llvm-6502/lib/Bytecode/Reader/Parser.cpp
2004-06-09 06:14:52 +00:00

899 lines
28 KiB
C++

//===- Reader.cpp - Code to read bytecode files ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This library implements the functionality defined in llvm/Bytecode/Reader.h
//
// Note that this library should be as fast as possible, reentrant, and
// threadsafe!!
//
// TODO: Allow passing in an option to ignore the symbol table
//
//===----------------------------------------------------------------------===//
#include "AnalyzerInternals.h"
#include "ReaderPrimitives.h"
#include "llvm/Module.h"
#include "llvm/Bytecode/Format.h"
#include "Support/StringExtras.h"
#include <iostream>
#include <sstream>
using namespace llvm;
// Enable to trace to figure out what the heck is going on when parsing fails
//#define TRACE_LEVEL 10
//#define DEBUG_OUTPUT
#if TRACE_LEVEL // ByteCodeReading_TRACEr
#define BCR_TRACE(n, X) \
if (n < TRACE_LEVEL) std::cerr << std::string(n*2, ' ') << X
#else
#define BCR_TRACE(n, X)
#endif
#define PARSE_ERROR(inserters) \
{ \
std::ostringstream errormsg; \
errormsg << inserters; \
if ( ! handler->handleError( errormsg.str() ) ) \
throw std::string(errormsg.str()); \
}
inline void AbstractBytecodeParser::readBlock(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned &Type, unsigned &Size)
{
Type = read(Buf, EndBuf);
Size = read(Buf, EndBuf);
}
const Type *AbstractBytecodeParser::getType(unsigned ID) {
//cerr << "Looking up Type ID: " << ID << "\n";
if (ID < Type::FirstDerivedTyID)
if (const Type *T = Type::getPrimitiveType((Type::PrimitiveID)ID))
return T; // Asked for a primitive type...
// Otherwise, derived types need offset...
ID -= Type::FirstDerivedTyID;
if (!CompactionTypeTable.empty()) {
if (ID >= CompactionTypeTable.size())
PARSE_ERROR("Type ID out of range for compaction table!");
return CompactionTypeTable[ID];
}
// Is it a module-level type?
if (ID < ModuleTypes.size())
return ModuleTypes[ID].get();
// Nope, is it a function-level type?
ID -= ModuleTypes.size();
if (ID < FunctionTypes.size())
return FunctionTypes[ID].get();
PARSE_ERROR("Illegal type reference!");
return Type::VoidTy;
}
bool AbstractBytecodeParser::ParseInstruction(BufPtr& Buf, BufPtr EndBuf,
std::vector<unsigned> &Operands) {
Operands.clear();
unsigned iType = 0;
unsigned Opcode = 0;
unsigned Op = read(Buf, EndBuf);
// bits Instruction format: Common to all formats
// --------------------------
// 01-00: Opcode type, fixed to 1.
// 07-02: Opcode
Opcode = (Op >> 2) & 63;
Operands.resize((Op >> 0) & 03);
switch (Operands.size()) {
case 1:
// bits Instruction format:
// --------------------------
// 19-08: Resulting type plane
// 31-20: Operand #1 (if set to (2^12-1), then zero operands)
//
iType = (Op >> 8) & 4095;
Operands[0] = (Op >> 20) & 4095;
if (Operands[0] == 4095) // Handle special encoding for 0 operands...
Operands.resize(0);
break;
case 2:
// bits Instruction format:
// --------------------------
// 15-08: Resulting type plane
// 23-16: Operand #1
// 31-24: Operand #2
//
iType = (Op >> 8) & 255;
Operands[0] = (Op >> 16) & 255;
Operands[1] = (Op >> 24) & 255;
break;
case 3:
// bits Instruction format:
// --------------------------
// 13-08: Resulting type plane
// 19-14: Operand #1
// 25-20: Operand #2
// 31-26: Operand #3
//
iType = (Op >> 8) & 63;
Operands[0] = (Op >> 14) & 63;
Operands[1] = (Op >> 20) & 63;
Operands[2] = (Op >> 26) & 63;
break;
case 0:
Buf -= 4; // Hrm, try this again...
