm PEXT32 : bmi_pdep_pext<"pext{l}", GR32, i32mem,
int_x86_bmi_pext_32, loadi32>, T8XS;
defm PEXT64 : bmi_pdep_pext<"pext{q}", GR64, i64mem,
int_x86_bmi_pext_64, loadi64>, T8XS, VEX_W;
}
//===----------------------------------------------------------------------===//
// Subsystems.
//===----------------------------------------------------------------------===//
include "X86InstrArithmetic.td"
include "X86InstrCMovSetCC.td"
include "X86InstrExtension.td"
include "X86InstrControl.td"
include "X86InstrShiftRotate.td"
// X87 Floating Point Stack.
include "X86InstrFPStack.td"
// SIMD support (SSE, MMX and AVX)
include "X86InstrFragmentsSIMD.td"
// FMA - Fused Multiply-Add support (requires FMA)
include "X86InstrFMA.td"
// XOP
include "X86InstrXOP.td"
// SSE, MMX and 3DNow! vector support.
include "X86InstrSSE.td"
include "X86InstrMMX.td"
include "X86Instr3DNow.td"
include "X86InstrVMX.td"
include "X86InstrSVM.td"
// System instructions.
include "X86InstrSystem.td"
// Compiler Pseudo Instructions and Pat Patterns
include "X86InstrCompiler.td"
//===----------------------------------------------------------------------===//
// Assembler Mnemonic Aliases
//===----------------------------------------------------------------------===//
def : MnemonicAlias<"call", "calll">, Requires<[In32BitMode]>;
def : MnemonicAlias<"call", "callq">, Requires<[In64BitMode]>;
def : MnemonicAlias<"cbw", "cbtw">;
def : MnemonicAlias<"cwde", "cwtl">;
def : MnemonicAlias<"cwd", "cwtd">;
def : MnemonicAlias<"cdq", "cltd">;
def : MnemonicAlias<"cdqe", "cltq">;
def : MnemonicAlias<"cqo", "cqto">;
// lret maps to lretl, it is not ambiguous with lretq.
def : MnemonicAlias<"lret", "lretl">;
def : MnemonicAlias<"leavel", "leave">, Requires<[In32BitMode]>;
def : MnemonicAlias<"leaveq", "leave">, Requires<[In64BitMode]>;
def : MnemonicAlias<"loopz", "loope">;
def : MnemonicAlias<"loopnz", "loopne">;
def : MnemonicAlias<"pop", "popl">, Requires<[In32BitMode]>;
def : MnemonicAlias<"pop", "popq">, Requires<[In64BitMode]>;
def : MnemonicAlias<"popf", "popfl">, Requires<[In32BitMode]>;
def : MnemonicAlias<"popf", "popfq">, Requires<[In64BitMode]>;
def : MnemonicAlias<"popfd", "popfl">;
// FIXME: This is wrong for "push reg". "push %bx" should turn into pushw in
// all modes. However: "push (addr)" and "push $42" should default to
// pushl/pushq depending on the current mode. Similar for "pop %bx"
def : MnemonicAlias<"push", "pushl">, Requires<[In32BitMode]>;
def : MnemonicAlias<"push", "pushq">, Requires<[In64BitMode]>;
def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
def : MnemonicAlias<"pushfd", "pushfl">;
def : MnemonicAlias<"repe", "rep">;
def : MnemonicAlias<"repz", "rep">;
def : MnemonicAlias<"repnz", "repne">;
def : MnemonicAlias<"retl", "ret">, Requires<[In32BitMode]>;
def : MnemonicAlias<"retq", "ret">, Requires<[In64BitMode]>;
def : MnemonicAlias<"salb", "shlb">;
def : MnemonicAlias<"salw", "shlw">;
def : MnemonicAlias<"sall", "shll">;
def : MnemonicAlias<"salq", "shlq">;
def : MnemonicAlias<"smovb", "movsb">;
def : MnemonicAlias<"smovw", "movsw">;
def : MnemonicAlias<"smovl", "movsl">;
def : MnemonicAlias<"smovq", "movsq">;
def : MnemonicAlias<"ud2a", "ud2">;
def : MnemonicAlias<"verrw", "verr">;
// System instruction aliases.
