mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-09 10:05:41 +00:00
1d0be15f89
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78948 91177308-0d34-0410-b5e6-96231b3b80d8
1013 lines
36 KiB
C++
1013 lines
36 KiB
C++
///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the implementation of the FastISel class.
|
|
//
|
|
// "Fast" instruction selection is designed to emit very poor code quickly.
|
|
// Also, it is not designed to be able to do much lowering, so most illegal
|
|
// types (e.g. i64 on 32-bit targets) and operations are not supported. It is
|
|
// also not intended to be able to do much optimization, except in a few cases
|
|
// where doing optimizations reduces overall compile time. For example, folding
|
|
// constants into immediate fields is often done, because it's cheap and it
|
|
// reduces the number of instructions later phases have to examine.
|
|
//
|
|
// "Fast" instruction selection is able to fail gracefully and transfer
|
|
// control to the SelectionDAG selector for operations that it doesn't
|
|
// support. In many cases, this allows us to avoid duplicating a lot of
|
|
// the complicated lowering logic that SelectionDAG currently has.
|
|
//
|
|
// The intended use for "fast" instruction selection is "-O0" mode
|
|
// compilation, where the quality of the generated code is irrelevant when
|
|
// weighed against the speed at which the code can be generated. Also,
|
|
// at -O0, the LLVM optimizers are not running, and this makes the
|
|
// compile time of codegen a much higher portion of the overall compile
|
|
// time. Despite its limitations, "fast" instruction selection is able to
|
|
// handle enough code on its own to provide noticeable overall speedups
|
|
// in -O0 compiles.
|
|
//
|
|
// Basic operations are supported in a target-independent way, by reading
|
|
// the same instruction descriptions that the SelectionDAG selector reads,
|
|
// and identifying simple arithmetic operations that can be directly selected
|
|
// from simple operators. More complicated operations currently require
|
|
// target-specific code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/CodeGen/FastISel.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/DwarfWriter.h"
|
|
#include "llvm/Analysis/DebugInfo.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "SelectionDAGBuild.h"
|
|
using namespace llvm;
|
|
|
|
unsigned FastISel::getRegForValue(Value *V) {
|
|
EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
|
|
// Don't handle non-simple values in FastISel.
|
|
if (!RealVT.isSimple())
|
|
return 0;
|
|
|
|
// Ignore illegal types. We must do this before looking up the value
|
|
// in ValueMap because Arguments are given virtual registers regardless
|
|
// of whether FastISel can handle them.
|
|
MVT VT = RealVT.getSimpleVT();
|
|
if (!TLI.isTypeLegal(VT)) {
|
|
// Promote MVT::i1 to a legal type though, because it's common and easy.
|
|
if (VT == MVT::i1)
|
|
VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
// Look up the value to see if we already have a register for it. We
|
|
// cache values defined by Instructions across blocks, and other values
|
|
// only locally. This is because Instructions already have the SSA
|
|
// def-dominatess-use requirement enforced.
|
|
if (ValueMap.count(V))
|
|
return ValueMap[V];
|
|
unsigned Reg = LocalValueMap[V];
|
|
if (Reg != 0)
|
|
return Reg;
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
|
if (CI->getValue().getActiveBits() <= 64)
|
|
Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
|
|
} else if (isa<AllocaInst>(V)) {
|
|
Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
|
|
} else if (isa<ConstantPointerNull>(V)) {
|
|
// Translate this as an integer zero so that it can be
|
|
// local-CSE'd with actual integer zeros.
|
|
Reg =
|
|
getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
|
|
} else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
|
|
Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
|
|
|
|
if (!Reg) {
|
|
const APFloat &Flt = CF->getValueAPF();
|
|
EVT IntVT = TLI.getPointerTy();
|
|
|
|
uint64_t x[2];
|
|
uint32_t IntBitWidth = IntVT.getSizeInBits();
|
|
bool isExact;
|
|
(void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
|
|
APFloat::rmTowardZero, &isExact);
|
|
if (isExact) {
|
|
APInt IntVal(IntBitWidth, 2, x);
|
|
|
|
unsigned IntegerReg =
|
|
getRegForValue(ConstantInt::get(V->getContext(), IntVal));
|
|
if (IntegerReg != 0)
|
|
Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
|
|
}
|
|
}
|
|
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
|
|
if (!SelectOperator(CE, CE->getOpcode())) return 0;
|
|
Reg = LocalValueMap[CE];
|
|
} else if (isa<UndefValue>(V)) {
|
|
Reg = createResultReg(TLI.getRegClassFor(VT));
|
|
BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
|
|
}
|
|
|
|
// If target-independent code couldn't handle the value, give target-specific
|
|
// code a try.
