mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-04 05:31:06 +00:00
efe40a5a1d
This patch merges MinVisitNumStack with VisitStack using a StackElement struct. Patch by Mehdi Amini! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201353 91177308-0d34-0410-b5e6-96231b3b80d8
247 lines
8.4 KiB
C++
247 lines
8.4 KiB
C++
//===---- ADT/SCCIterator.h - Strongly Connected Comp. Iter. ----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
///
|
|
/// This builds on the llvm/ADT/GraphTraits.h file to find the strongly
|
|
/// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS
|
|
/// algorithm.
|
|
///
|
|
/// The SCC iterator has the important property that if a node in SCC S1 has an
|
|
/// edge to a node in SCC S2, then it visits S1 *after* S2.
|
|
///
|
|
/// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE:
|
|
/// This requires some simple wrappers and is not supported yet.)
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_SCCITERATOR_H
|
|
#define LLVM_ADT_SCCITERATOR_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
/// \brief Enumerate the SCCs of a directed graph in reverse topological order
|
|
/// of the SCC DAG.
|
|
///
|
|
/// This is implemented using Tarjan's DFS algorithm using an internal stack to
|
|
/// build up a vector of nodes in a particular SCC. Note that it is a forward
|
|
/// iterator and thus you cannot backtrack or re-visit nodes.
|
|
template <class GraphT, class GT = GraphTraits<GraphT> >
|
|
class scc_iterator
|
|
: public std::iterator<std::forward_iterator_tag,
|
|
std::vector<typename GT::NodeType>, ptrdiff_t> {
|
|
typedef typename GT::NodeType NodeType;
|
|
typedef typename GT::ChildIteratorType ChildItTy;
|
|
typedef std::vector<NodeType *> SccTy;
|
|
typedef std::iterator<std::forward_iterator_tag,
|
|
std::vector<typename GT::NodeType>, ptrdiff_t> super;
|
|
typedef typename super::reference reference;
|
|
typedef typename super::pointer pointer;
|
|
|
|
// Element of VisitStack during DFS.
|
|
struct StackElement {
|
|
NodeType *Node; ///< The current node pointer.
|
|
ChildItTy NextChild; ///< The next child, modified inplace during DFS.
|
|
unsigned MinVisited; ///< Minimum uplink value of all children of Node.
|
|
|
|
StackElement(NodeType *Node, const ChildItTy &Child, unsigned Min)
|
|
: Node(Node), NextChild(Child), MinVisited(Min) {}
|
|
|
|
bool operator==(const StackElement &Other) const {
|
|
return Node == Other.Node &&
|
|
NextChild == Other.NextChild &&
|
|
MinVisited == Other.MinVisited;
|
|
}
|
|
};
|
|
|
|
// The visit counters used to detect when a complete SCC is on the stack.
|
|
// visitNum is the global counter.
|
|
// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
|
|
unsigned visitNum;
|
|
DenseMap<NodeType *, unsigned> nodeVisitNumbers;
|
|
|
|
// Stack holding nodes of the SCC.
|
|
std::vector<NodeType *> SCCNodeStack;
|
|
|
|
// The current SCC, retrieved using operator*().
|
|
SccTy CurrentSCC;
|
|
|
|
|
|
// DFS stack, Used to maintain the ordering. The top contains the current
|
|
// node, the next child to visit, and the minimum uplink value of all child
|
|
std::vector<StackElement> VisitStack;
|
|
|
|
// A single "visit" within the non-recursive DFS traversal.
|
|
void DFSVisitOne(NodeType *N) {
|
|
++visitNum;
|
|
nodeVisitNumbers[N] = visitNum;
|
|
SCCNodeStack.push_back(N);
|
|
VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
|
|
#if 0 // Enable if needed when debugging.
|
|
dbgs() << "TarjanSCC: Node " << N <<
|
|
" : visitNum = " << visitNum << "\n";
|
|
#endif
|
|
}
|
|
|
|
// The stack-based DFS traversal; defined below.
|
|
void DFSVisitChildren() {
|
|
assert(!VisitStack.empty());
|
|
while (VisitStack.back().NextChild !=
|
|
GT::child_end(VisitStack.back().Node)) {
|
|
// TOS has at least one more child so continue DFS
|
|
NodeType *childN = *VisitStack.back().NextChild++;
|
|
typename DenseMap<NodeType *, unsigned>::iterator Visited =
|
|
nodeVisitNumbers.find(childN);
|
|
if (Visited == nodeVisitNumbers.end()) {
|
|
// this node has never been seen.
|
|
DFSVisitOne(childN);
|
|
continue;
|
|
}
|
|
|
|
unsigned childNum = Visited->second;
|
|
if (VisitStack.back().MinVisited > childNum)
|
|
VisitStack.back().MinVisited = childNum;
|
|
}
|
|
}
|
|
|
|
// Compute the next SCC using the DFS traversal.
|
|
void GetNextSCC() {
|
|
CurrentSCC.clear(); // Prepare to compute the next SCC
|
|
while (!VisitStack.empty()) {
|
|
DFSVisitChildren();
|
|
|
|
// Pop the leaf on top of the VisitStack.