def : MnemonicAlias<"iret", "iretl">;
def : MnemonicAlias<"sysret", "sysretl">;
def : MnemonicAlias<"sysexit", "sysexitl">;
def : MnemonicAlias<"lgdtl", "lgdt">, Requires<[In32BitMode]>;
def : MnemonicAlias<"lgdtq", "lgdt">, Requires<[In64BitMode]>;
def : MnemonicAlias<"lidtl", "lidt">, Requires<[In32BitMode]>;
def : MnemonicAlias<"lidtq", "lidt">, Requires<[In64BitMode]>;
def : MnemonicAlias<"sgdtl", "sgdt">, Requires<[In32BitMode]>;
def : MnemonicAlias<"sgdtq", "sgdt">, Requires<[In64BitMode]>;
def : MnemonicAlias<"sidtl", "sidt">, Requires<[In32BitMode]>;
def : MnemonicAlias<"sidtq", "sidt">, Requires<[In64BitMode]>;
// Floating point stack aliases.
def : MnemonicAlias<"fcmovz", "fcmove">;
def : MnemonicAlias<"fcmova", "fcmovnbe">;
def : MnemonicAlias<"fcmovnae", "fcmovb">;
def : MnemonicAlias<"fcmovna", "fcmovbe">;
def : MnemonicAlias<"fcmovae", "fcmovnb">;
def : MnemonicAlias<"fcomip", "fcompi">;
def : MnemonicAlias<"fildq", "fildll">;
def : MnemonicAlias<"fistpq", "fistpll">;
def : MnemonicAlias<"fisttpq", "fisttpll">;
def : MnemonicAlias<"fldcww", "fldcw">;
def : MnemonicAlias<"fnstcww", "fnstcw">;
def : MnemonicAlias<"fnstsww", "fnstsw">;
def : MnemonicAlias<"fucomip", "fucompi">;
def : MnemonicAlias<"fwait", "wait">;
class CondCodeAlias<string Prefix,string Suffix, string OldCond, string NewCond>
: MnemonicAlias<!strconcat(Prefix, OldCond, Suffix),
!strconcat(Prefix, NewCond, Suffix)>;
/// IntegerCondCodeMnemonicAlias - This multiclass defines a bunch of
/// MnemonicAlias's that canonicalize the condition code in a mnemonic, for
/// example "setz" -> "sete".
multiclass IntegerCondCodeMnemonicAlias<string Prefix, string Suffix> {
def C : CondCodeAlias<Prefix, Suffix, "c", "b">; // setc -> setb
def Z : CondCodeAlias<Prefix, Suffix, "z" , "e">; // setz -> sete
def NA : CondCodeAlias<Prefix, Suffix, "na", "be">; // setna -> setbe
def NB : CondCodeAlias<Prefix, Suffix, "nb", "ae">; // setnb -> setae
def NC : CondCodeAlias<Prefix, Suffix, "nc", "ae">; // setnc -> setae
def NG : CondCodeAlias<Prefix, Suffix, "ng", "le">; // setng -> setle
def NL : CondCodeAlias<Prefix, Suffix, "nl", "ge">; // setnl -> setge
def NZ : CondCodeAlias<Prefix, Suffix, "nz", "ne">; // setnz -> setne
def PE : CondCodeAlias<Prefix, Suffix, "pe", "p">; // setpe -> setp
def PO : CondCodeAlias<Prefix, Suffix, "po", "np">; // setpo -> setnp
def NAE : CondCodeAlias<Prefix, Suffix, "nae", "b">; // setnae -> setb
def NBE : CondCodeAlias<Prefix, Suffix, "nbe", "a">; // setnbe -> seta
def NGE : CondCodeAlias<Prefix, Suffix, "nge", "l">; // setnge -> setl
def NLE : CondCodeAlias<Prefix, Suffix, "nle", "g">; // setnle -> setg
}
// Aliases for set<CC>
defm : IntegerCondCodeMnemonicAlias<"set", "">;
// Aliases for j<CC>
defm : IntegerCondCodeMnemonicAlias<"j", "">;
// Aliases for cmov<CC>{w,l,q}
defm : IntegerCondCodeMnemonicAlias<"cmov", "w">;
defm : IntegerCondCodeMnemonicAlias<"cmov", "l">;
defm : IntegerCondCodeMnemonicAlias<"cmov", "q">;
//===----------------------------------------------------------------------===//
// Assembler Instruction Aliases
//===----------------------------------------------------------------------===//
// aad/aam default to base 10 if no operand is specified.
def : InstAlias<"aad", (AAD8i8 10)>;
def : InstAlias<"aam", (AAM8i8 10)>;
// Disambiguate the mem/imm form of bt-without-a-suffix as btl.