|
|
if (!Reg && isa<Constant>(V))
|
|
Reg = TargetMaterializeConstant(cast<Constant>(V));
|
|
|
|
// Don't cache constant materializations in the general ValueMap.
|
|
// To do so would require tracking what uses they dominate.
|
|
if (Reg != 0)
|
|
LocalValueMap[V] = Reg;
|
|
return Reg;
|
|
}
|
|
|
|
unsigned FastISel::lookUpRegForValue(Value *V) {
|
|
// Look up the value to see if we already have a register for it. We
|
|
// cache values defined by Instructions across blocks, and other values
|
|
// only locally. This is because Instructions already have the SSA
|
|
// def-dominatess-use requirement enforced.
|
|
if (ValueMap.count(V))
|
|
return ValueMap[V];
|
|
return LocalValueMap[V];
|
|
}
|
|
|
|
/// UpdateValueMap - Update the value map to include the new mapping for this
|
|
/// instruction, or insert an extra copy to get the result in a previous
|
|
/// determined register.
|
|
/// NOTE: This is only necessary because we might select a block that uses
|
|
/// a value before we select the block that defines the value. It might be
|
|
/// possible to fix this by selecting blocks in reverse postorder.
|
|
unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
|
|
if (!isa<Instruction>(I)) {
|
|
LocalValueMap[I] = Reg;
|
|
return Reg;
|
|
}
|
|
|
|
unsigned &AssignedReg = ValueMap[I];
|
|
if (AssignedReg == 0)
|
|
AssignedReg = Reg;
|
|
else if (Reg != AssignedReg) {
|
|
const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
|
|
TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
|
|
Reg, RegClass, RegClass);
|
|
}
|
|
return AssignedReg;
|
|
}
|
|
|
|
unsigned FastISel::getRegForGEPIndex(Value *Idx) {
|
|
unsigned IdxN = getRegForValue(Idx);
|
|
if (IdxN == 0)
|
|
// Unhandled operand. Halt "fast" selection and bail.
|
|
return 0;
|
|
|
|
// If the index is smaller or larger than intptr_t, truncate or extend it.
|
|
MVT PtrVT = TLI.getPointerTy();
|
|
EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
|
|
if (IdxVT.bitsLT(PtrVT))
|
|
IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
|
|
else if (IdxVT.bitsGT(PtrVT))
|
|
IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
|
|
return IdxN;
|
|
}
|
|
|
|
/// SelectBinaryOp - Select and emit code for a binary operator instruction,
|
|
/// which has an opcode which directly corresponds to the given ISD opcode.
|
|
///
|
|
bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
|
|
EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
|
|
if (VT == MVT::Other || !VT.isSimple())
|
|
// Unhandled type. Halt "fast" selection and bail.
|
|
return false;
|
|
|
|
// We only handle legal types. For example, on x86-32 the instruction
|
|
// selector contains all of the 64-bit instructions from x86-64,
|
|
// under the assumption that i64 won't be used if the target doesn't
|
|
// support it.
|
|
if (!TLI.isTypeLegal(VT)) {
|
|
// MVT::i1 is special. Allow AND, OR, or XOR because they
|
|
// don't require additional zeroing, which makes them easy.
|
|
if (VT == MVT::i1 &&
|
|
(ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
|
|
ISDOpcode == ISD::XOR))
|
|
VT = TLI.getTypeToTransformTo(I->getContext(), VT);
|
|
else
|
|
return false;
|
|
}
|
|
|
|
unsigned Op0 = getRegForValue(I->getOperand(0));
|
|
if (Op0 == 0)
|
|
// Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
|
|
// Check if the second operand is a constant and handle it appropriately.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
|
unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
|
|
ISDOpcode, Op0, CI->getZExtValue());
|
|
if (ResultReg != 0) {
|
|
// We successfully emitted code for the given LLVM Instruction.
|
|
UpdateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Check if the second operand is a constant float.
|
|
if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
|
|
unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
|
|
ISDOpcode, Op0, CF);
|
|
if (ResultReg != 0) {
|
|
// We successfully emitted code for the given LLVM Instruction.
