llvm-6502/include/llvm/CodeGen/ValueTypes.h
Chandler Carruth 6994040a95 This is the patch to provide clean intrinsic function overloading support in LLVM. It cleans up the intrinsic definitions and generally smooths the process for more complicated intrinsic writing. It will be used by the upcoming atomic intrinsics as well as vector and float intrinsics in the future.
This also changes the syntax for llvm.bswap, llvm.part.set, llvm.part.select, and llvm.ct* intrinsics. They are automatically upgraded by both the LLVM ASM reader and the bitcode reader. The test cases have been updated, with special tests added to ensure the automatic upgrading is supported.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40807 91177308-0d34-0410-b5e6-96231b3b80d8
2007-08-04 01:51:18 +00:00

299 lines
10 KiB
C++

//===- CodeGen/ValueTypes.h - Low-Level Target independ. types --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the set of low-level target independent types which various
// values in the code generator are. This allows the target specific behavior
// of instructions to be described to target independent passes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_VALUETYPES_H
#define LLVM_CODEGEN_VALUETYPES_H
#include <cassert>
#include <string>
#include "llvm/Support/DataTypes.h"
namespace llvm {
class Type;
/// MVT namespace - This namespace defines the SimpleValueType enum, which
/// contains the various low-level value types, and the ValueType typedef.
///
namespace MVT { // MVT = Machine Value Types
enum SimpleValueType {
// If you change this numbering, you must change the values in ValueTypes.td
// well!
Other = 0, // This is a non-standard value
i1 = 1, // This is a 1 bit integer value
i8 = 2, // This is an 8 bit integer value
i16 = 3, // This is a 16 bit integer value
i32 = 4, // This is a 32 bit integer value
i64 = 5, // This is a 64 bit integer value
i128 = 6, // This is a 128 bit integer value
f32 = 7, // This is a 32 bit floating point value
f64 = 8, // This is a 64 bit floating point value
f80 = 9, // This is a 80 bit floating point value
f128 = 10, // This is a 128 bit floating point value
ppcf128 = 11, // This is a PPC 128-bit floating point value
Flag = 12, // This is a condition code or machine flag.
isVoid = 13, // This has no value
v8i8 = 14, // 8 x i8
v4i16 = 15, // 4 x i16
v2i32 = 16, // 2 x i32
v1i64 = 17, // 1 x i64
v16i8 = 18, // 16 x i8
v8i16 = 19, // 8 x i16
v3i32 = 20, // 3 x i32
v4i32 = 21, // 4 x i32
v2i64 = 22, // 2 x i64
v2f32 = 23, // 2 x f32
v3f32 = 24, // 3 x f32
v4f32 = 25, // 4 x f32
v2f64 = 26, // 2 x f64
FIRST_VECTOR_VALUETYPE = v8i8,
LAST_VECTOR_VALUETYPE = v2f64,
LAST_VALUETYPE = 27, // This always remains at the end of the list.
// iAny - An integer or vector integer value of any bit width. This is
// used for intrinsics that have overloadings based on integer bit widths.
// This is only for tblgen's consumption!
iAny = 254,
// iPTR - An int value the size of the pointer of the current
// target. This should only be used internal to tblgen!
iPTR = 255
};
/// MVT::ValueType - This type holds low-level value types. Valid values
/// include any of the values in the SimpleValueType enum, or any value
/// returned from a function in the MVT namespace that has a ValueType
/// return type. Any value type equal to one of the SimpleValueType enum
/// values is a "simple" value type. All other value types are "extended".
///
/// Note that simple doesn't necessary mean legal for the target machine.
/// All legal value types must be simple, but often there are some simple
/// value types that are not legal.
///
/// @internal
/// Currently extended types are always vector types. Extended types are
/// encoded by having the first SimpleTypeBits bits encode the vector
/// element type (which must be a scalar type) and the remaining upper
/// bits encode the vector length, offset by one.
typedef uint32_t ValueType;
static const int SimpleTypeBits = 8;
static const uint32_t SimpleTypeMask =
(~uint32_t(0) << (32 - SimpleTypeBits)) >> (32 - SimpleTypeBits);
/// MVT::isExtendedVT - Test if the given ValueType is extended
/// (as opposed to being simple).
static inline bool isExtendedVT(ValueType VT) {
return VT > SimpleTypeMask;
}
/// MVT::isInteger - Return true if this is an integer, or a vector integer
/// type.
static inline bool isInteger(ValueType VT) {
ValueType SVT = VT & SimpleTypeMask;
return (SVT >= i1 && SVT <= i128) || (SVT >= v8i8 && SVT <= v2i64);
}
/// MVT::isFloatingPoint - Return true if this is an FP, or a vector FP type.
static inline bool isFloatingPoint(ValueType VT) {
ValueType SVT = VT & SimpleTypeMask;
return (SVT >= f32 && SVT <= ppcf128) || (SVT >= v2f32 && SVT <= v2f64);
}
/// MVT::isVector - Return true if this is a vector value type.
static inline bool isVector(ValueType VT) {
return (VT >= FIRST_VECTOR_VALUETYPE && VT <= LAST_VECTOR_VALUETYPE) ||
isExtendedVT(VT);
}
/// MVT::getVectorElementType - Given a vector type, return the type of
/// each element.