def : InstAlias<"bt $imm, $mem", (BT32mi8 i32mem:$mem, i32i8imm:$imm)>;
// clr aliases.
def : InstAlias<"clrb $reg", (XOR8rr GR8 :$reg, GR8 :$reg)>;
def : InstAlias<"clrw $reg", (XOR16rr GR16:$reg, GR16:$reg)>;
def : InstAlias<"clrl $reg", (XOR32rr GR32:$reg, GR32:$reg)>;
def : InstAlias<"clrq $reg", (XOR64rr GR64:$reg, GR64:$reg)>;
// div and idiv aliases for explicit A register.
def : InstAlias<"divb $src, %al", (DIV8r GR8 :$src)>;
def : InstAlias<"divw $src, %ax", (DIV16r GR16:$src)>;
def : InstAlias<"divl $src, %eax", (DIV32r GR32:$src)>;
def : InstAlias<"divq $src, %rax", (DIV64r GR64:$src)>;
def : InstAlias<"divb $src, %al", (DIV8m i8mem :$src)>;
def : InstAlias<"divw $src, %ax", (DIV16m i16mem:$src)>;
def : InstAlias<"divl $src, %eax", (DIV32m i32mem:$src)>;
def : InstAlias<"divq $src, %rax", (DIV64m i64mem:$src)>;
def : InstAlias<"idivb $src, %al", (IDIV8r GR8 :$src)>;
def : InstAlias<"idivw $src, %ax", (IDIV16r GR16:$src)>;
def : InstAlias<"idivl $src, %eax", (IDIV32r GR32:$src)>;
def : InstAlias<"idivq $src, %rax", (IDIV64r GR64:$src)>;
def : InstAlias<"idivb $src, %al", (IDIV8m i8mem :$src)>;
def : InstAlias<"idivw $src, %ax", (IDIV16m i16mem:$src)>;
def : InstAlias<"idivl $src, %eax", (IDIV32m i32mem:$src)>;
def : InstAlias<"idivq $src, %rax", (IDIV64m i64mem:$src)>;
// Various unary fpstack operations default to operating on on ST1.
// For example, "fxch" -> "fxch %st(1)"
def : InstAlias<"faddp", (ADD_FPrST0 ST1), 0>;
def : InstAlias<"fsubp", (SUBR_FPrST0 ST1)>;
def : InstAlias<"fsubrp", (SUB_FPrST0 ST1)>;
def : InstAlias<"fmulp", (MUL_FPrST0 ST1)>;
def : InstAlias<"fdivp", (DIVR_FPrST0 ST1)>;
def : InstAlias<"fdivrp", (DIV_FPrST0 ST1)>;
def : InstAlias<"fxch", (XCH_F ST1)>;
def : InstAlias<"fcomi", (COM_FIr ST1)>;
def : InstAlias<"fcompi", (COM_FIPr ST1)>;
def : InstAlias<"fucom", (UCOM_Fr ST1)>;
def : InstAlias<"fucomp", (UCOM_FPr ST1)>;
def : InstAlias<"fucomi", (UCOM_FIr ST1)>;
def : InstAlias<"fucompi", (UCOM_FIPr ST1)>;
// Handle fmul/fadd/fsub/fdiv instructions with explicitly written st(0) op.
// For example, "fadd %st(4), %st(0)" -> "fadd %st(4)". We also disambiguate
// instructions like "fadd %st(0), %st(0)" as "fadd %st(0)" for consistency with
// gas.
multiclass FpUnaryAlias<string Mnemonic, Instruction Inst, bit EmitAlias = 1> {
def : InstAlias<!strconcat(Mnemonic, " $op, %st(0)"),
(Inst RST:$op), EmitAlias>;
def : InstAlias<!strconcat(Mnemonic, " %st(0), %st(0)"),
(Inst ST0), EmitAlias>;
}
defm : FpUnaryAlias<"fadd", ADD_FST0r>;
defm : FpUnaryAlias<"faddp", ADD_FPrST0, 0>;
defm : FpUnaryAlias<"fsub", SUB_FST0r>;
defm : FpUnaryAlias<"fsubp", SUBR_FPrST0>;
defm : FpUnaryAlias<"fsubr", SUBR_FST0r>;
defm : FpUnaryAlias<"fsubrp", SUB_FPrST0>;
defm : FpUnaryAlias<"fmul", MUL_FST0r>;
defm : FpUnaryAlias<"fmulp", MUL_FPrST0>;
defm : FpUnaryAlias<"fdiv", DIV_FST0r>;
defm : FpUnaryAlias<"fdivp", DIVR_FPrST0>;
defm : FpUnaryAlias<"fdivr", DIVR_FST0r>;
defm : FpUnaryAlias<"fdivrp", DIV_FPrST0>;
defm : FpUnaryAlias<"fcomi", COM_FIr, 0>;
defm : FpUnaryAlias<"fucomi", UCOM_FIr, 0>;
defm : FpUnaryAlias<"fcompi", COM_FIPr>;
defm : FpUnaryAlias<"fucompi", UCOM_FIPr>;
// Handle "f{mulp,addp} st(0), $op" the same as "f{mulp,addp} $op", since they
// commute. We also allow fdiv[r]p/fsubrp even though they don't commute,
// solely because gas supports it.
