mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-14 11:32:34 +00:00
baceda736e
getTTI method used to get an actual TTI object. No functionality changed. This just threads the argument and ensures code like the inliner can correctly look up the callee's TTI rather than using a fixed one. The next change will use this to implement per-function subtarget usage by TTI. The changes after that should eliminate the need for FTTI as that will have become the default. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227730 91177308-0d34-0410-b5e6-96231b3b80d8
1020 lines
42 KiB
C++
1020 lines
42 KiB
C++
//===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Loop unrolling may create many similar GEPs for array accesses.
|
|
// e.g., a 2-level loop
|
|
//
|
|
// float a[32][32]; // global variable
|
|
//
|
|
// for (int i = 0; i < 2; ++i) {
|
|
// for (int j = 0; j < 2; ++j) {
|
|
// ...
|
|
// ... = a[x + i][y + j];
|
|
// ...
|
|
// }
|
|
// }
|
|
//
|
|
// will probably be unrolled to:
|
|
//
|
|
// gep %a, 0, %x, %y; load
|
|
// gep %a, 0, %x, %y + 1; load
|
|
// gep %a, 0, %x + 1, %y; load
|
|
// gep %a, 0, %x + 1, %y + 1; load
|
|
//
|
|
// LLVM's GVN does not use partial redundancy elimination yet, and is thus
|
|
// unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
|
|
// significant slowdown in targets with limited addressing modes. For instance,
|
|
// because the PTX target does not support the reg+reg addressing mode, the
|
|
// NVPTX backend emits PTX code that literally computes the pointer address of
|
|
// each GEP, wasting tons of registers. It emits the following PTX for the
|
|
// first load and similar PTX for other loads.
|
|
//
|
|
// mov.u32 %r1, %x;
|
|
// mov.u32 %r2, %y;
|
|
// mul.wide.u32 %rl2, %r1, 128;
|
|
// mov.u64 %rl3, a;
|
|
// add.s64 %rl4, %rl3, %rl2;
|
|
// mul.wide.u32 %rl5, %r2, 4;
|
|
// add.s64 %rl6, %rl4, %rl5;
|
|
// ld.global.f32 %f1, [%rl6];
|
|
//
|
|
// To reduce the register pressure, the optimization implemented in this file
|
|
// merges the common part of a group of GEPs, so we can compute each pointer
|
|
// address by adding a simple offset to the common part, saving many registers.
|
|
//
|
|
// It works by splitting each GEP into a variadic base and a constant offset.
|
|
// The variadic base can be computed once and reused by multiple GEPs, and the
|
|
// constant offsets can be nicely folded into the reg+immediate addressing mode
|
|
// (supported by most targets) without using any extra register.
|
|
//
|
|
// For instance, we transform the four GEPs and four loads in the above example
|
|
// into:
|
|
//
|
|
// base = gep a, 0, x, y
|
|
// load base
|
|
// laod base + 1 * sizeof(float)
|
|
// load base + 32 * sizeof(float)
|
|
// load base + 33 * sizeof(float)
|
|
//
|
|
// Given the transformed IR, a backend that supports the reg+immediate
|
|
// addressing mode can easily fold the pointer arithmetics into the loads. For
|
|
// example, the NVPTX backend can easily fold the pointer arithmetics into the
|
|
// ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
|
|
//
|
|
// mov.u32 %r1, %tid.x;
|
|
// mov.u32 %r2, %tid.y;
|
|
// mul.wide.u32 %rl2, %r1, 128;
|
|
// mov.u64 %rl3, a;
|
|
// add.s64 %rl4, %rl3, %rl2;
|
|
// mul.wide.u32 %rl5, %r2, 4;
|
|
// add.s64 %rl6, %rl4, %rl5;
|
|
// ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX
|
|
// ld.global.f32 %f2, [%rl6+4]; // much better
|
|
// ld.global.f32 %f3, [%rl6+128]; // much better
|
|
// ld.global.f32 %f4, [%rl6+132]; // much better
|
|
//
|
|
// Another improvement enabled by the LowerGEP flag is to lower a GEP with
|
|
// multiple indices to either multiple GEPs with a single index or arithmetic
|
|
// operations (depending on whether the target uses alias analysis in codegen).
|
|
// Such transformation can have following benefits:
|
|
// (1) It can always extract constants in the indices of structure type.
|
|
// (2) After such Lowering, there are more optimization opportunities such as
|
|
// CSE, LICM and CGP.
|
|
//
|
|
// E.g. The following GEPs have multiple indices:
|
|
// BB1:
|
|
// %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
|
|
// load %p
|
|
// ...
|
|
// BB2:
|
|
// %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
|
|
// load %p2
|
|
// ...
|
|
//
|
|
// We can not do CSE for to the common part related to index "i64 %i". Lowering
|
|
// GEPs can achieve such goals.