Opcode = read_vbr_uint(Buf, EndBuf);
Opcode >>= 2;
iType = read_vbr_uint(Buf, EndBuf);
unsigned NumOperands = read_vbr_uint(Buf, EndBuf);
Operands.resize(NumOperands);
if (NumOperands == 0)
PARSE_ERROR("Zero-argument instruction found; this is invalid.");
for (unsigned i = 0; i != NumOperands; ++i)
Operands[i] = read_vbr_uint(Buf, EndBuf);
align32(Buf, EndBuf);
break;
}
return handler->handleInstruction(Opcode, getType(iType), Operands);
}
/// ParseBasicBlock - In LLVM 1.0 bytecode files, we used to output one
/// basicblock at a time. This method reads in one of the basicblock packets.
void AbstractBytecodeParser::ParseBasicBlock(BufPtr &Buf,
BufPtr EndBuf,
unsigned BlockNo) {
handler->handleBasicBlockBegin( BlockNo );
std::vector<unsigned> Args;
bool is_terminating = false;
while (Buf < EndBuf)
is_terminating = ParseInstruction(Buf, EndBuf, Args);
if ( ! is_terminating )
PARSE_ERROR(
"Failed to recognize instruction as terminating at end of block");
handler->handleBasicBlockEnd( BlockNo );
}
/// ParseInstructionList - Parse all of the BasicBlock's & Instruction's in the
/// body of a function. In post 1.0 bytecode files, we no longer emit basic
/// block individually, in order to avoid per-basic-block overhead.
unsigned AbstractBytecodeParser::ParseInstructionList( BufPtr &Buf,
BufPtr EndBuf) {
unsigned BlockNo = 0;
std::vector<unsigned> Args;
while (Buf < EndBuf) {
handler->handleBasicBlockBegin( BlockNo );
// Read instructions into this basic block until we get to a terminator
bool is_terminating = false;
while (Buf < EndBuf && !is_terminating )
is_terminating = ParseInstruction(Buf, EndBuf, Args ) ;
if (!is_terminating)
PARSE_ERROR( "Non-terminated basic block found!");
handler->handleBasicBlockEnd( BlockNo );
++BlockNo;
}
return BlockNo;
}
void AbstractBytecodeParser::ParseSymbolTable(BufPtr &Buf, BufPtr EndBuf) {
handler->handleSymbolTableBegin();
while (Buf < EndBuf) {
// Symtab block header: [num entries][type id number]
unsigned NumEntries = read_vbr_uint(Buf, EndBuf);
unsigned Typ = read_vbr_uint(Buf, EndBuf);
const Type *Ty = getType(Typ);
handler->handleSymbolTablePlane( Typ, NumEntries, Ty );
for (unsigned i = 0; i != NumEntries; ++i) {
// Symtab entry: [def slot #][name]
unsigned slot = read_vbr_uint(Buf, EndBuf);
std::string Name = read_str(Buf, EndBuf);
if (Typ == Type::TypeTyID)
handler->handleSymbolTableType( i, slot, Name );
else
handler->handleSymbolTableValue( i, slot, Name );
}
}
if (Buf > EndBuf)
PARSE_ERROR("Tried to read past end of buffer while reading symbol table.");
handler->handleSymbolTableEnd();
}
void AbstractBytecodeParser::ParseFunctionLazily(BufPtr &Buf, BufPtr EndBuf) {
if (FunctionSignatureList.empty())
throw std::string("FunctionSignatureList empty!");
const Type *FType = FunctionSignatureList.back();
FunctionSignatureList.pop_back();
// Save the information for future reading of the function
LazyFunctionLoadMap[FType] = LazyFunctionInfo(Buf, EndBuf);
// Pretend we've `parsed' this function
Buf = EndBuf;
}
void AbstractBytecodeParser::ParseNextFunction(Type* FType) {
// Find {start, end} pointers and slot in the map. If not there, we're done.
LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(FType);
// Make sure we found it
if ( Fi == LazyFunctionLoadMap.end() ) {
PARSE_ERROR("Unrecognized function of type " << FType->getDescription());
return;
}
BufPtr Buf = Fi->second.Buf;
BufPtr EndBuf = Fi->second.EndBuf;
assert(Fi->first == FType);
LazyFunctionLoadMap.erase(Fi);
this->ParseFunctionBody( FType, Buf, EndBuf );
}
void AbstractBytecodeParser::ParseFunctionBody(const Type* FType,
BufPtr &Buf, BufPtr EndBuf ) {
GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;
unsigned LinkageType = read_vbr_uint(Buf, EndBuf);
switch (LinkageType) {
case 0: Linkage = GlobalValue::ExternalLinkage; break;
case 1: Linkage = GlobalValue::WeakLinkage; break;
case 2: Linkage = GlobalValue::AppendingLinkage; break;
case 3: Linkage = GlobalValue::InternalLinkage; break;
case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
default:
PARSE_ERROR("Invalid linkage type for Function.");
Linkage = GlobalValue::InternalLinkage;
break;
}
handler->handleFunctionBegin(FType,Linkage);
// Keep track of how many basic blocks we have read in...
unsigned BlockNum = 0;
bool InsertedArguments = false;
while (Buf < EndBuf) {
unsigned Type, Size;
BufPtr OldBuf = Buf;
readBlock(Buf, EndBuf, Type, Size);
switch (Type) {
case BytecodeFormat::ConstantPool:
ParseConstantPool(Buf, Buf+Size, FunctionTypes );
break;
case BytecodeFormat::CompactionTable:
ParseCompactionTable(Buf, Buf+Size);
break;
case BytecodeFormat::BasicBlock:
ParseBasicBlock(Buf, Buf+Size, BlockNum++);
break;
case BytecodeFormat::InstructionList:
if (BlockNum)
PARSE_ERROR("InstructionList must come before basic blocks!");
BlockNum = ParseInstructionList(Buf, Buf+Size);
break;
case BytecodeFormat::SymbolTable:
ParseSymbolTable(Buf, Buf+Size );
break;
default:
Buf += Size;
if (OldBuf > Buf)
PARSE_ERROR("Wrapped around reading bytecode");
break;
}
// Malformed bc file if read past end of block.
align32(Buf, EndBuf);
}
handler->handleFunctionEnd(FType);
// Clear out function-level types...
FunctionTypes.clear();
CompactionTypeTable.clear();
}
void AbstractBytecodeParser::ParseAllFunctionBodies() {
LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin();
LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end();
while ( Fi != Fe ) {
const Type* FType = Fi->first;
this->ParseFunctionBody(FType, Fi->second.Buf, Fi->second.EndBuf);
}
}
void AbstractBytecodeParser::ParseCompactionTable(BufPtr &Buf, BufPtr End) {
handler->handleCompactionTableBegin();
while (Buf != End) {
unsigned NumEntries = read_vbr_uint(Buf, End);
unsigned Ty;
if ((NumEntries & 3) == 3) {
NumEntries >>= 2;
Ty = read_vbr_uint(Buf, End);
} else {
Ty = NumEntries >> 2;
NumEntries &= 3;
}
handler->handleCompactionTablePlane( Ty, NumEntries );
if (Ty == Type::TypeTyID) {
for (unsigned i = 0; i != NumEntries; ++i) {
unsigned TypeSlot = read_vbr_uint(Buf,End);
const Type *Typ = getGlobalTableType(TypeSlot);
handler->handleCompactionTableType( i, TypeSlot, Typ );
}
} else {
const Type *Typ = getType(Ty);
// Push the implicit zero
for (unsigned i = 0; i != NumEntries; ++i) {
unsigned ValSlot = read_vbr_uint(Buf, End);
handler->handleCompactionTableValue( i, ValSlot, Typ );
}
}
}
handler->handleCompactionTableEnd();
}
const Type *AbstractBytecodeParser::ParseTypeConstant(const unsigned char *&Buf,
const unsigned char *EndBuf) {
unsigned PrimType = read_vbr_uint(Buf, EndBuf);
const Type *Val = 0;
if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType)))
return Val;
switch (PrimType) {
case Type::FunctionTyID: {
const Type *RetType = getType(read_vbr_uint(Buf, EndBuf));
unsigned NumParams = read_vbr_uint(Buf, EndBuf);
std::vector<const Type*> Params;
while (NumParams--)
Params.push_back(getType(read_vbr_uint(Buf, EndBuf)));
bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
if (isVarArg) Params.pop_back();
Type* result = FunctionType::get(RetType, Params, isVarArg);
handler->handleType( result );
return result;
}
case Type::ArrayTyID: {
unsigned ElTyp = read_vbr_uint(Buf, EndBuf);
const Type *ElementType = getType(ElTyp);
unsigned NumElements = read_vbr_uint(Buf, EndBuf);
BCR_TRACE(5, "Array Type Constant #" << ElTyp << " size="
