llvm-6502/include/llvm/Analysis/AliasAnalysis.h
2004-03-15 04:07:59 +00:00

197 lines
8.4 KiB
C++

//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the generic AliasAnalysis interface, which is used as the
// common interface used by all clients of alias analysis information, and
// implemented by all alias analysis implementations. Mod/Ref information is
// also captured by this interface.
//
// Implementations of this interface must implement the various virtual methods,
// which automatically provides functionality for the entire suite of client
// APIs.
//
// This API represents memory as a (Pointer, Size) pair. The Pointer component
// specifies the base memory address of the region, the Size specifies how large
// of an area is being queried. If Size is 0, two pointers only alias if they
// are exactly equal. If size is greater than zero, but small, the two pointers
// alias if the areas pointed to overlap. If the size is very large (ie, ~0U),
// then the two pointers alias if they may be pointing to components of the same
// memory object. Pointers that point to two completely different objects in
// memory never alias, regardless of the value of the Size component.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_ALIAS_ANALYSIS_H
#define LLVM_ANALYSIS_ALIAS_ANALYSIS_H
#include "llvm/Support/CallSite.h"
#include "llvm/Pass.h" // Need this for IncludeFile
namespace llvm {
class LoadInst;
class StoreInst;
class TargetData;
class AliasAnalysis {
const TargetData *TD;
protected:
/// InitializeAliasAnalysis - Subclasses must call this method to initialize
/// the AliasAnalysis interface before any other methods are called. This is
/// typically called by the run* methods of these subclasses. This may be
/// called multiple times.
///
void InitializeAliasAnalysis(Pass *P);
// getAnalysisUsage - All alias analysis implementations should invoke this
// directly (using AliasAnalysis::getAnalysisUsage(AU)) to make sure that
// TargetData is required by the pass.
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
public:
AliasAnalysis() : TD(0) {}
virtual ~AliasAnalysis(); // We want to be subclassed
/// getTargetData - Every alias analysis implementation depends on the size of
/// data items in the current Target. This provides a uniform way to handle
/// it.
///
const TargetData &getTargetData() const { return *TD; }
//===--------------------------------------------------------------------===//
/// Alias Queries...
///
/// Alias analysis result - Either we know for sure that it does not alias, we
/// know for sure it must alias, or we don't know anything: The two pointers
/// _might_ alias. This enum is designed so you can do things like:
/// if (AA.alias(P1, P2)) { ... }
/// to check to see if two pointers might alias.
///
enum AliasResult { NoAlias = 0, MayAlias = 1, MustAlias = 2 };
/// alias - The main low level interface to the alias analysis implementation.
/// Returns a Result indicating whether the two pointers are aliased to each
/// other. This is the interface that must be implemented by specific alias
/// analysis implementations.
///
virtual AliasResult alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size) {
return MayAlias;
}
/// getMustAliases - If there are any pointers known that must alias this
/// pointer, return them now. This allows alias-set based alias analyses to
/// perform a form a value numbering (which is exposed by load-vn). If an
/// alias analysis supports this, it should ADD any must aliased pointers to
/// the specified vector.
///
virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) {}
/// pointsToConstantMemory - If the specified pointer is known to point into
/// constant global memory, return true. This allows disambiguation of store
/// instructions from constant pointers.
///
virtual bool pointsToConstantMemory(const Value *P) { return false; }
/// doesNotAccessMemory - If the specified function is known to never read or
/// write memory, return true. If the function only reads from known-constant
/// memory, it is also legal to return true.
///
/// Many optimizations (such as CSE and LICM) can be performed on calls to it,
/// without worrying about aliasing properties, and many functions have this
/// property (e.g. 'sin' and 'cos').
///
/// This property corresponds to the GCC 'const' attribute.
///
virtual bool doesNotAccessMemory(Function *F) { return false; }
/// onlyReadsMemory - If the specified function is known to only read from
/// non-volatile memory (or not access memory at all), return true.
///
/// This property allows many common optimizations to be performed in the
/// absence of interfering store instructions, such as CSE of strlen calls.
///
/// This property corresponds to the GCC 'pure' attribute.
///
virtual bool onlyReadsMemory(Function *F) { return doesNotAccessMemory(F); }
//===--------------------------------------------------------------------===//
/// Simple mod/ref information...
///
/// ModRefResult - Represent the result of a mod/ref query. Mod and Ref are
/// bits which may be or'd together.
///
enum ModRefResult { NoModRef = 0, Ref = 1, Mod = 2, ModRef = 3 };
/// getModRefInfo - Return information about whether or not an instruction may
/// read or write memory specified by the pointer operand. An instruction
/// that doesn't read or write memory may be trivially LICM'd for example.
/// getModRefInfo (for call sites) - Return whether information about whether
/// a particular call site modifies or reads the memory specified by the
/// pointer.
///
virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
/// getModRefInfo - Return information about whether two call sites may refer
/// to the same set of memory locations. This function returns NoModRef if
/// the two calls refer to disjoint memory locations, Ref if they both read
/// some of the same memory, Mod if they both write to some of the same
/// memory, and ModRef if they read and write to the same memory.
///
virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
/// Convenience functions...
ModRefResult getModRefInfo(LoadInst *L, Value *P, unsigned Size);
ModRefResult getModRefInfo(StoreInst *S, Value *P, unsigned Size);
ModRefResult getModRefInfo(CallInst *C, Value *P, unsigned Size) {
return getModRefInfo(CallSite(C), P, Size);
}
ModRefResult getModRefInfo(InvokeInst *I, Value *P, unsigned Size) {
return getModRefInfo(CallSite(I), P, Size);
}
ModRefResult getModRefInfo(Instruction *I, Value *P, unsigned Size) {
switch (I->getOpcode()) {
case Instruction::Load: return getModRefInfo((LoadInst*)I, P, Size);
case Instruction::Store: return getModRefInfo((StoreInst*)I, P, Size);
case Instruction::Call: return getModRefInfo((CallInst*)I, P, Size);
case Instruction::Invoke: return getModRefInfo((InvokeInst*)I, P, Size);
default: return NoModRef;
}
}
/// canBasicBlockModify - Return true if it is possible for execution of the
/// specified basic block to modify the value pointed to by Ptr.
///
bool canBasicBlockModify(const BasicBlock &BB, const Value *P, unsigned Size);
/// canInstructionRangeModify - Return true if it is possible for the
/// execution of the specified instructions to modify the value pointed to by
/// Ptr. The instructions to consider are all of the instructions in the
/// range of [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
///
bool canInstructionRangeModify(const Instruction &I1, const Instruction &I2,
const Value *Ptr, unsigned Size);
};
// Because of the way .a files work, we must force the BasicAA implementation to
// be pulled in if the AliasAnalysis header is included. Otherwise we run
// the risk of AliasAnalysis being used, but the default implementation not
// being linked into the tool that uses it.
//
extern void BasicAAStub();
static IncludeFile HDR_INCLUDE_BASICAA_CPP((void*)&BasicAAStub);
} // End llvm namespace
#endif