mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 00:11:00 +00:00
f9a9c6f660
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231108 91177308-0d34-0410-b5e6-96231b3b80d8
345 lines
11 KiB
C++
345 lines
11 KiB
C++
//===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/SCCIterator.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "gtest/gtest.h"
|
|
#include <limits.h>
|
|
|
|
using namespace llvm;
|
|
|
|
namespace llvm {
|
|
|
|
/// Graph<N> - A graph with N nodes. Note that N can be at most 8.
|
|
template <unsigned N>
|
|
class Graph {
|
|
private:
|
|
// Disable copying.
|
|
Graph(const Graph&);
|
|
Graph& operator=(const Graph&);
|
|
|
|
static void ValidateIndex(unsigned Idx) {
|
|
assert(Idx < N && "Invalid node index!");
|
|
}
|
|
public:
|
|
|
|
/// NodeSubset - A subset of the graph's nodes.
|
|
class NodeSubset {
|
|
typedef unsigned char BitVector; // Where the limitation N <= 8 comes from.
|
|
BitVector Elements;
|
|
NodeSubset(BitVector e) : Elements(e) {}
|
|
public:
|
|
/// NodeSubset - Default constructor, creates an empty subset.
|
|
NodeSubset() : Elements(0) {
|
|
assert(N <= sizeof(BitVector)*CHAR_BIT && "Graph too big!");
|
|
}
|
|
|
|
/// Comparison operators.
|
|
bool operator==(const NodeSubset &other) const {
|
|
return other.Elements == this->Elements;
|
|
}
|
|
bool operator!=(const NodeSubset &other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
/// AddNode - Add the node with the given index to the subset.
|
|
void AddNode(unsigned Idx) {
|
|
ValidateIndex(Idx);
|
|
Elements |= 1U << Idx;
|
|
}
|
|
|
|
/// DeleteNode - Remove the node with the given index from the subset.
|
|
void DeleteNode(unsigned Idx) {
|
|
ValidateIndex(Idx);
|
|
Elements &= ~(1U << Idx);
|
|
}
|
|
|
|
/// count - Return true if the node with the given index is in the subset.
|
|
bool count(unsigned Idx) {
|
|
ValidateIndex(Idx);
|
|
return (Elements & (1U << Idx)) != 0;
|
|
}
|
|
|
|
/// isEmpty - Return true if this is the empty set.
|
|
bool isEmpty() const {
|
|
return Elements == 0;
|
|
}
|
|
|
|
/// isSubsetOf - Return true if this set is a subset of the given one.
|
|
bool isSubsetOf(const NodeSubset &other) const {
|
|
return (this->Elements | other.Elements) == other.Elements;
|
|
}
|
|
|
|
/// Complement - Return the complement of this subset.
|
|
NodeSubset Complement() const {
|
|
return ~(unsigned)this->Elements & ((1U << N) - 1);
|
|
}
|
|
|
|
/// Join - Return the union of this subset and the given one.
|
|
NodeSubset Join(const NodeSubset &other) const {
|
|
return this->Elements | other.Elements;
|
|
}
|
|
|
|
/// Meet - Return the intersection of this subset and the given one.
|
|
NodeSubset Meet(const NodeSubset &other) const {
|
|
return this->Elements & other.Elements;
|
|
}
|
|
};
|
|
|
|
/// NodeType - Node index and set of children of the node.
|
|
typedef std::pair<unsigned, NodeSubset> NodeType;
|
|
|
|
private:
|
|
/// Nodes - The list of nodes for this graph.
|
|
NodeType Nodes[N];
|
|
public:
|
|
|
|
/// Graph - Default constructor. Creates an empty graph.
|
|
Graph() {
|
|
// Let each node know which node it is. This allows us to find the start of
|
|
// the Nodes array given a pointer to any element of it.
|
|
for (unsigned i = 0; i != N; ++i)
|
|
Nodes[i].first = i;
|
|
}
|
|
|
|
/// AddEdge - Add an edge from the node with index FromIdx to the node with
|
|
/// index ToIdx.
|
|
void AddEdge(unsigned FromIdx, unsigned ToIdx) {
|
|
ValidateIndex(FromIdx);
|
|
Nodes[FromIdx].second.AddNode(ToIdx);
|
|
}
|
|
|
|
/// DeleteEdge - Remove the edge (if any) from the node with index FromIdx to
|
|
/// the node with index ToIdx.
|
|
void DeleteEdge(unsigned FromIdx, unsigned ToIdx) {
|
|
ValidateIndex(FromIdx);
|
|
Nodes[FromIdx].second.DeleteNode(ToIdx);
|
|
}
|
|
|
|
/// AccessNode - Get a pointer to the node with the given index.