|
|
NodeType *visitingN = VisitStack.back().Node;
|
|
unsigned minVisitNum = VisitStack.back().MinVisited;
|
|
assert(VisitStack.back().NextChild == GT::child_end(visitingN));
|
|
VisitStack.pop_back();
|
|
|
|
// Propagate MinVisitNum to parent so we can detect the SCC starting node.
|
|
if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
|
|
VisitStack.back().MinVisited = minVisitNum;
|
|
|
|
#if 0 // Enable if needed when debugging.
|
|
dbgs() << "TarjanSCC: Popped node " << visitingN <<
|
|
" : minVisitNum = " << minVisitNum << "; Node visit num = " <<
|
|
nodeVisitNumbers[visitingN] << "\n";
|
|
#endif
|
|
|
|
if (minVisitNum != nodeVisitNumbers[visitingN])
|
|
continue;
|
|
|
|
// A full SCC is on the SCCNodeStack! It includes all nodes below
|
|
// visitingN on the stack. Copy those nodes to CurrentSCC,
|
|
// reset their minVisit values, and return (this suspends
|
|
// the DFS traversal till the next ++).
|
|
do {
|
|
CurrentSCC.push_back(SCCNodeStack.back());
|
|
SCCNodeStack.pop_back();
|
|
nodeVisitNumbers[CurrentSCC.back()] = ~0U;
|
|
} while (CurrentSCC.back() != visitingN);
|
|
return;
|
|
}
|
|
}
|
|
|
|
inline scc_iterator(NodeType *entryN) : visitNum(0) {
|
|
DFSVisitOne(entryN);
|
|
GetNextSCC();
|
|
}
|
|
|
|
// End is when the DFS stack is empty.
|
|
inline scc_iterator() {}
|
|
|
|
public:
|
|
static inline scc_iterator begin(const GraphT &G) {
|
|
return scc_iterator(GT::getEntryNode(G));
|
|
}
|
|
static inline scc_iterator end(const GraphT &) { return scc_iterator(); }
|
|
|
|
/// \brief Direct loop termination test which is more efficient than
|
|
/// comparison with \c end().
|
|
inline bool isAtEnd() const {
|
|
assert(!CurrentSCC.empty() || VisitStack.empty());
|
|
return CurrentSCC.empty();
|
|
}
|
|
|
|
inline bool operator==(const scc_iterator &x) const {
|
|
return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
|
|
}
|
|
inline bool operator!=(const scc_iterator &x) const { return !operator==(x); }
|
|
|
|
inline scc_iterator &operator++() {
|
|
GetNextSCC();
|
|
return *this;
|
|
}
|
|
inline scc_iterator operator++(int) {
|
|
scc_iterator tmp = *this;
|
|
++*this;
|
|
return tmp;
|
|
}
|
|
|
|
inline const SccTy &operator*() const {
|
|
assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
|
|
return CurrentSCC;
|
|
}
|
|
inline SccTy &operator*() {
|
|
assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
|
|
return CurrentSCC;
|
|
}
|
|
|
|
/// \brief Test if the current SCC has a loop.
|
|
///
|
|
/// If the SCC has more than one node, this is trivially true. If not, it may
|
|
/// still contain a loop if the node has an edge back to itself.
|
|
bool hasLoop() const {
|
|
assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
|
|
if (CurrentSCC.size() > 1)
|
|
return true;
|
|
NodeType *N = CurrentSCC.front();
|
|
for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
|
|
++CI)
|
|
if (*CI == N)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// This informs the \c scc_iterator that the specified \c Old node
|
|
/// has been deleted, and \c New is to be used in its place.
|
|
void ReplaceNode(NodeType *Old, NodeType *New) {
|
|
assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
|
|
nodeVisitNumbers[New] = nodeVisitNumbers[Old];
|
|
nodeVisitNumbers.erase(Old);
|
|
}
|
|
};
|
|
|
|
/// \brief Construct the begin iterator for a deduced graph type T.
|
|
template <class T> scc_iterator<T> scc_begin(const T &G) {
|
|
return scc_iterator<T>::begin(G);
|
|
}
|
|
|
|
/// \brief Construct the end iterator for a deduced graph type T.
|
|
template <class T> scc_iterator<T> scc_end(const T &G) {
|
|
return scc_iterator<T>::end(G);
|
|
}
|
|
|
|
/// \brief Construct the begin iterator for a deduced graph type T's Inverse<T>.
|
|
template <class T> scc_iterator<Inverse<T> > scc_begin(const Inverse<T> &G) {
|
|
return scc_iterator<Inverse<T> >::begin(G);
|
|
}
|
|
|
|
/// \brief Construct the end iterator for a deduced graph type T's Inverse<T>.
|
|
template <class T> scc_iterator<Inverse<T> > scc_end(const Inverse<T> &G) {
|
|
return scc_iterator<Inverse<T> >::end(G);
|
|
}
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|