|
|
UpdateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
unsigned Op1 = getRegForValue(I->getOperand(1));
|
|
if (Op1 == 0)
|
|
// Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
|
|
// Now we have both operands in registers. Emit the instruction.
|
|
unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
|
|
ISDOpcode, Op0, Op1);
|
|
if (ResultReg == 0)
|
|
// Target-specific code wasn't able to find a machine opcode for
|
|
// the given ISD opcode and type. Halt "fast" selection and bail.
|
|
return false;
|
|
|
|
// We successfully emitted code for the given LLVM Instruction.
|
|
UpdateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool FastISel::SelectGetElementPtr(User *I) {
|
|
unsigned N = getRegForValue(I->getOperand(0));
|
|
if (N == 0)
|
|
// Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
|
|
const Type *Ty = I->getOperand(0)->getType();
|
|
MVT VT = TLI.getPointerTy();
|
|
for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
|
|
OI != E; ++OI) {
|
|
Value *Idx = *OI;
|
|
if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
|
|
unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
|
|
if (Field) {
|
|
// N = N + Offset
|
|
uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
|
|
// FIXME: This can be optimized by combining the add with a
|
|
// subsequent one.
|
|
N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
|
|
if (N == 0)
|
|
// Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
}
|
|
Ty = StTy->getElementType(Field);
|
|
} else {
|
|
Ty = cast<SequentialType>(Ty)->getElementType();
|
|
|
|
// If this is a constant subscript, handle it quickly.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
|
|
if (CI->getZExtValue() == 0) continue;
|
|
uint64_t Offs =
|
|
TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
|
|
N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
|
|
if (N == 0)
|
|
// Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
// N = N + Idx * ElementSize;
|
|
uint64_t ElementSize = TD.getTypeAllocSize(Ty);
|
|
unsigned IdxN = getRegForGEPIndex(Idx);
|
|
if (IdxN == 0)
|
|
// Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
|
|
if (ElementSize != 1) {
|
|
IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
|
|
if (IdxN == 0)
|
|
// Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
}
|
|
N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
|
|
if (N == 0)
|
|
// Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We successfully emitted code for the given LLVM Instruction.
|
|
UpdateValueMap(I, N);
|
|
return true;
|
|
}
|
|
|
|
bool FastISel::SelectCall(User *I) {
|
|
Function *F = cast<CallInst>(I)->getCalledFunction();
|
|
if (!F) return false;
|
|
|
|
unsigned IID = F->getIntrinsicID();
|
|
switch (IID) {
|
|
default: break;
|
|
case Intrinsic::dbg_stoppoint: {
|
|
DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
|
|
if (isValidDebugInfoIntrinsic(*SPI, CodeGenOpt::None))
|
|
setCurDebugLoc(ExtractDebugLocation(*SPI, MF.getDebugLocInfo()));
|
|
return true;
|
|
}
|
|
case Intrinsic::dbg_region_start: {
|
|
DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
|
|
if (isValidDebugInfoIntrinsic(*RSI, CodeGenOpt::None) && DW
|
|
&& DW->ShouldEmitDwarfDebug()) {
|
|
unsigned ID =
|
|
DW->RecordRegionStart(cast<GlobalVariable>(RSI->getContext()));
|
|
const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
|
|
BuildMI(MBB, DL, II).addImm(ID);
|
|
}
|
|
return true;
|
|
}
|
|
case Intrinsic::dbg_region_end: {
|
|
DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
|
|
if (isValidDebugInfoIntrinsic(*REI, CodeGenOpt::None) && DW
|
|
&& DW->ShouldEmitDwarfDebug()) {
|
|
unsigned ID = 0;
|
|
DISubprogram Subprogram(cast<GlobalVariable>(REI->getContext()));
|
|
if (isInlinedFnEnd(*REI, MF.getFunction())) {
|
|
// This is end of an inlined function.
|
|
const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
|
|
ID = DW->RecordInlinedFnEnd(Subprogram);
|
|
if (ID)
|
|
// Returned ID is 0 if this is unbalanced "end of inlined
|
|
// scope". This could happen if optimizer eats dbg intrinsics
|
|
// or "beginning of inlined scope" is not recoginized due to
|
|
// missing location info. In such cases, ignore this region.end.