|
|
// If the target does not use alias analysis in codegen, this pass will
|
|
// lower a GEP with multiple indices into arithmetic operations:
|
|
// BB1:
|
|
// %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
|
|
// %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
|
|
// %3 = add i64 %1, %2 ; CSE opportunity
|
|
// %4 = mul i64 %j1, length_of_struct
|
|
// %5 = add i64 %3, %4
|
|
// %6 = add i64 %3, struct_field_3 ; Constant offset
|
|
// %p = inttoptr i64 %6 to i32*
|
|
// load %p
|
|
// ...
|
|
// BB2:
|
|
// %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
|
|
// %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
|
|
// %9 = add i64 %7, %8 ; CSE opportunity
|
|
// %10 = mul i64 %j2, length_of_struct
|
|
// %11 = add i64 %9, %10
|
|
// %12 = add i64 %11, struct_field_2 ; Constant offset
|
|
// %p = inttoptr i64 %12 to i32*
|
|
// load %p2
|
|
// ...
|
|
//
|
|
// If the target uses alias analysis in codegen, this pass will lower a GEP
|
|
// with multiple indices into multiple GEPs with a single index:
|
|
// BB1:
|
|
// %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
|
|
// %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
|
|
// %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity
|
|
// %4 = mul i64 %j1, length_of_struct
|
|
// %5 = getelementptr i8* %3, i64 %4
|
|
// %6 = getelementptr i8* %5, struct_field_3 ; Constant offset
|
|
// %p = bitcast i8* %6 to i32*
|
|
// load %p
|
|
// ...
|
|
// BB2:
|
|
// %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
|
|
// %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
|
|
// %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity
|
|
// %10 = mul i64 %j2, length_of_struct
|
|
// %11 = getelementptr i8* %9, i64 %10
|
|
// %12 = getelementptr i8* %11, struct_field_2 ; Constant offset
|
|
// %p2 = bitcast i8* %12 to i32*
|
|
// load %p2
|
|
// ...
|
|
//
|
|
// Lowering GEPs can also benefit other passes such as LICM and CGP.
|
|
// LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
|
|
// indices if one of the index is variant. If we lower such GEP into invariant
|
|
// parts and variant parts, LICM can hoist/sink those invariant parts.
|
|
// CGP (CodeGen Prepare) tries to sink address calculations that match the
|
|
// target's addressing modes. A GEP with multiple indices may not match and will
|
|
// not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
|
|
// them. So we end up with a better addressing mode.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
|
|
"disable-separate-const-offset-from-gep", cl::init(false),
|
|
cl::desc("Do not separate the constant offset from a GEP instruction"),
|
|
cl::Hidden);
|
|
|
|
namespace {
|
|
|
|
/// \brief A helper class for separating a constant offset from a GEP index.
|
|
///
|
|
/// In real programs, a GEP index may be more complicated than a simple addition
|
|
/// of something and a constant integer which can be trivially splitted. For
|
|
/// example, to split ((a << 3) | 5) + b, we need to search deeper for the
|
|
/// constant offset, so that we can separate the index to (a << 3) + b and 5.
|
|
///
|
|
/// Therefore, this class looks into the expression that computes a given GEP
|
|
/// index, and tries to find a constant integer that can be hoisted to the
|
|
/// outermost level of the expression as an addition. Not every constant in an
|
|
/// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
|
|
/// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
|
|
/// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
|
|
class ConstantOffsetExtractor {
|
|
public:
|
|
/// Extracts a constant offset from the given GEP index. It returns the
|
|
/// new index representing the remainder (equal to the original index minus
|
|
/// the constant offset), or nullptr if we cannot extract a constant offset.
|
|
/// \p Idx The given GEP index
|
|
/// \p DL The datalayout of the module
|
|
/// \p GEP The given GEP
|
|
static Value *Extract(Value *Idx, const DataLayout *DL,
|
|
GetElementPtrInst *GEP);
|
|
/// Looks for a constant offset from the given GEP index without extracting
|
|
/// it. It returns the numeric value of the extracted constant offset (0 if
|
|
/// failed). The meaning of the arguments are the same as Extract.
|
|
static int64_t Find(Value *Idx, const DataLayout *DL, GetElementPtrInst *GEP);
|
|
|
|
private:
|
|
ConstantOffsetExtractor(const DataLayout *Layout, Instruction *InsertionPt)
|
|
: DL(Layout), IP(InsertionPt) {}
|
|
/// Searches the expression that computes V for a non-zero constant C s.t.
|
|
/// V can be reassociated into the form V' + C. If the searching is
|
|
/// successful, returns C and update UserChain as a def-use chain from C to V;
|
|
/// otherwise, UserChain is empty.
|
|
///
|
|
/// \p V The given expression
|
|
/// \p SignExtended Whether V will be sign-extended in the computation of the
|
|
/// GEP index
|
|
/// \p ZeroExtended Whether V will be zero-extended in the computation of the
|
|
/// GEP index
|
|
/// \p NonNegative Whether V is guaranteed to be non-negative. For example,
|
|
/// an index of an inbounds GEP is guaranteed to be
|
|
/// non-negative. Levaraging this, we can better split
|
|
/// inbounds GEPs.
|
|
APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
|
|
/// A helper function to look into both operands of a binary operator.
