llvm-6502/lib/IR/LLVMContextImpl.h
Duncan P. N. Exon Smith ae9e15f914 IR: Split GenericMDNode into MDTuple and UniquableMDNode
Split `GenericMDNode` into two classes (with more descriptive names).

  - `UniquableMDNode` will be a common subclass for `MDNode`s that are
    sometimes uniqued like constants, and sometimes 'distinct'.

    This class gets the (short-lived) RAUW support and related API.

  - `MDTuple` is the basic tuple that has always been returned by
    `MDNode::get()`.  This is as opposed to more specific nodes to be
    added soon, which have additional fields, custom assembly syntax,
    and extra semantics.

    This class gets the hash-related logic, since other sublcasses of
    `UniquableMDNode` may need to hash based on other fields.

To keep this diff from getting too big, I've added casts to `MDTuple`
that won't really scale as new subclasses of `UniquableMDNode` are
added, but I'll clean those up incrementally.

(No functionality change intended.)

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225682 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-12 20:09:34 +00:00

357 lines
12 KiB
C++

//===-- LLVMContextImpl.h - The LLVMContextImpl opaque class ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares LLVMContextImpl, the opaque implementation
// of LLVMContext.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_IR_LLVMCONTEXTIMPL_H
#define LLVM_LIB_IR_LLVMCONTEXTIMPL_H
#include "AttributeImpl.h"
#include "ConstantsContext.h"
#include "LeaksContext.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/ValueHandle.h"
#include <vector>
namespace llvm {
class ConstantInt;
class ConstantFP;
class DiagnosticInfoOptimizationRemark;
class DiagnosticInfoOptimizationRemarkMissed;
class DiagnosticInfoOptimizationRemarkAnalysis;
class LLVMContext;
class Type;
class Value;
struct DenseMapAPIntKeyInfo {
static inline APInt getEmptyKey() {
APInt V(nullptr, 0);
V.VAL = 0;
return V;
}
static inline APInt getTombstoneKey() {
APInt V(nullptr, 0);
V.VAL = 1;
return V;
}
static unsigned getHashValue(const APInt &Key) {
return static_cast<unsigned>(hash_value(Key));
}
static bool isEqual(const APInt &LHS, const APInt &RHS) {
return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS;
}
};
struct DenseMapAPFloatKeyInfo {
static inline APFloat getEmptyKey() { return APFloat(APFloat::Bogus, 1); }
static inline APFloat getTombstoneKey() { return APFloat(APFloat::Bogus, 2); }
static unsigned getHashValue(const APFloat &Key) {
return static_cast<unsigned>(hash_value(Key));
}
static bool isEqual(const APFloat &LHS, const APFloat &RHS) {
return LHS.bitwiseIsEqual(RHS);
}
};
struct AnonStructTypeKeyInfo {
struct KeyTy {
ArrayRef<Type*> ETypes;
bool isPacked;
KeyTy(const ArrayRef<Type*>& E, bool P) :
ETypes(E), isPacked(P) {}
KeyTy(const StructType *ST)
: ETypes(ST->elements()), isPacked(ST->isPacked()) {}
bool operator==(const KeyTy& that) const {
if (isPacked != that.isPacked)
return false;
if (ETypes != that.ETypes)
return false;
return true;
}
bool operator!=(const KeyTy& that) const {
return !this->operator==(that);
}
};
static inline StructType* getEmptyKey() {
return DenseMapInfo<StructType*>::getEmptyKey();
}
static inline StructType* getTombstoneKey() {
return DenseMapInfo<StructType*>::getTombstoneKey();
}
static unsigned getHashValue(const KeyTy& Key) {
return hash_combine(hash_combine_range(Key.ETypes.begin(),
Key.ETypes.end()),
Key.isPacked);
}
static unsigned getHashValue(const StructType *ST) {
return getHashValue(KeyTy(ST));
}
static bool isEqual(const KeyTy& LHS, const StructType *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return LHS == KeyTy(RHS);
}
static bool isEqual(const StructType *LHS, const StructType *RHS) {
return LHS == RHS;
}
};