|
|
BuildMI(MBB, DL, II).addImm(ID);
|
|
} else {
|
|
const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
|
|
ID = DW->RecordRegionEnd(cast<GlobalVariable>(REI->getContext()));
|
|
BuildMI(MBB, DL, II).addImm(ID);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
case Intrinsic::dbg_func_start: {
|
|
DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
|
|
if (!isValidDebugInfoIntrinsic(*FSI, CodeGenOpt::None) || !DW
|
|
|| !DW->ShouldEmitDwarfDebug())
|
|
return true;
|
|
|
|
if (isInlinedFnStart(*FSI, MF.getFunction())) {
|
|
// This is a beginning of an inlined function.
|
|
|
|
// If llvm.dbg.func.start is seen in a new block before any
|
|
// llvm.dbg.stoppoint intrinsic then the location info is unknown.
|
|
// FIXME : Why DebugLoc is reset at the beginning of each block ?
|
|
DebugLoc PrevLoc = DL;
|
|
if (PrevLoc.isUnknown())
|
|
return true;
|
|
// Record the source line.
|
|
setCurDebugLoc(ExtractDebugLocation(*FSI, MF.getDebugLocInfo()));
|
|
|
|
DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc);
|
|
DISubprogram SP(cast<GlobalVariable>(FSI->getSubprogram()));
|
|
unsigned LabelID = DW->RecordInlinedFnStart(SP,
|
|
DICompileUnit(PrevLocTpl.CompileUnit),
|
|
PrevLocTpl.Line,
|
|
PrevLocTpl.Col);
|
|
const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
|
|
BuildMI(MBB, DL, II).addImm(LabelID);
|
|
return true;
|
|
}
|
|
|
|
// This is a beginning of a new function.
|
|
MF.setDefaultDebugLoc(ExtractDebugLocation(*FSI, MF.getDebugLocInfo()));
|
|
|
|
// llvm.dbg.func_start also defines beginning of function scope.
|
|
DW->RecordRegionStart(cast<GlobalVariable>(FSI->getSubprogram()));
|
|
return true;
|
|
}
|
|
case Intrinsic::dbg_declare: {
|
|
DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
|
|
if (!isValidDebugInfoIntrinsic(*DI, CodeGenOpt::None) || !DW
|
|
|| !DW->ShouldEmitDwarfDebug())
|
|
return true;
|
|
|
|
Value *Variable = DI->getVariable();
|
|
Value *Address = DI->getAddress();
|
|
if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
|
|
Address = BCI->getOperand(0);
|
|
AllocaInst *AI = dyn_cast<AllocaInst>(Address);
|
|
// Don't handle byval struct arguments or VLAs, for example.
|
|
if (!AI) break;
|
|
DenseMap<const AllocaInst*, int>::iterator SI =
|
|
StaticAllocaMap.find(AI);
|
|
if (SI == StaticAllocaMap.end()) break; // VLAs.
|
|
int FI = SI->second;
|
|
|
|
// Determine the debug globalvariable.
|
|
GlobalValue *GV = cast<GlobalVariable>(Variable);
|
|
|
|
// Build the DECLARE instruction.
|
|
const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE);
|
|
MachineInstr *DeclareMI
|
|
= BuildMI(MBB, DL, II).addFrameIndex(FI).addGlobalAddress(GV);
|
|
DIVariable DV(cast<GlobalVariable>(GV));
|
|
DW->RecordVariableScope(DV, DeclareMI);
|
|
return true;
|
|
}
|
|
case Intrinsic::eh_exception: {
|
|
EVT VT = TLI.getValueType(I->getType());
|
|
switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
|
|
default: break;
|
|
case TargetLowering::Expand: {
|
|
assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!");
|
|
unsigned Reg = TLI.getExceptionAddressRegister();
|
|
const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
|
|
unsigned ResultReg = createResultReg(RC);
|
|
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
|
|
Reg, RC, RC);
|
|
assert(InsertedCopy && "Can't copy address registers!");
|
|
InsertedCopy = InsertedCopy;
|
|
UpdateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::eh_selector_i32:
|
|
case Intrinsic::eh_selector_i64: {
|
|
EVT VT = TLI.getValueType(I->getType());
|
|
switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
|
|
default: break;
|
|
case TargetLowering::Expand: {
|
|
EVT VT = (IID == Intrinsic::eh_selector_i32 ?