|
|
APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
|
|
bool ZeroExtended);
|
|
/// After finding the constant offset C from the GEP index I, we build a new
|
|
/// index I' s.t. I' + C = I. This function builds and returns the new
|
|
/// index I' according to UserChain produced by function "find".
|
|
///
|
|
/// The building conceptually takes two steps:
|
|
/// 1) iteratively distribute s/zext towards the leaves of the expression tree
|
|
/// that computes I
|
|
/// 2) reassociate the expression tree to the form I' + C.
|
|
///
|
|
/// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
|
|
/// sext to a, b and 5 so that we have
|
|
/// sext(a) + (sext(b) + 5).
|
|
/// Then, we reassociate it to
|
|
/// (sext(a) + sext(b)) + 5.
|
|
/// Given this form, we know I' is sext(a) + sext(b).
|
|
Value *rebuildWithoutConstOffset();
|
|
/// After the first step of rebuilding the GEP index without the constant
|
|
/// offset, distribute s/zext to the operands of all operators in UserChain.
|
|
/// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
|
|
/// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
|
|
///
|
|
/// The function also updates UserChain to point to new subexpressions after
|
|
/// distributing s/zext. e.g., the old UserChain of the above example is
|
|
/// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
|
|
/// and the new UserChain is
|
|
/// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
|
|
/// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
|
|
///
|
|
/// \p ChainIndex The index to UserChain. ChainIndex is initially
|
|
/// UserChain.size() - 1, and is decremented during
|
|
/// the recursion.
|
|
Value *distributeExtsAndCloneChain(unsigned ChainIndex);
|
|
/// Reassociates the GEP index to the form I' + C and returns I'.
|
|
Value *removeConstOffset(unsigned ChainIndex);
|
|
/// A helper function to apply ExtInsts, a list of s/zext, to value V.
|
|
/// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
|
|
/// returns "sext i32 (zext i16 V to i32) to i64".
|
|
Value *applyExts(Value *V);
|
|
|
|
/// Returns true if LHS and RHS have no bits in common, i.e., LHS | RHS == 0.
|
|
bool NoCommonBits(Value *LHS, Value *RHS) const;
|
|
/// Computes which bits are known to be one or zero.
|
|
/// \p KnownOne Mask of all bits that are known to be one.
|
|
/// \p KnownZero Mask of all bits that are known to be zero.
|
|
void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const;
|
|
/// A helper function that returns whether we can trace into the operands
|
|
/// of binary operator BO for a constant offset.
|
|
///
|
|
/// \p SignExtended Whether BO is surrounded by sext
|
|
/// \p ZeroExtended Whether BO is surrounded by zext
|
|
/// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
|
|
/// array index.
|
|
bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
|
|
bool NonNegative);
|
|
|
|
/// The path from the constant offset to the old GEP index. e.g., if the GEP
|
|
/// index is "a * b + (c + 5)". After running function find, UserChain[0] will
|
|
/// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
|
|
/// UserChain[2] will be the entire expression "a * b + (c + 5)".
|
|
///
|
|
/// This path helps to rebuild the new GEP index.
|
|
SmallVector<User *, 8> UserChain;
|
|
/// A data structure used in rebuildWithoutConstOffset. Contains all
|
|
/// sext/zext instructions along UserChain.
|
|
SmallVector<CastInst *, 16> ExtInsts;
|
|
/// The data layout of the module. Used in ComputeKnownBits.
|
|
const DataLayout *DL;
|
|
Instruction *IP; /// Insertion position of cloned instructions.
|
|
};
|
|
|
|
/// \brief A pass that tries to split every GEP in the function into a variadic
|
|
/// base and a constant offset. It is a FunctionPass because searching for the
|
|
/// constant offset may inspect other basic blocks.
|
|
class SeparateConstOffsetFromGEP : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
SeparateConstOffsetFromGEP(const TargetMachine *TM = nullptr,
|
|
bool LowerGEP = false)
|
|
: FunctionPass(ID), TM(TM), LowerGEP(LowerGEP) {
|
|
initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<DataLayoutPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
bool doInitialization(Module &M) override {
|
|
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
|
|
if (DLP == nullptr)
|
|
report_fatal_error("data layout missing");
|
|
DL = &DLP->getDataLayout();
|
|
return false;
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
private:
|
|
/// Tries to split the given GEP into a variadic base and a constant offset,
|
|
/// and returns true if the splitting succeeds.
|
|
bool splitGEP(GetElementPtrInst *GEP);
|
|
/// Lower a GEP with multiple indices into multiple GEPs with a single index.
|
|
/// Function splitGEP already split the original GEP into a variadic part and
|
|
/// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
|
|
/// variadic part into a set of GEPs with a single index and applies
|
|
/// AccumulativeByteOffset to it.
|
|
/// \p Variadic The variadic part of the original GEP.
|
|
/// \p AccumulativeByteOffset The constant offset.
|
|
void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
|
|
int64_t AccumulativeByteOffset);
|
|
/// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
|
|
/// Function splitGEP already split the original GEP into a variadic part and
|
|
/// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
|
|
/// variadic part into a set of arithmetic operations and applies
|
|
/// AccumulativeByteOffset to it.