<< NumElements << "\n");
Type* result = ArrayType::get(ElementType, NumElements);
handler->handleType( result );
return result;
}
case Type::StructTyID: {
std::vector<const Type*> Elements;
unsigned Typ = read_vbr_uint(Buf, EndBuf);
while (Typ) { // List is terminated by void/0 typeid
Elements.push_back(getType(Typ));
Typ = read_vbr_uint(Buf, EndBuf);
}
Type* result = StructType::get(Elements);
handler->handleType( result );
return result;
}
case Type::PointerTyID: {
unsigned ElTyp = read_vbr_uint(Buf, EndBuf);
BCR_TRACE(5, "Pointer Type Constant #" << ElTyp << "\n");
Type* result = PointerType::get(getType(ElTyp));
handler->handleType( result );
return result;
}
case Type::OpaqueTyID: {
Type* result = OpaqueType::get();
handler->handleType( result );
return result;
}
default:
PARSE_ERROR("Don't know how to deserialize primitive type" << PrimType << "\n");
return Val;
}
}
// ParseTypeConstants - We have to use this weird code to handle recursive
// types. We know that recursive types will only reference the current slab of
// values in the type plane, but they can forward reference types before they
// have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might
// be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix
// this ugly problem, we pessimistically insert an opaque type for each type we
// are about to read. This means that forward references will resolve to
// something and when we reread the type later, we can replace the opaque type
// with a new resolved concrete type.
//
void AbstractBytecodeParser::ParseTypeConstants(const unsigned char *&Buf,
const unsigned char *EndBuf,
TypeListTy &Tab,
unsigned NumEntries) {
assert(Tab.size() == 0 && "should not have read type constants in before!");
// Insert a bunch of opaque types to be resolved later...
Tab.reserve(NumEntries);
for (unsigned i = 0; i != NumEntries; ++i)
Tab.push_back(OpaqueType::get());
// Loop through reading all of the types. Forward types will make use of the
// opaque types just inserted.
//
for (unsigned i = 0; i != NumEntries; ++i) {
const Type *NewTy = ParseTypeConstant(Buf, EndBuf), *OldTy = Tab[i].get();
if (NewTy == 0) throw std::string("Couldn't parse type!");
BCR_TRACE(4, "#" << i << ": Read Type Constant: '" << NewTy <<
"' Replacing: " << OldTy << "\n");
// Don't insertValue the new type... instead we want to replace the opaque
// type with the new concrete value...
//
// Refine the abstract type to the new type. This causes all uses of the
// abstract type to use NewTy. This also will cause the opaque type to be
// deleted...
//
cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy);
// This should have replace the old opaque type with the new type in the
// value table... or with a preexisting type that was already in the system
assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
}
BCR_TRACE(5, "Resulting types:\n");
for (unsigned i = 0; i < NumEntries; ++i) {
BCR_TRACE(5, (void*)Tab[i].get() << " - " << Tab[i].get() << "\n");
}
}
void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned TypeID) {
// We must check for a ConstantExpr before switching by type because
// a ConstantExpr can be of any type, and has no explicit value.
//
// 0 if not expr; numArgs if is expr
unsigned isExprNumArgs = read_vbr_uint(Buf, EndBuf);
if (isExprNumArgs) {
unsigned Opcode = read_vbr_uint(Buf, EndBuf);
const Type* Typ = getType(TypeID);
// FIXME: Encoding of constant exprs could be much more compact!
std::vector<std::pair<const Type*,unsigned> > ArgVec;
ArgVec.reserve(isExprNumArgs);
// Read the slot number and types of each of the arguments
for (unsigned i = 0; i != isExprNumArgs; ++i) {
unsigned ArgValSlot = read_vbr_uint(Buf, EndBuf);
unsigned ArgTypeSlot = read_vbr_uint(Buf, EndBuf);
BCR_TRACE(4, "CE Arg " << i << ": Type: '" << *getType(ArgTypeSlot)
<< "' slot: " << ArgValSlot << "\n");
// Get the arg value from its slot if it exists, otherwise a placeholder
ArgVec.push_back(std::make_pair(getType(ArgTypeSlot), ArgValSlot));
}
handler->handleConstantExpression( Opcode, Typ, ArgVec );
return;
}
// Ok, not an ConstantExpr. We now know how to read the given type...