|
|
MVT::i32 : MVT::i64);
|
|
|
|
if (MMI) {
|
|
if (MBB->isLandingPad())
|
|
AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
|
|
else {
|
|
#ifndef NDEBUG
|
|
CatchInfoLost.insert(cast<CallInst>(I));
|
|
#endif
|
|
// FIXME: Mark exception selector register as live in. Hack for PR1508.
|
|
unsigned Reg = TLI.getExceptionSelectorRegister();
|
|
if (Reg) MBB->addLiveIn(Reg);
|
|
}
|
|
|
|
unsigned Reg = TLI.getExceptionSelectorRegister();
|
|
const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
|
|
unsigned ResultReg = createResultReg(RC);
|
|
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
|
|
Reg, RC, RC);
|
|
assert(InsertedCopy && "Can't copy address registers!");
|
|
InsertedCopy = InsertedCopy;
|
|
UpdateValueMap(I, ResultReg);
|
|
} else {
|
|
unsigned ResultReg =
|
|
getRegForValue(Constant::getNullValue(I->getType()));
|
|
UpdateValueMap(I, ResultReg);
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
|
|
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
|
|
EVT DstVT = TLI.getValueType(I->getType());
|
|
|
|
if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
|
|
DstVT == MVT::Other || !DstVT.isSimple())
|
|
// Unhandled type. Halt "fast" selection and bail.
|
|
return false;
|
|
|
|
// Check if the destination type is legal. Or as a special case,
|
|
// it may be i1 if we're doing a truncate because that's
|
|
// easy and somewhat common.
|
|
if (!TLI.isTypeLegal(DstVT))
|
|
if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
|
|
// Unhandled type. Halt "fast" selection and bail.
|
|
return false;
|
|
|
|
// Check if the source operand is legal. Or as a special case,
|
|
// it may be i1 if we're doing zero-extension because that's
|
|
// easy and somewhat common.
|
|
if (!TLI.isTypeLegal(SrcVT))
|
|
if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
|
|
// Unhandled type. Halt "fast" selection and bail.
|
|
return false;
|
|
|
|
unsigned InputReg = getRegForValue(I->getOperand(0));
|
|
if (!InputReg)
|
|
// Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
|
|
// If the operand is i1, arrange for the high bits in the register to be zero.
|
|
if (SrcVT == MVT::i1) {
|
|
SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
|
|
InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
|
|
if (!InputReg)
|
|
return false;
|
|
}
|
|
// If the result is i1, truncate to the target's type for i1 first.
|
|
if (DstVT == MVT::i1)
|
|
DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);
|
|
|
|
unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
|
|
DstVT.getSimpleVT(),
|
|
Opcode,
|
|
InputReg);
|
|
if (!ResultReg)
|
|
return false;
|
|
|
|
UpdateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool FastISel::SelectBitCast(User *I) {
|
|
// If the bitcast doesn't change the type, just use the operand value.
|
|
if (I->getType() == I->getOperand(0)->getType()) {
|
|
unsigned Reg = getRegForValue(I->getOperand(0));
|
|
if (Reg == 0)
|
|
return false;
|
|
UpdateValueMap(I, Reg);
|
|
return true;
|
|
}
|
|
|
|
// Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
|
|
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
|
|
EVT DstVT = TLI.getValueType(I->getType());
|
|
|
|
if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
|
|
DstVT == MVT::Other || !DstVT.isSimple() ||
|
|
!TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
|
|
// Unhandled type. Halt "fast" selection and bail.
|
|
return false;
|
|
|
|
unsigned Op0 = getRegForValue(I->getOperand(0));
|
|
if (Op0 == 0)
|
|
// Unhandled operand. Halt "fast" selection and bail.
|
|
return false;
|
|
|
|
// First, try to perform the bitcast by inserting a reg-reg copy.
|
|
unsigned ResultReg = 0;
|
|
if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
|
|
TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
|
|
TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
|
|
ResultReg = createResultReg(DstClass);
|
|
|
|
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
|
|
Op0, DstClass, SrcClass);
|
|
if (!InsertedCopy)
|
|
ResultReg = 0;
|
|
}
|
|
|
|
// If the reg-reg copy failed, select a BIT_CONVERT opcode.