struct FunctionTypeKeyInfo {
struct KeyTy {
const Type *ReturnType;
ArrayRef<Type*> Params;
bool isVarArg;
KeyTy(const Type* R, const ArrayRef<Type*>& P, bool V) :
ReturnType(R), Params(P), isVarArg(V) {}
KeyTy(const FunctionType *FT)
: ReturnType(FT->getReturnType()), Params(FT->params()),
isVarArg(FT->isVarArg()) {}
bool operator==(const KeyTy& that) const {
if (ReturnType != that.ReturnType)
return false;
if (isVarArg != that.isVarArg)
return false;
if (Params != that.Params)
return false;
return true;
}
bool operator!=(const KeyTy& that) const {
return !this->operator==(that);
}
};
static inline FunctionType* getEmptyKey() {
return DenseMapInfo<FunctionType*>::getEmptyKey();
}
static inline FunctionType* getTombstoneKey() {
return DenseMapInfo<FunctionType*>::getTombstoneKey();
}
static unsigned getHashValue(const KeyTy& Key) {
return hash_combine(Key.ReturnType,
hash_combine_range(Key.Params.begin(),
Key.Params.end()),
Key.isVarArg);
}
static unsigned getHashValue(const FunctionType *FT) {
return getHashValue(KeyTy(FT));
}
static bool isEqual(const KeyTy& LHS, const FunctionType *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return LHS == KeyTy(RHS);
}
static bool isEqual(const FunctionType *LHS, const FunctionType *RHS) {
return LHS == RHS;
}
};
/// \brief DenseMapInfo for MDTuple.
///
/// Note that we don't need the is-function-local bit, since that's implicit in
/// the operands.
struct MDTupleInfo {
struct KeyTy {
ArrayRef<Metadata *> RawOps;
ArrayRef<MDOperand> Ops;
unsigned Hash;
KeyTy(ArrayRef<Metadata *> Ops)
: RawOps(Ops), Hash(hash_combine_range(Ops.begin(), Ops.end())) {}
KeyTy(MDTuple *N)
: Ops(N->op_begin(), N->op_end()), Hash(N->getHash()) {}
bool operator==(const MDTuple *RHS) const {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
if (Hash != RHS->getHash())
return false;
assert((RawOps.empty() || Ops.empty()) && "Two sets of operands?");
return RawOps.empty() ? compareOps(Ops, RHS) : compareOps(RawOps, RHS);
}
template <class T>
static bool compareOps(ArrayRef<T> Ops, const MDTuple *RHS) {
if (Ops.size() != RHS->getNumOperands())
return false;
return std::equal(Ops.begin(), Ops.end(), RHS->op_begin());
}
};
static inline MDTuple *getEmptyKey() {
return DenseMapInfo<MDTuple *>::getEmptyKey();
}
static inline MDTuple *getTombstoneKey() {
return DenseMapInfo<MDTuple *>::getTombstoneKey();
}
static unsigned getHashValue(const KeyTy &Key) { return Key.Hash; }
static unsigned getHashValue(const MDTuple *U) {
return U->getHash();
}
static bool isEqual(const KeyTy &LHS, const MDTuple *RHS) {
return LHS == RHS;
}
static bool isEqual(const MDTuple *LHS, const MDTuple *RHS) {
return LHS == RHS;
}
};
class LLVMContextImpl {
public:
/// OwnedModules - The set of modules instantiated in this context, and which
/// will be automatically deleted if this context is deleted.
SmallPtrSet<Module*, 4> OwnedModules;
LLVMContext::InlineAsmDiagHandlerTy InlineAsmDiagHandler;
void *InlineAsmDiagContext;
LLVMContext::DiagnosticHandlerTy DiagnosticHandler;
void *DiagnosticContext;
bool RespectDiagnosticFilters;
LLVMContext::YieldCallbackTy YieldCallback;
void *YieldOpaqueHandle;
typedef DenseMap<APInt, ConstantInt *, DenseMapAPIntKeyInfo> IntMapTy;
IntMapTy IntConstants;
typedef DenseMap<APFloat, ConstantFP *, DenseMapAPFloatKeyInfo> FPMapTy;
FPMapTy FPConstants;
FoldingSet<AttributeImpl> AttrsSet;
FoldingSet<AttributeSetImpl> AttrsLists;
FoldingSet<AttributeSetNode> AttrsSetNodes;
StringMap<MDString> MDStringCache;
DenseMap<Value *, ValueAsMetadata *> ValuesAsMetadata;
DenseMap<Metadata *, MetadataAsValue *> MetadataAsValues;
DenseSet<MDTuple *, MDTupleInfo> MDTuples;
// MDNodes may be uniqued or not uniqued. When they're not uniqued, they
// aren't in the MDNodeSet, but they're still shared between objects, so no