const Type *Ty = getType(TypeID);
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID: {
unsigned Val = read_vbr_uint(Buf, EndBuf);
if (Val != 0 && Val != 1)
PARSE_ERROR("Invalid boolean value read.");
handler->handleConstantValue( ConstantBool::get(Val == 1));
break;
}
case Type::UByteTyID: // Unsigned integer types...
case Type::UShortTyID:
case Type::UIntTyID: {
unsigned Val = read_vbr_uint(Buf, EndBuf);
if (!ConstantUInt::isValueValidForType(Ty, Val))
throw std::string("Invalid unsigned byte/short/int read.");
handler->handleConstantValue( ConstantUInt::get(Ty, Val) );
break;
}
case Type::ULongTyID: {
handler->handleConstantValue( ConstantUInt::get(Ty, read_vbr_uint64(Buf, EndBuf)) );
break;
}
case Type::SByteTyID: // Signed integer types...
case Type::ShortTyID:
case Type::IntTyID: {
case Type::LongTyID:
int64_t Val = read_vbr_int64(Buf, EndBuf);
if (!ConstantSInt::isValueValidForType(Ty, Val))
throw std::string("Invalid signed byte/short/int/long read.");
handler->handleConstantValue( ConstantSInt::get(Ty, Val) );
break;
}
case Type::FloatTyID: {
float F;
input_data(Buf, EndBuf, &F, &F+1);
handler->handleConstantValue( ConstantFP::get(Ty, F) );
break;
}
case Type::DoubleTyID: {
double Val;
input_data(Buf, EndBuf, &Val, &Val+1);
handler->handleConstantValue( ConstantFP::get(Ty, Val) );
break;
}
case Type::TypeTyID:
PARSE_ERROR("Type constants shouldn't live in constant table!");
break;
case Type::ArrayTyID: {
const ArrayType *AT = cast<ArrayType>(Ty);
unsigned NumElements = AT->getNumElements();
std::vector<unsigned> Elements;
Elements.reserve(NumElements);
while (NumElements--) // Read all of the elements of the constant.
Elements.push_back(read_vbr_uint(Buf, EndBuf));
handler->handleConstantArray( AT, Elements );
break;
}
case Type::StructTyID: {
const StructType *ST = cast<StructType>(Ty);
std::vector<unsigned> Elements;
Elements.reserve(ST->getNumElements());
for (unsigned i = 0; i != ST->getNumElements(); ++i)
Elements.push_back(read_vbr_uint(Buf, EndBuf));
handler->handleConstantStruct( ST, Elements );
}
case Type::PointerTyID: { // ConstantPointerRef value...
const PointerType *PT = cast<PointerType>(Ty);
unsigned Slot = read_vbr_uint(Buf, EndBuf);
handler->handleConstantPointer( PT, Slot );
}
default:
PARSE_ERROR("Don't know how to deserialize constant value of type '"+
Ty->getDescription());
}
}
void AbstractBytecodeParser::ParseGlobalTypes(const unsigned char *&Buf,
const unsigned char *EndBuf) {
ParseConstantPool(Buf, EndBuf, ModuleTypes);
}
void AbstractBytecodeParser::ParseStringConstants(const unsigned char *&Buf,
const unsigned char *EndBuf,
unsigned NumEntries ){
for (; NumEntries; --NumEntries) {
unsigned Typ = read_vbr_uint(Buf, EndBuf);
const Type *Ty = getType(Typ);
if (!isa<ArrayType>(Ty))
throw std::string("String constant data invalid!");
const ArrayType *ATy = cast<ArrayType>(Ty);
if (ATy->getElementType() != Type::SByteTy &&
ATy->getElementType() != Type::UByteTy)
throw std::string("String constant data invalid!");
// Read character data. The type tells us how long the string is.
char Data[ATy->getNumElements()];
input_data(Buf, EndBuf, Data, Data+ATy->getNumElements());
std::vector<Constant*> Elements(ATy->getNumElements());
if (ATy->getElementType() == Type::SByteTy)
for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
Elements[i] = ConstantSInt::get(Type::SByteTy, (signed char)Data[i]);
else
for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
Elements[i] = ConstantUInt::get(Type::UByteTy, (unsigned char)Data[i]);
// Create the constant, inserting it as needed.