|
|
if (!ResultReg)
|
|
ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
|
|
ISD::BIT_CONVERT, Op0);
|
|
|
|
if (!ResultReg)
|
|
return false;
|
|
|
|
UpdateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
FastISel::SelectInstruction(Instruction *I) {
|
|
return SelectOperator(I, I->getOpcode());
|
|
}
|
|
|
|
/// FastEmitBranch - Emit an unconditional branch to the given block,
|
|
/// unless it is the immediate (fall-through) successor, and update
|
|
/// the CFG.
|
|
void
|
|
FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
|
|
MachineFunction::iterator NextMBB =
|
|
next(MachineFunction::iterator(MBB));
|
|
|
|
if (MBB->isLayoutSuccessor(MSucc)) {
|
|
// The unconditional fall-through case, which needs no instructions.
|
|
} else {
|
|
// The unconditional branch case.
|
|
TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
|
|
}
|
|
MBB->addSuccessor(MSucc);
|
|
}
|
|
|
|
bool
|
|
FastISel::SelectOperator(User *I, unsigned Opcode) {
|
|
switch (Opcode) {
|
|
case Instruction::Add:
|
|
return SelectBinaryOp(I, ISD::ADD);
|
|
case Instruction::FAdd:
|
|
return SelectBinaryOp(I, ISD::FADD);
|
|
case Instruction::Sub:
|
|
return SelectBinaryOp(I, ISD::SUB);
|
|
case Instruction::FSub:
|
|
return SelectBinaryOp(I, ISD::FSUB);
|
|
case Instruction::Mul:
|
|
return SelectBinaryOp(I, ISD::MUL);
|
|
case Instruction::FMul:
|
|
return SelectBinaryOp(I, ISD::FMUL);
|
|
case Instruction::SDiv:
|
|
return SelectBinaryOp(I, ISD::SDIV);
|
|
case Instruction::UDiv:
|
|
return SelectBinaryOp(I, ISD::UDIV);
|
|
case Instruction::FDiv:
|
|
return SelectBinaryOp(I, ISD::FDIV);
|
|
case Instruction::SRem:
|
|
return SelectBinaryOp(I, ISD::SREM);
|
|
case Instruction::URem:
|
|
return SelectBinaryOp(I, ISD::UREM);
|
|
case Instruction::FRem:
|
|
return SelectBinaryOp(I, ISD::FREM);
|
|
case Instruction::Shl:
|
|
return SelectBinaryOp(I, ISD::SHL);
|
|
case Instruction::LShr:
|
|
return SelectBinaryOp(I, ISD::SRL);
|
|
case Instruction::AShr:
|
|
return SelectBinaryOp(I, ISD::SRA);
|
|
case Instruction::And:
|
|
return SelectBinaryOp(I, ISD::AND);
|
|
case Instruction::Or:
|
|
return SelectBinaryOp(I, ISD::OR);
|
|
case Instruction::Xor:
|
|
return SelectBinaryOp(I, ISD::XOR);
|
|
|
|
case Instruction::GetElementPtr:
|
|
return SelectGetElementPtr(I);
|
|
|
|
case Instruction::Br: {
|
|
BranchInst *BI = cast<BranchInst>(I);
|
|
|
|
if (BI->isUnconditional()) {
|
|
BasicBlock *LLVMSucc = BI->getSuccessor(0);
|
|
MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
|
|
FastEmitBranch(MSucc);
|
|
return true;
|
|
}
|
|
|
|
// Conditional branches are not handed yet.
|
|
// Halt "fast" selection and bail.
|
|
return false;
|
|
}
|
|
|
|
case Instruction::Unreachable:
|
|
// Nothing to emit.
|
|
return true;
|
|
|
|
case Instruction::PHI:
|
|
// PHI nodes are already emitted.
|
|
return true;
|
|
|
|
case Instruction::Alloca:
|
|
// FunctionLowering has the static-sized case covered.
|
|
if (StaticAllocaMap.count(cast<AllocaInst>(I)))
|
|
return true;
|
|
|
|
// Dynamic-sized alloca is not handled yet.
|
|
return false;
|
|
|
|
case Instruction::Call:
|
|
return SelectCall(I);
|
|
|
|
case Instruction::BitCast:
|
|
return SelectBitCast(I);
|
|
|
|
case Instruction::FPToSI:
|
|
return SelectCast(I, ISD::FP_TO_SINT);
|
|
case Instruction::ZExt:
|
|
return SelectCast(I, ISD::ZERO_EXTEND);
|
|
case Instruction::SExt:
|
|
return SelectCast(I, ISD::SIGN_EXTEND);
|
|
case Instruction::Trunc:
|
|
return SelectCast(I, ISD::TRUNCATE);
|
|
case Instruction::SIToFP:
|
|
return SelectCast(I, ISD::SINT_TO_FP);
|
|
|
|
case Instruction::IntToPtr: // Deliberate fall-through.