|
|
NodeType *AccessNode(unsigned Idx) const {
|
|
ValidateIndex(Idx);
|
|
// The constant cast is needed when working with GraphTraits, which insists
|
|
// on taking a constant Graph.
|
|
return const_cast<NodeType *>(&Nodes[Idx]);
|
|
}
|
|
|
|
/// NodesReachableFrom - Return the set of all nodes reachable from the given
|
|
/// node.
|
|
NodeSubset NodesReachableFrom(unsigned Idx) const {
|
|
// This algorithm doesn't scale, but that doesn't matter given the small
|
|
// size of our graphs.
|
|
NodeSubset Reachable;
|
|
|
|
// The initial node is reachable.
|
|
Reachable.AddNode(Idx);
|
|
do {
|
|
NodeSubset Previous(Reachable);
|
|
|
|
// Add in all nodes which are children of a reachable node.
|
|
for (unsigned i = 0; i != N; ++i)
|
|
if (Previous.count(i))
|
|
Reachable = Reachable.Join(Nodes[i].second);
|
|
|
|
// If nothing changed then we have found all reachable nodes.
|
|
if (Reachable == Previous)
|
|
return Reachable;
|
|
|
|
// Rinse and repeat.
|
|
} while (1);
|
|
}
|
|
|
|
/// ChildIterator - Visit all children of a node.
|
|
class ChildIterator {
|
|
friend class Graph;
|
|
|
|
/// FirstNode - Pointer to first node in the graph's Nodes array.
|
|
NodeType *FirstNode;
|
|
/// Children - Set of nodes which are children of this one and that haven't
|
|
/// yet been visited.
|
|
NodeSubset Children;
|
|
|
|
ChildIterator(); // Disable default constructor.
|
|
protected:
|
|
ChildIterator(NodeType *F, NodeSubset C) : FirstNode(F), Children(C) {}
|
|
|
|
public:
|
|
/// ChildIterator - Copy constructor.
|
|
ChildIterator(const ChildIterator& other) : FirstNode(other.FirstNode),
|
|
Children(other.Children) {}
|
|
|
|
/// Comparison operators.
|
|
bool operator==(const ChildIterator &other) const {
|
|
return other.FirstNode == this->FirstNode &&
|
|
other.Children == this->Children;
|
|
}
|
|
bool operator!=(const ChildIterator &other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
/// Prefix increment operator.
|
|
ChildIterator& operator++() {
|
|
// Find the next unvisited child node.
|
|
for (unsigned i = 0; i != N; ++i)
|
|
if (Children.count(i)) {
|
|
// Remove that child - it has been visited. This is the increment!
|
|
Children.DeleteNode(i);
|
|
return *this;
|
|
}
|
|
assert(false && "Incrementing end iterator!");
|
|
return *this; // Avoid compiler warnings.
|
|
}
|
|
|
|
/// Postfix increment operator.
|
|
ChildIterator operator++(int) {
|
|
ChildIterator Result(*this);
|
|
++(*this);
|
|
return Result;
|
|
}
|
|
|
|
/// Dereference operator.
|
|
NodeType *operator*() {
|
|
// Find the next unvisited child node.
|
|
for (unsigned i = 0; i != N; ++i)
|
|
if (Children.count(i))
|
|
// Return a pointer to it.
|
|
return FirstNode + i;
|
|
assert(false && "Dereferencing end iterator!");
|
|
return nullptr; // Avoid compiler warning.
|
|
}
|
|
};
|
|
|
|
/// child_begin - Return an iterator pointing to the first child of the given
|
|
/// node.
|
|
static ChildIterator child_begin(NodeType *Parent) {
|
|
return ChildIterator(Parent - Parent->first, Parent->second);
|
|
}
|
|
|
|
/// child_end - Return the end iterator for children of the given node.
|
|
static ChildIterator child_end(NodeType *Parent) {
|
|
return ChildIterator(Parent - Parent->first, NodeSubset());
|
|
}
|
|
};
|
|
|
|
template <unsigned N>
|
|
struct GraphTraits<Graph<N> > {
|
|
typedef typename Graph<N>::NodeType NodeType;
|
|
typedef typename Graph<N>::ChildIterator ChildIteratorType;
|
|
|
|
static inline NodeType *getEntryNode(const Graph<N> &G) { return G.AccessNode(0); }
|
|
static inline ChildIteratorType child_begin(NodeType *Node) {
|
|
return Graph<N>::child_begin(Node);
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *Node) {
|
|
return Graph<N>::child_end(Node);
|
|
}
|
|
};
|
|
|
|
TEST(SCCIteratorTest, AllSmallGraphs) {
|
|
// Test SCC computation against every graph with NUM_NODES nodes or less.