ConstantArray *C = cast<ConstantArray>( ConstantArray::get(ATy, Elements) );
handler->handleConstantString( C );
}
}
void AbstractBytecodeParser::ParseConstantPool(const unsigned char *&Buf,
const unsigned char *EndBuf,
TypeListTy &TypeTab) {
while (Buf < EndBuf) {
unsigned NumEntries = read_vbr_uint(Buf, EndBuf);
unsigned Typ = read_vbr_uint(Buf, EndBuf);
if (Typ == Type::TypeTyID) {
ParseTypeConstants(Buf, EndBuf, TypeTab, NumEntries);
} else if (Typ == Type::VoidTyID) {
ParseStringConstants(Buf, EndBuf, NumEntries);
} else {
BCR_TRACE(3, "Type: '" << *getType(Typ) << "' NumEntries: "
<< NumEntries << "\n");
for (unsigned i = 0; i < NumEntries; ++i) {
ParseConstantValue(Buf, EndBuf, Typ);
}
}
}
if (Buf > EndBuf) PARSE_ERROR("Read past end of buffer.");
}
void AbstractBytecodeParser::ParseModuleGlobalInfo(BufPtr &Buf, BufPtr End) {
handler->handleModuleGlobalsBegin();
// Read global variables...
unsigned VarType = read_vbr_uint(Buf, End);
while (VarType != Type::VoidTyID) { // List is terminated by Void
// VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
// Linkage, bit4+ = slot#
unsigned SlotNo = VarType >> 5;
unsigned LinkageID = (VarType >> 2) & 7;
bool isConstant = VarType & 1;
bool hasInitializer = VarType & 2;
GlobalValue::LinkageTypes Linkage;
switch (LinkageID) {
case 0: Linkage = GlobalValue::ExternalLinkage; break;
case 1: Linkage = GlobalValue::WeakLinkage; break;
case 2: Linkage = GlobalValue::AppendingLinkage; break;
case 3: Linkage = GlobalValue::InternalLinkage; break;
case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
default:
PARSE_ERROR("Unknown linkage type: " << LinkageID);
Linkage = GlobalValue::InternalLinkage;
break;
}
const Type *Ty = getType(SlotNo);
if ( !Ty ) {
PARSE_ERROR("Global has no type! SlotNo=" << SlotNo);
}
if ( !isa<PointerType>(Ty)) {
PARSE_ERROR("Global not a pointer type! Ty= " << Ty->getDescription());
}
const Type *ElTy = cast<PointerType>(Ty)->getElementType();
// Create the global variable...
if (hasInitializer) {
unsigned initSlot = read_vbr_uint(Buf,End);
handler->handleInitializedGV( ElTy, isConstant, Linkage, initSlot );
} else
handler->handleGlobalVariable( ElTy, isConstant, Linkage );
// Get next item
VarType = read_vbr_uint(Buf, End);
}
// Read the function objects for all of the functions that are coming
unsigned FnSignature = read_vbr_uint(Buf, End);
while (FnSignature != Type::VoidTyID) { // List is terminated by Void
const Type *Ty = getType(FnSignature);
if (!isa<PointerType>(Ty) ||
!isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
PARSE_ERROR( "Function not a pointer to function type! Ty = " +
Ty->getDescription());
// FIXME: what should Ty be if handler continues?
}
// We create functions by passing the underlying FunctionType to create...
Ty = cast<PointerType>(Ty)->getElementType();
// Save this for later so we know type of lazily instantiated functions
FunctionSignatureList.push_back(Ty);
handler->handleFunctionDeclaration(Ty);
// Get Next function signature
FnSignature = read_vbr_uint(Buf, End);
}
if (hasInconsistentModuleGlobalInfo)
align32(Buf, End);
// This is for future proofing... in the future extra fields may be added that
// we don't understand, so we transparently ignore them.