|
|
/// \p Variadic The variadic part of the original GEP.
|
|
/// \p AccumulativeByteOffset The constant offset.
|
|
void lowerToArithmetics(GetElementPtrInst *Variadic,
|
|
int64_t AccumulativeByteOffset);
|
|
/// Finds the constant offset within each index and accumulates them. If
|
|
/// LowerGEP is true, it finds in indices of both sequential and structure
|
|
/// types, otherwise it only finds in sequential indices. The output
|
|
/// NeedsExtraction indicates whether we successfully find a non-zero constant
|
|
/// offset.
|
|
int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
|
|
/// Canonicalize array indices to pointer-size integers. This helps to
|
|
/// simplify the logic of splitting a GEP. For example, if a + b is a
|
|
/// pointer-size integer, we have
|
|
/// gep base, a + b = gep (gep base, a), b
|
|
/// However, this equality may not hold if the size of a + b is smaller than
|
|
/// the pointer size, because LLVM conceptually sign-extends GEP indices to
|
|
/// pointer size before computing the address
|
|
/// (http://llvm.org/docs/LangRef.html#id181).
|
|
///
|
|
/// This canonicalization is very likely already done in clang and
|
|
/// instcombine. Therefore, the program will probably remain the same.
|
|
///
|
|
/// Returns true if the module changes.
|
|
///
|
|
/// Verified in @i32_add in split-gep.ll
|
|
bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
|
|
|
|
const DataLayout *DL;
|
|
const TargetMachine *TM;
|
|
/// Whether to lower a GEP with multiple indices into arithmetic operations or
|
|
/// multiple GEPs with a single index.
|
|
bool LowerGEP;
|
|
};
|
|
} // anonymous namespace
|
|
|
|
char SeparateConstOffsetFromGEP::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(
|
|
SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
|
|
"Split GEPs to a variadic base and a constant offset for better CSE", false,
|
|
false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DataLayoutPass)
|
|
INITIALIZE_PASS_END(
|
|
SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
|
|
"Split GEPs to a variadic base and a constant offset for better CSE", false,
|
|
false)
|
|
|
|
FunctionPass *
|
|
llvm::createSeparateConstOffsetFromGEPPass(const TargetMachine *TM,
|
|
bool LowerGEP) {
|
|
return new SeparateConstOffsetFromGEP(TM, LowerGEP);
|
|
}
|
|
|
|
bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
|
|
bool ZeroExtended,
|
|
BinaryOperator *BO,
|
|
bool NonNegative) {
|
|
// We only consider ADD, SUB and OR, because a non-zero constant found in
|
|
// expressions composed of these operations can be easily hoisted as a
|
|
// constant offset by reassociation.
|
|
if (BO->getOpcode() != Instruction::Add &&
|
|
BO->getOpcode() != Instruction::Sub &&
|
|
BO->getOpcode() != Instruction::Or) {
|
|
return false;
|
|
}
|
|
|
|
Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
|
|
// Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
|
|
// don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
|
|
if (BO->getOpcode() == Instruction::Or && !NoCommonBits(LHS, RHS))
|
|
return false;
|
|
|
|
// In addition, tracing into BO requires that its surrounding s/zext (if
|
|
// any) is distributable to both operands.
|
|
//
|
|
// Suppose BO = A op B.
|
|
// SignExtended | ZeroExtended | Distributable?
|
|
// --------------+--------------+----------------------------------
|
|
// 0 | 0 | true because no s/zext exists
|
|
// 0 | 1 | zext(BO) == zext(A) op zext(B)
|
|
// 1 | 0 | sext(BO) == sext(A) op sext(B)
|
|
// 1 | 1 | zext(sext(BO)) ==
|
|
// | | zext(sext(A)) op zext(sext(B))
|
|
if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
|
|
// If a + b >= 0 and (a >= 0 or b >= 0), then
|
|
// sext(a + b) = sext(a) + sext(b)
|
|
// even if the addition is not marked nsw.
|
|
//
|
|
// Leveraging this invarient, we can trace into an sext'ed inbound GEP
|
|
// index if the constant offset is non-negative.
|
|
//
|
|
// Verified in @sext_add in split-gep.ll.
|
|
if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
|
|
if (!ConstLHS->isNegative())
|
|
return true;
|
|
}
|
|
if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
|
|
if (!ConstRHS->isNegative())
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
|
|
// zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
|
|
if (BO->getOpcode() == Instruction::Add ||
|
|
BO->getOpcode() == Instruction::Sub) {
|
|
if (SignExtended && !BO->hasNoSignedWrap())
|
|
return false;
|
|
if (ZeroExtended && !BO->hasNoUnsignedWrap())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
|
|
bool SignExtended,
|
|
bool ZeroExtended) {
|
|
// BO being non-negative does not shed light on whether its operands are
|
|
// non-negative. Clear the NonNegative flag here.
|
|
APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
|
|
/* NonNegative */ false);
|
|
// If we found a constant offset in the left operand, stop and return that.
|
|
// This shortcut might cause us to miss opportunities of combining the
|
|
// constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
|
|
// However, such cases are probably already handled by -instcombine,
|
|
// given this pass runs after the standard optimizations.
