llvm-6502/lib/Target/X86/X86RegisterInfo.cpp
Nate Begeman f63be7d395 First round of support for doing scalar FP using the SSE2 ISA extension and
XMM registers.  There are many known deficiencies and fixmes, which will be
addressed ASAP.  The major benefit of this work is that it will allow the
LLVM register allocator to allocate FP registers across basic blocks.

The x86 backend will still default to x87 style FP.  To enable this work,
you must pass -enable-sse-scalar-fp and either -sse2 or -sse3 to llc.

An example before and after would be for:
double foo(double *P) { double Sum = 0; int i; for (i = 0; i < 1000; ++i)
                        Sum += P[i]; return Sum; }

The inner loop looks like the following:
x87:
.LBB_foo_1:     # no_exit
        fldl (%esp)
        faddl (%eax,%ecx,8)
        fstpl (%esp)
        incl %ecx
        cmpl $1000, %ecx
        #FP_REG_KILL
        jne .LBB_foo_1  # no_exit

SSE2:
        addsd (%eax,%ecx,8), %xmm0
        incl %ecx
        cmpl $1000, %ecx
        #FP_REG_KILL
        jne .LBB_foo_1  # no_exit


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22340 91177308-0d34-0410-b5e6-96231b3b80d8
2005-07-06 18:59:04 +00:00