static inline ValueType getVectorElementType(ValueType VT) {
switch (VT) {
default:
if (isExtendedVT(VT))
return VT & SimpleTypeMask;
assert(0 && "Invalid vector type!");
case v8i8 :
case v16i8: return i8;
case v4i16:
case v8i16: return i16;
case v2i32:
case v3i32:
case v4i32: return i32;
case v1i64:
case v2i64: return i64;
case v2f32:
case v3f32:
case v4f32: return f32;
case v2f64: return f64;
}
}
/// MVT::getVectorNumElements - Given a vector type, return the
/// number of elements it contains.
static inline unsigned getVectorNumElements(ValueType VT) {
switch (VT) {
default:
if (isExtendedVT(VT))
return ((VT & ~SimpleTypeMask) >> SimpleTypeBits) - 1;
assert(0 && "Invalid vector type!");
case v16i8: return 16;
case v8i8 :
case v8i16: return 8;
case v4i16:
case v4i32:
case v4f32: return 4;
case v3i32:
case v3f32: return 3;
case v2i32:
case v2i64:
case v2f32:
case v2f64: return 2;
case v1i64: return 1;
}
}
/// MVT::getSizeInBits - Return the size of the specified value type
/// in bits.
///
static inline unsigned getSizeInBits(ValueType VT) {
switch (VT) {
default:
if (isExtendedVT(VT))
return getSizeInBits(getVectorElementType(VT)) *
getVectorNumElements(VT);
assert(0 && "ValueType has no known size!");
case MVT::i1 : return 1;
case MVT::i8 : return 8;
case MVT::i16 : return 16;
case MVT::f32 :
case MVT::i32 : return 32;
case MVT::f64 :
case MVT::i64 :
case MVT::v8i8:
case MVT::v4i16:
case MVT::v2i32:
case MVT::v1i64:
case MVT::v2f32: return 64;
case MVT::f80 : return 80;
case MVT::v3i32:
case MVT::v3f32: return 96;
case MVT::f128:
case MVT::ppcf128:
case MVT::i128:
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64: return 128;
}
}
/// MVT::getVectorType - Returns the ValueType that represents a vector
/// NumElements in length, where each element is of type VT.
///
static inline ValueType getVectorType(ValueType VT, unsigned NumElements) {
switch (VT) {
default:
break;
case MVT::i8:
if (NumElements == 8) return MVT::v8i8;
if (NumElements == 16) return MVT::v16i8;
break;
case MVT::i16:
if (NumElements == 4) return MVT::v4i16;
if (NumElements == 8) return MVT::v8i16;
break;
case MVT::i32:
if (NumElements == 2) return MVT::v2i32;
if (NumElements == 3) return MVT::v3i32;
if (NumElements == 4) return MVT::v4i32;
break;
case MVT::i64:
if (NumElements == 1) return MVT::v1i64;
if (NumElements == 2) return MVT::v2i64;
break;
case MVT::f32:
if (NumElements == 2) return MVT::v2f32;
if (NumElements == 3) return MVT::v3f32;
if (NumElements == 4) return MVT::v4f32;
break;
case MVT::f64:
if (NumElements == 2) return MVT::v2f64;
break;
}
ValueType Result = VT | ((NumElements + 1) << SimpleTypeBits);
assert(getVectorElementType(Result) == VT &&
"Bad vector element type!");
assert(getVectorNumElements(Result) == NumElements &&
"Bad vector length!");
return Result;
}
/// MVT::getIntVectorWithNumElements - Return any integer vector type that has
/// the specified number of elements.
static inline ValueType getIntVectorWithNumElements(unsigned NumElts) {
switch (NumElts) {
default: return getVectorType(i8, NumElts);
case 1: return v1i64;
case 2: return v2i32;
case 3: return v3i32;
case 4: return v4i16;
case 8: return v8i8;
case 16: return v16i8;
}
}
/// MVT::getIntVTBitMask - Return an integer with 1's every place there are
/// bits in the specified integer value type.
static inline uint64_t getIntVTBitMask(ValueType VT) {
assert(isInteger(VT) && !isVector(VT) && "Only applies to int scalars!");
return ~uint64_t(0UL) >> (64-getSizeInBits(VT));
}
/// MVT::getIntVTSignBit - Return an integer with a 1 in the position of the
/// sign bit for the specified integer value type.
static inline uint64_t getIntVTSignBit(ValueType VT) {
assert(isInteger(VT) && !isVector(VT) && "Only applies to int scalars!");
return uint64_t(1UL) << (getSizeInBits(VT)-1);
}
/// MVT::getValueTypeString - This function returns value type as a string,
/// e.g. "i32".
std::string getValueTypeString(ValueType VT);
/// MVT::getTypeForValueType - This method returns an LLVM type corresponding
/// to the specified ValueType. For integer types, this returns an unsigned
/// type. Note that this will abort for types that cannot be represented.
const Type *getTypeForValueType(ValueType VT);
/// MVT::getValueType - Return the value type corresponding to the specified
/// type. This returns all pointers as MVT::iPTR. If HandleUnknown is true,
/// unknown types are returned as Other, otherwise they are invalid.
ValueType getValueType(const Type *Ty, bool HandleUnknown = false);
}
} // End llvm namespace
#endif