def : InstAlias<"faddp %st(0), $op", (ADD_FPrST0 RST:$op), 0>;
def : InstAlias<"fmulp %st(0), $op", (MUL_FPrST0 RST:$op)>;
def : InstAlias<"fsubp %st(0), $op", (SUBR_FPrST0 RST:$op)>;
def : InstAlias<"fsubrp %st(0), $op", (SUB_FPrST0 RST:$op)>;
def : InstAlias<"fdivp %st(0), $op", (DIVR_FPrST0 RST:$op)>;
def : InstAlias<"fdivrp %st(0), $op", (DIV_FPrST0 RST:$op)>;
// We accept "fnstsw %eax" even though it only writes %ax.
def : InstAlias<"fnstsw %eax", (FNSTSW8r)>;
def : InstAlias<"fnstsw %al" , (FNSTSW8r)>;
def : InstAlias<"fnstsw" , (FNSTSW8r)>;
// lcall and ljmp aliases. This seems to be an odd mapping in 64-bit mode, but
// this is compatible with what GAS does.
def : InstAlias<"lcall $seg, $off", (FARCALL32i i32imm:$off, i16imm:$seg)>;
def : InstAlias<"ljmp $seg, $off", (FARJMP32i i32imm:$off, i16imm:$seg)>;
def : InstAlias<"lcall *$dst", (FARCALL32m opaque48mem:$dst)>;
def : InstAlias<"ljmp *$dst", (FARJMP32m opaque48mem:$dst)>;
// "imul <imm>, B" is an alias for "imul <imm>, B, B".
def : InstAlias<"imulw $imm, $r", (IMUL16rri GR16:$r, GR16:$r, i16imm:$imm)>;
def : InstAlias<"imulw $imm, $r", (IMUL16rri8 GR16:$r, GR16:$r, i16i8imm:$imm)>;
def : InstAlias<"imull $imm, $r", (IMUL32rri GR32:$r, GR32:$r, i32imm:$imm)>;
def : InstAlias<"imull $imm, $r", (IMUL32rri8 GR32:$r, GR32:$r, i32i8imm:$imm)>;
def : InstAlias<"imulq $imm, $r",(IMUL64rri32 GR64:$r, GR64:$r,i64i32imm:$imm)>;
def : InstAlias<"imulq $imm, $r", (IMUL64rri8 GR64:$r, GR64:$r, i64i8imm:$imm)>;
// inb %dx -> inb %al, %dx
def : InstAlias<"inb %dx", (IN8rr)>;
def : InstAlias<"inw %dx", (IN16rr)>;
def : InstAlias<"inl %dx", (IN32rr)>;
def : InstAlias<"inb $port", (IN8ri i8imm:$port)>;
def : InstAlias<"inw $port", (IN16ri i8imm:$port)>;
def : InstAlias<"inl $port", (IN32ri i8imm:$port)>;
// jmp and call aliases for lcall and ljmp. jmp $42,$5 -> ljmp
def : InstAlias<"call $seg, $off", (FARCALL32i i32imm:$off, i16imm:$seg)>;
def : InstAlias<"jmp $seg, $off", (FARJMP32i i32imm:$off, i16imm:$seg)>;
def : InstAlias<"callw $seg, $off", (FARCALL16i i16imm:$off, i16imm:$seg)>;
def : InstAlias<"jmpw $seg, $off", (FARJMP16i i16imm:$off, i16imm:$seg)>;
def : InstAlias<"calll $seg, $off", (FARCALL32i i32imm:$off, i16imm:$seg)>;
def : InstAlias<"jmpl $seg, $off", (FARJMP32i i32imm:$off, i16imm:$seg)>;
// Force mov without a suffix with a segment and mem to prefer the 'l' form of
// the move. All segment/mem forms are equivalent, this has the shortest
// encoding.