|
|
if (ConstantOffset != 0) return ConstantOffset;
|
|
ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
|
|
/* NonNegative */ false);
|
|
// If U is a sub operator, negate the constant offset found in the right
|
|
// operand.
|
|
if (BO->getOpcode() == Instruction::Sub)
|
|
ConstantOffset = -ConstantOffset;
|
|
return ConstantOffset;
|
|
}
|
|
|
|
APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
|
|
bool ZeroExtended, bool NonNegative) {
|
|
// TODO(jingyue): We could trace into integer/pointer casts, such as
|
|
// inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
|
|
// integers because it gives good enough results for our benchmarks.
|
|
unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
|
|
|
|
// We cannot do much with Values that are not a User, such as an Argument.
|
|
User *U = dyn_cast<User>(V);
|
|
if (U == nullptr) return APInt(BitWidth, 0);
|
|
|
|
APInt ConstantOffset(BitWidth, 0);
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
|
// Hooray, we found it!
|
|
ConstantOffset = CI->getValue();
|
|
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
|
|
// Trace into subexpressions for more hoisting opportunities.
|
|
if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) {
|
|
ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
|
|
}
|
|
} else if (isa<SExtInst>(V)) {
|
|
ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
|
|
ZeroExtended, NonNegative).sext(BitWidth);
|
|
} else if (isa<ZExtInst>(V)) {
|
|
// As an optimization, we can clear the SignExtended flag because
|
|
// sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
|
|
//
|
|
// Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
|
|
ConstantOffset =
|
|
find(U->getOperand(0), /* SignExtended */ false,
|
|
/* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
|
|
}
|
|
|
|
// If we found a non-zero constant offset, add it to the path for
|
|
// rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
|
|
// help this optimization.
|
|
if (ConstantOffset != 0)
|
|
UserChain.push_back(U);
|
|
return ConstantOffset;
|
|
}
|
|
|
|
Value *ConstantOffsetExtractor::applyExts(Value *V) {
|
|
Value *Current = V;
|
|
// ExtInsts is built in the use-def order. Therefore, we apply them to V
|
|
// in the reversed order.
|
|
for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
|
|
if (Constant *C = dyn_cast<Constant>(Current)) {
|
|
// If Current is a constant, apply s/zext using ConstantExpr::getCast.
|
|
// ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
|
|
Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
|
|
} else {
|
|
Instruction *Ext = (*I)->clone();
|
|
Ext->setOperand(0, Current);
|
|
Ext->insertBefore(IP);
|
|
Current = Ext;
|
|
}
|
|
}
|
|
return Current;
|
|
}
|
|
|
|
Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
|
|
distributeExtsAndCloneChain(UserChain.size() - 1);
|
|
// Remove all nullptrs (used to be s/zext) from UserChain.
|
|
unsigned NewSize = 0;
|
|
for (auto I = UserChain.begin(), E = UserChain.end(); I != E; ++I) {
|
|
if (*I != nullptr) {
|
|
UserChain[NewSize] = *I;
|
|
NewSize++;
|
|
}
|
|
}
|
|
UserChain.resize(NewSize);
|
|
return removeConstOffset(UserChain.size() - 1);
|
|
}
|
|
|
|
Value *
|
|
ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
|
|
User *U = UserChain[ChainIndex];
|
|
if (ChainIndex == 0) {
|
|
assert(isa<ConstantInt>(U));
|
|
// If U is a ConstantInt, applyExts will return a ConstantInt as well.
|
|
return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
|
|
}
|
|
|
|
if (CastInst *Cast = dyn_cast<CastInst>(U)) {
|
|
assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) &&
|
|
"We only traced into two types of CastInst: sext and zext");
|
|
ExtInsts.push_back(Cast);
|
|
UserChain[ChainIndex] = nullptr;
|
|
return distributeExtsAndCloneChain(ChainIndex - 1);
|
|
}
|
|
|
|
// Function find only trace into BinaryOperator and CastInst.
|
|
BinaryOperator *BO = cast<BinaryOperator>(U);
|
|
// OpNo = which operand of BO is UserChain[ChainIndex - 1]
|
|
unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
|
|
Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
|
|
Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
|
|
|
|
BinaryOperator *NewBO = nullptr;
|
|
if (OpNo == 0) {
|
|
NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
|
|
BO->getName(), IP);
|
|
} else {
|
|
NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
|
|
BO->getName(), IP);
|
|
}
|
|
return UserChain[ChainIndex] = NewBO;
|
|
}
|
|
|
|
Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
|
|
if (ChainIndex == 0) {
|
|
assert(isa<ConstantInt>(UserChain[ChainIndex]));
|
|
return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
|
|
}
|
|
|
|
BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
|
|
unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
|
|
assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
|
|
Value *NextInChain = removeConstOffset(ChainIndex - 1);
|
|
Value *TheOther = BO->getOperand(1 - OpNo);
|
|
|
|
// If NextInChain is 0 and not the LHS of a sub, we can simplify the
|
|
// sub-expression to be just TheOther.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
|
|
if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
|
|
return TheOther;
|
|
}
|
|
|
|
if (BO->getOpcode() == Instruction::Or) {
|
|
// Rebuild "or" as "add", because "or" may be invalid for the new
|
|
// epxression.