|
|
case Instruction::PtrToInt: {
|
|
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
|
|
EVT DstVT = TLI.getValueType(I->getType());
|
|
if (DstVT.bitsGT(SrcVT))
|
|
return SelectCast(I, ISD::ZERO_EXTEND);
|
|
if (DstVT.bitsLT(SrcVT))
|
|
return SelectCast(I, ISD::TRUNCATE);
|
|
unsigned Reg = getRegForValue(I->getOperand(0));
|
|
if (Reg == 0) return false;
|
|
UpdateValueMap(I, Reg);
|
|
return true;
|
|
}
|
|
|
|
default:
|
|
// Unhandled instruction. Halt "fast" selection and bail.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
FastISel::FastISel(MachineFunction &mf,
|
|
MachineModuleInfo *mmi,
|
|
DwarfWriter *dw,
|
|
DenseMap<const Value *, unsigned> &vm,
|
|
DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
|
|
DenseMap<const AllocaInst *, int> &am
|
|
#ifndef NDEBUG
|
|
, SmallSet<Instruction*, 8> &cil
|
|
#endif
|
|
)
|
|
: MBB(0),
|
|
ValueMap(vm),
|
|
MBBMap(bm),
|
|
StaticAllocaMap(am),
|
|
#ifndef NDEBUG
|
|
CatchInfoLost(cil),
|
|
#endif
|
|
MF(mf),
|
|
MMI(mmi),
|
|
DW(dw),
|
|
MRI(MF.getRegInfo()),
|
|
MFI(*MF.getFrameInfo()),
|
|
MCP(*MF.getConstantPool()),
|
|
TM(MF.getTarget()),
|
|
TD(*TM.getTargetData()),
|
|
TII(*TM.getInstrInfo()),
|
|
TLI(*TM.getTargetLowering()) {
|
|
}
|
|
|
|
FastISel::~FastISel() {}
|
|
|
|
unsigned FastISel::FastEmit_(MVT, MVT,
|
|
ISD::NodeType) {
|
|
return 0;
|
|
}
|
|
|
|
unsigned FastISel::FastEmit_r(MVT, MVT,
|
|
ISD::NodeType, unsigned /*Op0*/) {
|
|
return 0;
|
|
}
|
|
|
|
unsigned FastISel::FastEmit_rr(MVT, MVT,
|
|
ISD::NodeType, unsigned /*Op0*/,
|
|
unsigned /*Op0*/) {
|
|
return 0;
|
|
}
|
|
|
|
unsigned FastISel::FastEmit_i(MVT, MVT, ISD::NodeType, uint64_t /*Imm*/) {
|
|
return 0;
|
|
}
|
|
|
|
unsigned FastISel::FastEmit_f(MVT, MVT,
|
|
ISD::NodeType, ConstantFP * /*FPImm*/) {
|
|
return 0;
|
|
}
|
|
|
|
unsigned FastISel::FastEmit_ri(MVT, MVT,
|
|
ISD::NodeType, unsigned /*Op0*/,
|
|
uint64_t /*Imm*/) {
|
|
return 0;
|
|
}
|
|
|
|
unsigned FastISel::FastEmit_rf(MVT, MVT,
|
|
ISD::NodeType, unsigned /*Op0*/,
|
|
ConstantFP * /*FPImm*/) {
|
|
return 0;
|
|
}
|
|
|
|
unsigned FastISel::FastEmit_rri(MVT, MVT,
|
|
ISD::NodeType,
|
|
unsigned /*Op0*/, unsigned /*Op1*/,
|
|
uint64_t /*Imm*/) {
|
|
return 0;
|
|
}
|
|
|
|
/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
|
|
/// to emit an instruction with an immediate operand using FastEmit_ri.
|
|
/// If that fails, it materializes the immediate into a register and try
|
|
/// FastEmit_rr instead.
|
|
unsigned FastISel::FastEmit_ri_(MVT VT, ISD::NodeType Opcode,
|
|
unsigned Op0, uint64_t Imm,
|
|
MVT ImmType) {
|
|
// First check if immediate type is legal. If not, we can't use the ri form.