// one object can destroy them. This set allows us to at least destroy them
// on Context destruction.
SmallPtrSet<UniquableMDNode *, 1> DistinctMDNodes;
DenseMap<Type*, ConstantAggregateZero*> CAZConstants;
typedef ConstantUniqueMap<ConstantArray> ArrayConstantsTy;
ArrayConstantsTy ArrayConstants;
typedef ConstantUniqueMap<ConstantStruct> StructConstantsTy;
StructConstantsTy StructConstants;
typedef ConstantUniqueMap<ConstantVector> VectorConstantsTy;
VectorConstantsTy VectorConstants;
DenseMap<PointerType*, ConstantPointerNull*> CPNConstants;
DenseMap<Type*, UndefValue*> UVConstants;
StringMap<ConstantDataSequential*> CDSConstants;
DenseMap<std::pair<const Function *, const BasicBlock *>, BlockAddress *>
BlockAddresses;
ConstantUniqueMap<ConstantExpr> ExprConstants;
ConstantUniqueMap<InlineAsm> InlineAsms;
ConstantInt *TheTrueVal;
ConstantInt *TheFalseVal;
LeakDetectorImpl<Value> LLVMObjects;
LeakDetectorImpl<Metadata> LLVMMDObjects;
// Basic type instances.
Type VoidTy, LabelTy, HalfTy, FloatTy, DoubleTy, MetadataTy;
Type X86_FP80Ty, FP128Ty, PPC_FP128Ty, X86_MMXTy;
IntegerType Int1Ty, Int8Ty, Int16Ty, Int32Ty, Int64Ty;
/// TypeAllocator - All dynamically allocated types are allocated from this.
/// They live forever until the context is torn down.
BumpPtrAllocator TypeAllocator;
DenseMap<unsigned, IntegerType*> IntegerTypes;
typedef DenseSet<FunctionType *, FunctionTypeKeyInfo> FunctionTypeSet;
FunctionTypeSet FunctionTypes;
typedef DenseSet<StructType *, AnonStructTypeKeyInfo> StructTypeSet;
StructTypeSet AnonStructTypes;
StringMap<StructType*> NamedStructTypes;
unsigned NamedStructTypesUniqueID;
DenseMap<std::pair<Type *, uint64_t>, ArrayType*> ArrayTypes;
DenseMap<std::pair<Type *, unsigned>, VectorType*> VectorTypes;
DenseMap<Type*, PointerType*> PointerTypes; // Pointers in AddrSpace = 0
DenseMap<std::pair<Type*, unsigned>, PointerType*> ASPointerTypes;
/// ValueHandles - This map keeps track of all of the value handles that are
/// watching a Value*. The Value::HasValueHandle bit is used to know
/// whether or not a value has an entry in this map.
typedef DenseMap<Value*, ValueHandleBase*> ValueHandlesTy;
ValueHandlesTy ValueHandles;
/// CustomMDKindNames - Map to hold the metadata string to ID mapping.
StringMap<unsigned> CustomMDKindNames;
typedef std::pair<unsigned, TrackingMDNodeRef> MDPairTy;
typedef SmallVector<MDPairTy, 2> MDMapTy;
/// MetadataStore - Collection of per-instruction metadata used in this
/// context.
DenseMap<const Instruction *, MDMapTy> MetadataStore;
/// DiscriminatorTable - This table maps file:line locations to an
/// integer representing the next DWARF path discriminator to assign to
/// instructions in different blocks at the same location.
DenseMap<std::pair<const char *, unsigned>, unsigned> DiscriminatorTable;
/// IntrinsicIDCache - Cache of intrinsic name (string) to numeric ID mappings
/// requested in this context
typedef DenseMap<const Function*, unsigned> IntrinsicIDCacheTy;
IntrinsicIDCacheTy IntrinsicIDCache;
/// \brief Mapping from a function to its prefix data, which is stored as the
/// operand of an unparented ReturnInst so that the prefix data has a Use.
typedef DenseMap<const Function *, ReturnInst *> PrefixDataMapTy;
PrefixDataMapTy PrefixDataMap;
/// \brief Mapping from a function to its prologue data, which is stored as
/// the operand of an unparented ReturnInst so that the prologue data has a
/// Use.
typedef DenseMap<const Function *, ReturnInst *> PrologueDataMapTy;
PrologueDataMapTy PrologueDataMap;
int getOrAddScopeRecordIdxEntry(MDNode *N, int ExistingIdx);
int getOrAddScopeInlinedAtIdxEntry(MDNode *Scope, MDNode *IA,int ExistingIdx);
LLVMContextImpl(LLVMContext &C);
~LLVMContextImpl();
};
}
#endif