|
|
//
|
|
// For instance, given
|
|
// a | (b + 5) where a and b + 5 have no common bits,
|
|
// we can extract 5 as the constant offset.
|
|
//
|
|
// However, reusing the "or" in the new index would give us
|
|
// (a | b) + 5
|
|
// which does not equal a | (b + 5).
|
|
//
|
|
// Replacing the "or" with "add" is fine, because
|
|
// a | (b + 5) = a + (b + 5) = (a + b) + 5
|
|
if (OpNo == 0) {
|
|
return BinaryOperator::CreateAdd(NextInChain, TheOther, BO->getName(),
|
|
IP);
|
|
} else {
|
|
return BinaryOperator::CreateAdd(TheOther, NextInChain, BO->getName(),
|
|
IP);
|
|
}
|
|
}
|
|
|
|
// We can reuse BO in this case, because the new expression shares the same
|
|
// instruction type and BO is used at most once.
|
|
assert(BO->getNumUses() <= 1 &&
|
|
"distributeExtsAndCloneChain clones each BinaryOperator in "
|
|
"UserChain, so no one should be used more than "
|
|
"once");
|
|
BO->setOperand(OpNo, NextInChain);
|
|
BO->setHasNoSignedWrap(false);
|
|
BO->setHasNoUnsignedWrap(false);
|
|
// Make sure it appears after all instructions we've inserted so far.
|
|
BO->moveBefore(IP);
|
|
return BO;
|
|
}
|
|
|
|
Value *ConstantOffsetExtractor::Extract(Value *Idx, const DataLayout *DL,
|
|
GetElementPtrInst *GEP) {
|
|
ConstantOffsetExtractor Extractor(DL, GEP);
|
|
// Find a non-zero constant offset first.
|
|
APInt ConstantOffset =
|
|
Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
|
|
GEP->isInBounds());
|
|
if (ConstantOffset == 0)
|
|
return nullptr;
|
|
// Separates the constant offset from the GEP index.
|
|
return Extractor.rebuildWithoutConstOffset();
|
|
}
|
|
|
|
int64_t ConstantOffsetExtractor::Find(Value *Idx, const DataLayout *DL,
|
|
GetElementPtrInst *GEP) {
|
|
// If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
|
|
return ConstantOffsetExtractor(DL, GEP)
|
|
.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
|
|
GEP->isInBounds())
|
|
.getSExtValue();
|
|
}
|
|
|
|
void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne,
|
|
APInt &KnownZero) const {
|
|
IntegerType *IT = cast<IntegerType>(V->getType());
|
|
KnownOne = APInt(IT->getBitWidth(), 0);
|
|
KnownZero = APInt(IT->getBitWidth(), 0);
|
|
llvm::computeKnownBits(V, KnownZero, KnownOne, DL, 0);
|
|
}
|
|
|
|
bool ConstantOffsetExtractor::NoCommonBits(Value *LHS, Value *RHS) const {
|
|
assert(LHS->getType() == RHS->getType() &&
|
|
"LHS and RHS should have the same type");
|
|
APInt LHSKnownOne, LHSKnownZero, RHSKnownOne, RHSKnownZero;
|
|
ComputeKnownBits(LHS, LHSKnownOne, LHSKnownZero);
|
|
ComputeKnownBits(RHS, RHSKnownOne, RHSKnownZero);
|
|
return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
|
|
}
|
|
|
|
bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
|
|
GetElementPtrInst *GEP) {
|
|
bool Changed = false;
|
|
Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
|
|
gep_type_iterator GTI = gep_type_begin(*GEP);
|
|
for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
|
|
I != E; ++I, ++GTI) {
|
|
// Skip struct member indices which must be i32.
|
|
if (isa<SequentialType>(*GTI)) {
|
|
if ((*I)->getType() != IntPtrTy) {
|
|
*I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
int64_t
|
|
SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
|
|
bool &NeedsExtraction) {
|
|
NeedsExtraction = false;
|
|
int64_t AccumulativeByteOffset = 0;
|
|
gep_type_iterator GTI = gep_type_begin(*GEP);
|
|
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
|
|
if (isa<SequentialType>(*GTI)) {
|
|
// Tries to extract a constant offset from this GEP index.
|
|
int64_t ConstantOffset =
|
|
ConstantOffsetExtractor::Find(GEP->getOperand(I), DL, GEP);
|
|
if (ConstantOffset != 0) {
|
|
NeedsExtraction = true;
|
|
// A GEP may have multiple indices. We accumulate the extracted
|
|
// constant offset to a byte offset, and later offset the remainder of
|
|
// the original GEP with this byte offset.
|
|
AccumulativeByteOffset +=
|
|
ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
|
|
}
|
|
} else if (LowerGEP) {
|
|
StructType *StTy = cast<StructType>(*GTI);
|
|
uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
|
|
// Skip field 0 as the offset is always 0.