|
|
unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
|
|
if (ResultReg != 0)
|
|
return ResultReg;
|
|
unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
|
|
if (MaterialReg == 0)
|
|
return 0;
|
|
return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
|
|
}
|
|
|
|
/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
|
|
/// to emit an instruction with a floating-point immediate operand using
|
|
/// FastEmit_rf. If that fails, it materializes the immediate into a register
|
|
/// and try FastEmit_rr instead.
|
|
unsigned FastISel::FastEmit_rf_(MVT VT, ISD::NodeType Opcode,
|
|
unsigned Op0, ConstantFP *FPImm,
|
|
MVT ImmType) {
|
|
// First check if immediate type is legal. If not, we can't use the rf form.
|
|
unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
|
|
if (ResultReg != 0)
|
|
return ResultReg;
|
|
|
|
// Materialize the constant in a register.
|
|
unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
|
|
if (MaterialReg == 0) {
|
|
// If the target doesn't have a way to directly enter a floating-point
|
|
// value into a register, use an alternate approach.
|
|
// TODO: The current approach only supports floating-point constants
|
|
// that can be constructed by conversion from integer values. This should
|
|
// be replaced by code that creates a load from a constant-pool entry,
|
|
// which will require some target-specific work.
|
|
const APFloat &Flt = FPImm->getValueAPF();
|
|
EVT IntVT = TLI.getPointerTy();
|
|
|
|
uint64_t x[2];
|
|
uint32_t IntBitWidth = IntVT.getSizeInBits();
|
|
bool isExact;
|
|
(void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
|
|
APFloat::rmTowardZero, &isExact);
|
|
if (!isExact)
|
|
return 0;
|
|
APInt IntVal(IntBitWidth, 2, x);
|
|
|
|
unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
|
|
ISD::Constant, IntVal.getZExtValue());
|
|
if (IntegerReg == 0)
|
|
return 0;
|
|
MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
|
|
ISD::SINT_TO_FP, IntegerReg);
|
|
if (MaterialReg == 0)
|
|
return 0;
|
|
}
|
|
return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
|
|
}
|
|
|
|
unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
|
|
return MRI.createVirtualRegister(RC);
|
|
}
|
|
|
|
unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass* RC) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
BuildMI(MBB, DL, II, ResultReg);
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
|
|
else {
|
|
BuildMI(MBB, DL, II).addReg(Op0);
|
|
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
|
|
II.ImplicitDefs[0], RC, RC);
|
|
if (!InsertedCopy)
|
|
ResultReg = 0;
|
|
}
|
|
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, unsigned Op1) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
|
|
else {
|
|
BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
|
|
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
|
|
II.ImplicitDefs[0], RC, RC);
|
|
if (!InsertedCopy)
|
|
ResultReg = 0;
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, uint64_t Imm) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
|
|
else {
|
|
BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
|
|
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
|
|
II.ImplicitDefs[0], RC, RC);
|
|
if (!InsertedCopy)
|
|
ResultReg = 0;
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, ConstantFP *FPImm) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
|
|
else {
|
|
BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
|
|
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
|
|
II.ImplicitDefs[0], RC, RC);
|
|
if (!InsertedCopy)
|
|
ResultReg = 0;
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, unsigned Op1, uint64_t Imm) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
|
|
else {
|
|
BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
|
|
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
|
|
II.ImplicitDefs[0], RC, RC);
|
|
if (!InsertedCopy)
|
|
ResultReg = 0;
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
uint64_t Imm) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
|
|
else {
|
|
BuildMI(MBB, DL, II).addImm(Imm);
|
|
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
|
|
II.ImplicitDefs[0], RC, RC);
|
|
if (!InsertedCopy)
|
|
ResultReg = 0;
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
|
|
unsigned Op0, uint32_t Idx) {
|
|
const TargetRegisterClass* RC = MRI.getRegClass(Op0);
|
|
|
|
unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
|
|
const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
|
|
else {
|
|
BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
|
|
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
|
|
II.ImplicitDefs[0], RC, RC);
|
|
if (!InsertedCopy)
|
|
ResultReg = 0;
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
|
|
/// with all but the least significant bit set to zero.
|
|
unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op) {
|
|
return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
|
|
}
|