//
Buf = End;
handler->handleModuleGlobalsEnd();
}
void AbstractBytecodeParser::ParseVersionInfo(BufPtr &Buf, BufPtr EndBuf) {
unsigned Version = read_vbr_uint(Buf, EndBuf);
// Unpack version number: low four bits are for flags, top bits = version
Module::Endianness Endianness;
Module::PointerSize PointerSize;
Endianness = (Version & 1) ? Module::BigEndian : Module::LittleEndian;
PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32;
bool hasNoEndianness = Version & 4;
bool hasNoPointerSize = Version & 8;
RevisionNum = Version >> 4;
// Default values for the current bytecode version
hasInconsistentModuleGlobalInfo = false;
hasExplicitPrimitiveZeros = false;
hasRestrictedGEPTypes = false;
switch (RevisionNum) {
case 0: // LLVM 1.0, 1.1 release version
// Base LLVM 1.0 bytecode format.
hasInconsistentModuleGlobalInfo = true;
hasExplicitPrimitiveZeros = true;
// FALL THROUGH
case 1: // LLVM 1.2 release version
// LLVM 1.2 added explicit support for emitting strings efficiently.
// Also, it fixed the problem where the size of the ModuleGlobalInfo block
// included the size for the alignment at the end, where the rest of the
// blocks did not.
// LLVM 1.2 and before required that GEP indices be ubyte constants for
// structures and longs for sequential types.
hasRestrictedGEPTypes = true;
// FALL THROUGH
case 2: // LLVM 1.3 release version
break;
default:
PARSE_ERROR("Unknown bytecode version number: " << RevisionNum);
}
if (hasNoEndianness) Endianness = Module::AnyEndianness;
if (hasNoPointerSize) PointerSize = Module::AnyPointerSize;
handler->handleVersionInfo(RevisionNum, Endianness, PointerSize );
}
void AbstractBytecodeParser::ParseModule(BufPtr &Buf, BufPtr EndBuf ) {
unsigned Type, Size;
readBlock(Buf, EndBuf, Type, Size);
if (Type != BytecodeFormat::Module || Buf+Size != EndBuf)
// Hrm, not a class?
PARSE_ERROR("Expected Module block! B: " << unsigned(intptr_t(Buf)) <<
", S: " << Size << " E: " << unsigned(intptr_t(EndBuf)));
// Read into instance variables...
ParseVersionInfo(Buf, EndBuf);
align32(Buf, EndBuf);
bool SeenModuleGlobalInfo = false;
bool SeenGlobalTypePlane = false;
while (Buf < EndBuf) {
BufPtr OldBuf = Buf;
readBlock(Buf, EndBuf, Type, Size);
switch (Type) {
case BytecodeFormat::GlobalTypePlane:
if ( SeenGlobalTypePlane )
PARSE_ERROR("Two GlobalTypePlane Blocks Encountered!");
ParseGlobalTypes(Buf, Buf+Size);
SeenGlobalTypePlane = true;
break;
case BytecodeFormat::ModuleGlobalInfo:
if ( SeenModuleGlobalInfo )
PARSE_ERROR("Two ModuleGlobalInfo Blocks Encountered!");
ParseModuleGlobalInfo(Buf, Buf+Size);
SeenModuleGlobalInfo = true;
break;
case BytecodeFormat::ConstantPool:
ParseConstantPool(Buf, Buf+Size, ModuleTypes);
break;
case BytecodeFormat::Function:
ParseFunctionLazily(Buf, Buf+Size);
break;
case BytecodeFormat::SymbolTable:
ParseSymbolTable(Buf, Buf+Size );
break;
default:
Buf += Size;
if (OldBuf > Buf)
{
PARSE_ERROR("Unexpected Block of Type" << Type << "encountered!" );
}
break;
}
align32(Buf, EndBuf);
}
}
void AbstractBytecodeParser::ParseBytecode(
BufPtr Buf, unsigned Length,
const std::string &ModuleID) {
handler->handleStart();
unsigned char *EndBuf = (unsigned char*)(Buf + Length);
// Read and check signature...
unsigned Sig = read(Buf, EndBuf);
if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) {
PARSE_ERROR("Invalid bytecode signature: " << Sig);
}
handler->handleModuleBegin(ModuleID);
this->ParseModule(Buf, EndBuf);
handler->handleModuleEnd(ModuleID);
handler->handleFinish();
}
// vim: sw=2