|
|
if (Field != 0) {
|
|
NeedsExtraction = true;
|
|
AccumulativeByteOffset +=
|
|
DL->getStructLayout(StTy)->getElementOffset(Field);
|
|
}
|
|
}
|
|
}
|
|
return AccumulativeByteOffset;
|
|
}
|
|
|
|
void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
|
|
GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
|
|
IRBuilder<> Builder(Variadic);
|
|
Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
|
|
|
|
Type *I8PtrTy =
|
|
Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
|
|
Value *ResultPtr = Variadic->getOperand(0);
|
|
if (ResultPtr->getType() != I8PtrTy)
|
|
ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
|
|
|
|
gep_type_iterator GTI = gep_type_begin(*Variadic);
|
|
// Create an ugly GEP for each sequential index. We don't create GEPs for
|
|
// structure indices, as they are accumulated in the constant offset index.
|
|
for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
|
|
if (isa<SequentialType>(*GTI)) {
|
|
Value *Idx = Variadic->getOperand(I);
|
|
// Skip zero indices.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
|
|
if (CI->isZero())
|
|
continue;
|
|
|
|
APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
|
|
DL->getTypeAllocSize(GTI.getIndexedType()));
|
|
// Scale the index by element size.
|
|
if (ElementSize != 1) {
|
|
if (ElementSize.isPowerOf2()) {
|
|
Idx = Builder.CreateShl(
|
|
Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
|
|
} else {
|
|
Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
|
|
}
|
|
}
|
|
// Create an ugly GEP with a single index for each index.
|
|
ResultPtr = Builder.CreateGEP(ResultPtr, Idx, "uglygep");
|
|
}
|
|
}
|
|
|
|
// Create a GEP with the constant offset index.
|
|
if (AccumulativeByteOffset != 0) {
|
|
Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
|
|
ResultPtr = Builder.CreateGEP(ResultPtr, Offset, "uglygep");
|
|
}
|
|
if (ResultPtr->getType() != Variadic->getType())
|
|
ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());
|
|
|
|
Variadic->replaceAllUsesWith(ResultPtr);
|
|
Variadic->eraseFromParent();
|
|
}
|
|
|
|
void
|
|
SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
|
|
int64_t AccumulativeByteOffset) {
|
|
IRBuilder<> Builder(Variadic);
|
|
Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
|
|
|
|
Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
|
|
gep_type_iterator GTI = gep_type_begin(*Variadic);
|
|
// Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
|
|
// don't create arithmetics for structure indices, as they are accumulated
|
|
// in the constant offset index.
|
|
for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
|
|
if (isa<SequentialType>(*GTI)) {
|
|
Value *Idx = Variadic->getOperand(I);
|
|
// Skip zero indices.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
|
|
if (CI->isZero())
|
|
continue;
|
|
|
|
APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
|
|
DL->getTypeAllocSize(GTI.getIndexedType()));
|
|
// Scale the index by element size.
|
|
if (ElementSize != 1) {
|
|
if (ElementSize.isPowerOf2()) {
|
|
Idx = Builder.CreateShl(
|
|
Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
|
|
} else {
|
|
Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
|
|
}
|
|
}
|
|
// Create an ADD for each index.
|
|
ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
|
|
}
|
|
}
|
|
|
|
// Create an ADD for the constant offset index.
|
|
if (AccumulativeByteOffset != 0) {
|
|
ResultPtr = Builder.CreateAdd(
|
|
ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
|
|
}
|
|
|
|
ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
|
|
Variadic->replaceAllUsesWith(ResultPtr);
|
|
Variadic->eraseFromParent();
|
|
}
|
|
|
|
bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
|
|
// Skip vector GEPs.
|
|
if (GEP->getType()->isVectorTy())
|
|
return false;
|
|
|
|
// The backend can already nicely handle the case where all indices are
|
|
// constant.
|
|
if (GEP->hasAllConstantIndices())
|
|
return false;
|
|
|
|
bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
|
|
|
|
bool NeedsExtraction;
|
|
int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
|
|
|
|
if (!NeedsExtraction)
|
|
return Changed;
|
|
// If LowerGEP is disabled, before really splitting the GEP, check whether the
|
|
// backend supports the addressing mode we are about to produce. If no, this
|
|
// splitting probably won't be beneficial.
|
|
// If LowerGEP is enabled, even the extracted constant offset can not match
|
|
// the addressing mode, we can still do optimizations to other lowered parts
|
|
// of variable indices. Therefore, we don't check for addressing modes in that
|
|
// case.
|
|
if (!LowerGEP) {
|
|
TargetTransformInfo &TTI =
|
|
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
|
|
*GEP->getParent()->getParent());
|
|
if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(),
|
|
/*BaseGV=*/nullptr, AccumulativeByteOffset,
|
|
/*HasBaseReg=*/true, /*Scale=*/0)) {
|
|
return Changed;
|
|
}
|
|
}
|
|
|
|
// Remove the constant offset in each sequential index. The resultant GEP
|
|
// computes the variadic base.