def : InstAlias<"mov $mem, $seg", (MOV32sm SEGMENT_REG:$seg, i32mem:$mem)>;
def : InstAlias<"mov $seg, $mem", (MOV32ms i32mem:$mem, SEGMENT_REG:$seg)>;
// Match 'movq <largeimm>, <reg>' as an alias for movabsq.
def : InstAlias<"movq $imm, $reg", (MOV64ri GR64:$reg, i64imm:$imm)>;
// Match 'movq GR64, MMX' as an alias for movd.
def : InstAlias<"movq $src, $dst",
(MMX_MOVD64to64rr VR64:$dst, GR64:$src), 0>;
def : InstAlias<"movq $src, $dst",
(MMX_MOVD64from64rr GR64:$dst, VR64:$src), 0>;
// movsd with no operands (as opposed to the SSE scalar move of a double) is an
// alias for movsl. (as in rep; movsd)
def : InstAlias<"movsd", (MOVSD)>;
// movsx aliases
def : InstAlias<"movsx $src, $dst", (MOVSX16rr8 GR16:$dst, GR8:$src), 0>;
def : InstAlias<"movsx $src, $dst", (MOVSX16rm8 GR16:$dst, i8mem:$src), 0>;
def : InstAlias<"movsx $src, $dst", (MOVSX32rr8 GR32:$dst, GR8:$src), 0>;
def : InstAlias<"movsx $src, $dst", (MOVSX32rr16 GR32:$dst, GR16:$src), 0>;
def : InstAlias<"movsx $src, $dst", (MOVSX64rr8 GR64:$dst, GR8:$src), 0>;
def : InstAlias<"movsx $src, $dst", (MOVSX64rr16 GR64:$dst, GR16:$src), 0>;
def : InstAlias<"movsx $src, $dst", (MOVSX64rr32 GR64:$dst, GR32:$src), 0>;
// movzx aliases
def : InstAlias<"movzx $src, $dst", (MOVZX16rr8 GR16:$dst, GR8:$src), 0>;
def : InstAlias<"movzx $src, $dst", (MOVZX16rm8 GR16:$dst, i8mem:$src), 0>;
def : InstAlias<"movzx $src, $dst", (MOVZX32rr8 GR32:$dst, GR8:$src), 0>;
def : InstAlias<"movzx $src, $dst", (MOVZX32rr16 GR32:$dst, GR16:$src), 0>;
def : InstAlias<"movzx $src, $dst", (MOVZX64rr8_Q GR64:$dst, GR8:$src), 0>;
def : InstAlias<"movzx $src, $dst", (MOVZX64rr16_Q GR64:$dst, GR16:$src), 0>;
// Note: No GR32->GR64 movzx form.
// outb %dx -> outb %al, %dx
def : InstAlias<"outb %dx", (OUT8rr)>;
def : InstAlias<"outw %dx", (OUT16rr)>;
def : InstAlias<"outl %dx", (OUT32rr)>;
def : InstAlias<"outb $port", (OUT8ir i8imm:$port)>;
def : InstAlias<"outw $port", (OUT16ir i8imm:$port)>;
def : InstAlias<"outl $port", (OUT32ir i8imm:$port)>;
// 'sldt <mem>' can be encoded with either sldtw or sldtq with the same
// effect (both store to a 16-bit mem). Force to sldtw to avoid ambiguity
// errors, since its encoding is the most compact.