|
|
// Since SCC considers every node to have an implicit self-edge, we only
|
|
// create graphs for which every node has a self-edge.
|
|
#define NUM_NODES 4
|
|
#define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1))
|
|
typedef Graph<NUM_NODES> GT;
|
|
|
|
/// Enumerate all graphs using NUM_GRAPHS bits.
|
|
assert(NUM_GRAPHS < sizeof(unsigned) * CHAR_BIT && "Too many graphs!");
|
|
for (unsigned GraphDescriptor = 0; GraphDescriptor < (1U << NUM_GRAPHS);
|
|
++GraphDescriptor) {
|
|
GT G;
|
|
|
|
// Add edges as specified by the descriptor.
|
|
unsigned DescriptorCopy = GraphDescriptor;
|
|
for (unsigned i = 0; i != NUM_NODES; ++i)
|
|
for (unsigned j = 0; j != NUM_NODES; ++j) {
|
|
// Always add a self-edge.
|
|
if (i == j) {
|
|
G.AddEdge(i, j);
|
|
continue;
|
|
}
|
|
if (DescriptorCopy & 1)
|
|
G.AddEdge(i, j);
|
|
DescriptorCopy >>= 1;
|
|
}
|
|
|
|
// Test the SCC logic on this graph.
|
|
|
|
/// NodesInSomeSCC - Those nodes which are in some SCC.
|
|
GT::NodeSubset NodesInSomeSCC;
|
|
|
|
for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) {
|
|
const std::vector<GT::NodeType *> &SCC = *I;
|
|
|
|
// Get the nodes in this SCC as a NodeSubset rather than a vector.
|
|
GT::NodeSubset NodesInThisSCC;
|
|
for (unsigned i = 0, e = SCC.size(); i != e; ++i)
|
|
NodesInThisSCC.AddNode(SCC[i]->first);
|
|
|
|
// There should be at least one node in every SCC.
|
|
EXPECT_FALSE(NodesInThisSCC.isEmpty());
|
|
|
|
// Check that every node in the SCC is reachable from every other node in
|
|
// the SCC.
|
|
for (unsigned i = 0; i != NUM_NODES; ++i)
|
|
if (NodesInThisSCC.count(i))
|
|
EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i)));
|
|
|
|
// OK, now that we now that every node in the SCC is reachable from every
|
|
// other, this means that the set of nodes reachable from any node in the
|
|
// SCC is the same as the set of nodes reachable from every node in the
|
|
// SCC. Check that for every node N not in the SCC but reachable from the
|
|
// SCC, no element of the SCC is reachable from N.
|
|
for (unsigned i = 0; i != NUM_NODES; ++i)
|
|
if (NodesInThisSCC.count(i)) {
|
|
GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
|
|
GT::NodeSubset ReachableButNotInSCC =
|
|
NodesReachableFromSCC.Meet(NodesInThisSCC.Complement());
|
|
|
|
for (unsigned j = 0; j != NUM_NODES; ++j)
|
|
if (ReachableButNotInSCC.count(j))
|
|
EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty());
|
|
|
|
// The result must be the same for all other nodes in this SCC, so
|
|
// there is no point in checking them.
|
|
break;
|
|
}
|
|
|
|
// This is indeed a SCC: a maximal set of nodes for which each node is
|
|
// reachable from every other.
|
|
|
|
// Check that we didn't already see this SCC.
|
|
EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty());
|
|
|
|
NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC);
|
|
|
|
// Check a property that is specific to the LLVM SCC iterator and
|
|
// guaranteed by it: if a node in SCC S1 has an edge to a node in
|
|
// SCC S2, then S1 is visited *after* S2. This means that the set
|
|
// of nodes reachable from this SCC must be contained either in the
|
|
// union of this SCC and all previously visited SCC's.
|
|
|
|
for (unsigned i = 0; i != NUM_NODES; ++i)
|
|
if (NodesInThisSCC.count(i)) {
|
|
GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
|
|
EXPECT_TRUE(NodesReachableFromSCC.isSubsetOf(NodesInSomeSCC));
|
|
// The result must be the same for all other nodes in this SCC, so
|
|
// there is no point in checking them.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Finally, check that the nodes in some SCC are exactly those that are
|
|
// reachable from the initial node.
|
|
EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0));
|
|
}
|
|
}
|
|
|
|
}
|