|
|
// Notice that we don't remove struct field indices here. If LowerGEP is
|
|
// disabled, a structure index is not accumulated and we still use the old
|
|
// one. If LowerGEP is enabled, a structure index is accumulated in the
|
|
// constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
|
|
// handle the constant offset and won't need a new structure index.
|
|
gep_type_iterator GTI = gep_type_begin(*GEP);
|
|
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
|
|
if (isa<SequentialType>(*GTI)) {
|
|
// Splits this GEP index into a variadic part and a constant offset, and
|
|
// uses the variadic part as the new index.
|
|
Value *NewIdx =
|
|
ConstantOffsetExtractor::Extract(GEP->getOperand(I), DL, GEP);
|
|
if (NewIdx != nullptr) {
|
|
GEP->setOperand(I, NewIdx);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Clear the inbounds attribute because the new index may be off-bound.
|
|
// e.g.,
|
|
//
|
|
// b = add i64 a, 5
|
|
// addr = gep inbounds float* p, i64 b
|
|
//
|
|
// is transformed to:
|
|
//
|
|
// addr2 = gep float* p, i64 a
|
|
// addr = gep float* addr2, i64 5
|
|
//
|
|
// If a is -4, although the old index b is in bounds, the new index a is
|
|
// off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
|
|
// inbounds keyword is not present, the offsets are added to the base
|
|
// address with silently-wrapping two's complement arithmetic".
|
|
// Therefore, the final code will be a semantically equivalent.
|
|
//
|
|
// TODO(jingyue): do some range analysis to keep as many inbounds as
|
|
// possible. GEPs with inbounds are more friendly to alias analysis.
|
|
GEP->setIsInBounds(false);
|
|
|
|
// Lowers a GEP to either GEPs with a single index or arithmetic operations.
|
|
if (LowerGEP) {
|
|
// As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
|
|
// arithmetic operations if the target uses alias analysis in codegen.
|
|
if (TM && TM->getSubtargetImpl(*GEP->getParent()->getParent())->useAA())
|
|
lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
|
|
else
|
|
lowerToArithmetics(GEP, AccumulativeByteOffset);
|
|
return true;
|
|
}
|
|
|
|
// No need to create another GEP if the accumulative byte offset is 0.
|
|
if (AccumulativeByteOffset == 0)
|
|
return true;
|
|
|
|
// Offsets the base with the accumulative byte offset.
|
|
//
|
|
// %gep ; the base
|
|
// ... %gep ...
|
|
//
|
|
// => add the offset
|
|
//
|
|
// %gep2 ; clone of %gep
|
|
// %new.gep = gep %gep2, <offset / sizeof(*%gep)>
|
|
// %gep ; will be removed
|
|
// ... %gep ...
|
|
//
|
|
// => replace all uses of %gep with %new.gep and remove %gep
|
|
//
|
|
// %gep2 ; clone of %gep
|
|
// %new.gep = gep %gep2, <offset / sizeof(*%gep)>
|
|
// ... %new.gep ...
|
|
//
|
|
// If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
|
|
// uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
|
|
// bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
|
|
// type of %gep.
|
|
//
|
|
// %gep2 ; clone of %gep
|
|
// %0 = bitcast %gep2 to i8*
|
|
// %uglygep = gep %0, <offset>
|
|
// %new.gep = bitcast %uglygep to <type of %gep>
|
|
// ... %new.gep ...
|
|
Instruction *NewGEP = GEP->clone();
|
|
NewGEP->insertBefore(GEP);
|
|
|
|
// Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
|
|
// unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
|
|
// used with unsigned integers later.
|
|
int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
|
|
DL->getTypeAllocSize(GEP->getType()->getElementType()));
|
|
Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
|
|
if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
|
|
// Very likely. As long as %gep is natually aligned, the byte offset we
|
|
// extracted should be a multiple of sizeof(*%gep).
|
|
int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
|
|
NewGEP = GetElementPtrInst::Create(
|
|
NewGEP, ConstantInt::get(IntPtrTy, Index, true), GEP->getName(), GEP);
|
|
} else {
|
|
// Unlikely but possible. For example,
|
|
// #pragma pack(1)
|
|
// struct S {
|
|
// int a[3];
|
|
// int64 b[8];
|
|
// };
|
|
// #pragma pack()
|
|
//
|
|
// Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
|
|
// extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
|
|
// sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
|
|
// sizeof(int64).
|
|
//
|
|
// Emit an uglygep in this case.
|
|
Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
|
|
GEP->getPointerAddressSpace());
|
|
NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
|
|
NewGEP = GetElementPtrInst::Create(
|
|
NewGEP, ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true),
|
|
"uglygep", GEP);
|
|
if (GEP->getType() != I8PtrTy)
|
|
NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
|
|
}
|
|
|
|
GEP->replaceAllUsesWith(NewGEP);
|
|
GEP->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
|
|
if (skipOptnoneFunction(F))
|
|
return false;
|
|
|
|
if (DisableSeparateConstOffsetFromGEP)
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) {
|
|
for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ) {
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++)) {
|
|
Changed |= splitGEP(GEP);
|
|
}
|
|
// No need to split GEP ConstantExprs because all its indices are constant
|
|
// already.
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|