def : InstAlias<"sldt $mem", (SLDT16m i16mem:$mem)>;
// shld/shrd op,op -> shld op, op, CL
def : InstAlias<"shldw $r2, $r1", (SHLD16rrCL GR16:$r1, GR16:$r2)>;
def : InstAlias<"shldl $r2, $r1", (SHLD32rrCL GR32:$r1, GR32:$r2)>;
def : InstAlias<"shldq $r2, $r1", (SHLD64rrCL GR64:$r1, GR64:$r2)>;
def : InstAlias<"shrdw $r2, $r1", (SHRD16rrCL GR16:$r1, GR16:$r2)>;
def : InstAlias<"shrdl $r2, $r1", (SHRD32rrCL GR32:$r1, GR32:$r2)>;
def : InstAlias<"shrdq $r2, $r1", (SHRD64rrCL GR64:$r1, GR64:$r2)>;
def : InstAlias<"shldw $reg, $mem", (SHLD16mrCL i16mem:$mem, GR16:$reg)>;
def : InstAlias<"shldl $reg, $mem", (SHLD32mrCL i32mem:$mem, GR32:$reg)>;
def : InstAlias<"shldq $reg, $mem", (SHLD64mrCL i64mem:$mem, GR64:$reg)>;
def : InstAlias<"shrdw $reg, $mem", (SHRD16mrCL i16mem:$mem, GR16:$reg)>;
def : InstAlias<"shrdl $reg, $mem", (SHRD32mrCL i32mem:$mem, GR32:$reg)>;
def : InstAlias<"shrdq $reg, $mem", (SHRD64mrCL i64mem:$mem, GR64:$reg)>;
/* FIXME: This is disabled because the asm matcher is currently incapable of
* matching a fixed immediate like $1.
// "shl X, $1" is an alias for "shl X".
multiclass ShiftRotateByOneAlias<string Mnemonic, string Opc> {
def : InstAlias<!strconcat(Mnemonic, "b $op, $$1"),
(!cast<Instruction>(!strconcat(Opc, "8r1")) GR8:$op)>;
def : InstAlias<!strconcat(Mnemonic, "w $op, $$1"),
(!cast<Instruction>(!strconcat(Opc, "16r1")) GR16:$op)>;
def : InstAlias<!strconcat(Mnemonic, "l $op, $$1"),
(!cast<Instruction>(!strconcat(Opc, "32r1")) GR32:$op)>;
def : InstAlias<!strconcat(Mnemonic, "q $op, $$1"),
(!cast<Instruction>(!strconcat(Opc, "64r1")) GR64:$op)>;
def : InstAlias<!strconcat(Mnemonic, "b $op, $$1"),
(!cast<Instruction>(!strconcat(Opc, "8m1")) i8mem:$op)>;
def : InstAlias<!strconcat(Mnemonic, "w $op, $$1"),
(!cast<Instruction>(!strconcat(Opc, "16m1")) i16mem:$op)>;
def : InstAlias<!strconcat(Mnemonic, "l $op, $$1"),
(!cast<Instruction>(!strconcat(Opc, "32m1")) i32mem:$op)>;
def : InstAlias<!strconcat(Mnemonic, "q $op, $$1"),
(!cast<Instruction>(!strconcat(Opc, "64m1")) i64mem:$op)>;
}
defm : ShiftRotateByOneAlias<"rcl", "RCL">;
defm : ShiftRotateByOneAlias<"rcr", "RCR">;
defm : ShiftRotateByOneAlias<"rol", "ROL">;
defm : ShiftRotateByOneAlias<"ror", "ROR">;
FIXME */
// test: We accept "testX <reg>, <mem>" and "testX <mem>, <reg>" as synonyms.
def : InstAlias<"testb $val, $mem", (TEST8rm GR8 :$val, i8mem :$mem)>;
def : InstAlias<"testw $val, $mem", (TEST16rm GR16:$val, i16mem:$mem)>;
def : InstAlias<"testl $val, $mem", (TEST32rm GR32:$val, i32mem:$mem)>;
def : InstAlias<"testq $val, $mem", (TEST64rm GR64:$val, i64mem:$mem)>;
// xchg: We accept "xchgX <reg>, <mem>" and "xchgX <mem>, <reg>" as synonyms.
def : InstAlias<"xchgb $mem, $val", (XCHG8rm GR8 :$val, i8mem :$mem)>;
def : InstAlias<"xchgw $mem, $val", (XCHG16rm GR16:$val, i16mem:$mem)>;
def : InstAlias<"xchgl $mem, $val", (XCHG32rm GR32:$val, i32mem:$mem)>;
def : InstAlias<"xchgq $mem, $val", (XCHG64rm GR64:$val, i64mem:$mem)>;
// xchg: We accept "xchgX <reg>, %eax" and "xchgX %eax, <reg>" as synonyms.
def : InstAlias<"xchgw %ax, $src", (XCHG16ar GR16:$src)>;
def : InstAlias<"xchgl %eax, $src", (XCHG32ar GR32:$src)>, Requires<[In32BitMode]>;
def : InstAlias<"xchgl %eax, $src", (XCHG32ar64 GR32_NOAX:$src)>, Requires<[In64BitMode]>;
def : InstAlias<"xchgq %rax, $src", (XCHG64ar GR64:$src)>;