594 lines
29 KiB
C++

//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the MRegisterInfo class. This
// file is responsible for the frame pointer elimination optimization on X86.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86RegisterInfo.h"
#include "X86InstrBuilder.h"
#include "llvm/Constants.h"
#include "llvm/Type.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/ADT/STLExtras.h"
#include <iostream>
using namespace llvm;
namespace {
cl::opt<bool>
NoFusing("disable-spill-fusing",
cl::desc("Disable fusing of spill code into instructions"));
cl::opt<bool>
PrintFailedFusing("print-failed-fuse-candidates",
cl::desc("Print instructions that the allocator wants to"
" fuse, but the X86 backend currently can't"),
cl::Hidden);
}
X86RegisterInfo::X86RegisterInfo()
: X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP) {}
static unsigned getIdx(unsigned SpillSize) {
switch (SpillSize) {
default: assert(0 && "Invalid data size!");
case 8: return 0;
case 16: return 1;
case 32: return 2;
case 64: return 3; // FP in 64-bit spill mode.
case 80: return 4; // FP in 80-bit spill mode.
case 128: return 5; // XMM reg in 128 bit mode.
}
}
void X86RegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, int FrameIdx) const {
static const unsigned Opcode[] =
{ X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST64m, X86::FSTP80m,
X86::MOVAPDmr };
unsigned Idx = getIdx(getSpillSize(SrcReg));
unsigned Opc = Opcode[Idx];
if (X86ScalarSSE && Opc == X86::FST64m) Opc = X86::MOVSDmr;
addFrameReference(BuildMI(MBB, MI, Opc, 5), FrameIdx).addReg(SrcReg);
}
void X86RegisterInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIdx)const{
static const unsigned Opcode[] =
{ X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD64m, X86::FLD80m,
X86::MOVAPDrm };
unsigned Idx = getIdx(getSpillSize(DestReg));
unsigned Opc = Opcode[Idx];
if (X86ScalarSSE && Opc == X86::FLD64m) Opc = X86::MOVSDrm;
addFrameReference(BuildMI(MBB, MI, Opc, 4, DestReg), FrameIdx);
}
void X86RegisterInfo::copyRegToReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, unsigned SrcReg,
const TargetRegisterClass *RC) const {
static const unsigned Opcode[] =
{ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::FpMOV,
X86::MOVAPDrr };
unsigned Opc = Opcode[getIdx(RC->getSize()*8)];
if (X86ScalarSSE && Opc == X86::FpMOV) Opc = X86::MOVAPDrr;
BuildMI(MBB, MI, Opc, 1, DestReg).addReg(SrcReg);
}
static MachineInstr *MakeMInst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
return addFrameReference(BuildMI(Opcode, 4), FrameIndex);
}
static MachineInstr *MakeMRInst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
return addFrameReference(BuildMI(Opcode, 5), FrameIndex)
.addReg(MI->getOperand(1).getReg());
}
static MachineInstr *MakeMRIInst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
return addFrameReference(BuildMI(Opcode, 6), FrameIndex)
.addReg(MI->getOperand(1).getReg())
.addZImm(MI->getOperand(2).getImmedValue());
}
static MachineInstr *MakeMIInst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
if (MI->getOperand(1).isImmediate())
return addFrameReference(BuildMI(Opcode, 5), FrameIndex)
.addZImm(MI->getOperand(1).getImmedValue());
else if (MI->getOperand(1).isGlobalAddress())
return addFrameReference(BuildMI(Opcode, 5), FrameIndex)
.addGlobalAddress(MI->getOperand(1).getGlobal());
assert(0 && "Unknown operand for MakeMI!");
return 0;
}
static MachineInstr *MakeRMInst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
const MachineOperand& op = MI->getOperand(0);
return addFrameReference(BuildMI(Opcode, 5, op.getReg(), op.getUseType()),
FrameIndex);
}
static MachineInstr *MakeRMIInst(unsigned Opcode, unsigned FrameIndex,
MachineInstr *MI) {
const MachineOperand& op = MI->getOperand(0);
return addFrameReference(BuildMI(Opcode, 6, op.getReg(), op.getUseType()),
FrameIndex).addZImm(MI->getOperand(2).getImmedValue());
}
MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr* MI,
unsigned i,
int FrameIndex) const {
if (NoFusing) return NULL;
/// FIXME: This should obviously be autogenerated by tablegen when patterns
/// are available!
MachineBasicBlock& MBB = *MI->getParent();
if (i == 0) {
switch(MI->getOpcode()) {
case X86::XCHG8rr: return MakeMRInst(X86::XCHG8mr ,FrameIndex, MI);
case X86::XCHG16rr: return MakeMRInst(X86::XCHG16mr,FrameIndex, MI);
case X86::XCHG32rr: return MakeMRInst(X86::XCHG32mr,FrameIndex, MI);
case X86::MOV8rr: return MakeMRInst(X86::MOV8mr , FrameIndex, MI);
case X86::MOV16rr: return MakeMRInst(X86::MOV16mr, FrameIndex, MI);
case X86::MOV32rr: return MakeMRInst(X86::MOV32mr, FrameIndex, MI);
case X86::MOV8ri: return MakeMIInst(X86::MOV8mi , FrameIndex, MI);
case X86::MOV16ri: return MakeMIInst(X86::MOV16mi, FrameIndex, MI);
case X86::MOV32ri: return MakeMIInst(X86::MOV32mi, FrameIndex, MI);
case X86::MUL8r: return MakeMInst( X86::MUL8m , FrameIndex, MI);
case X86::MUL16r: return MakeMInst( X86::MUL16m, FrameIndex, MI);
case X86::MUL32r: return MakeMInst( X86::MUL32m, FrameIndex, MI);
case X86::IMUL8r: return MakeMInst( X86::IMUL8m , FrameIndex, MI);
case X86::IMUL16r: return MakeMInst( X86::IMUL16m, FrameIndex, MI);
case X86::IMUL32r: return MakeMInst( X86::IMUL32m, FrameIndex, MI);
case X86::DIV8r: return MakeMInst( X86::DIV8m , FrameIndex, MI);
case X86::DIV16r: return MakeMInst( X86::DIV16m, FrameIndex, MI);
case X86::DIV32r: return MakeMInst( X86::DIV32m, FrameIndex, MI);
case X86::IDIV8r: return MakeMInst( X86::IDIV8m , FrameIndex, MI);
case X86::IDIV16r: return MakeMInst( X86::IDIV16m, FrameIndex, MI);
case X86::IDIV32r: return MakeMInst( X86::IDIV32m, FrameIndex, MI);
case X86::NEG8r: return MakeMInst( X86::NEG8m , FrameIndex, MI);
case X86::NEG16r: return MakeMInst( X86::NEG16m, FrameIndex, MI);
case X86::NEG32r: return MakeMInst( X86::NEG32m, FrameIndex, MI);
case X86::NOT8r: return MakeMInst( X86::NOT8m , FrameIndex, MI);
case X86::NOT16r: return MakeMInst( X86::NOT16m, FrameIndex, MI);
case X86::NOT32r: return MakeMInst( X86::NOT32m, FrameIndex, MI);
case X86::INC8r: return MakeMInst( X86::INC8m , FrameIndex, MI);
case X86::INC16r: return MakeMInst( X86::INC16m, FrameIndex, MI);
case X86::INC32r: return MakeMInst( X86::INC32m, FrameIndex, MI);
case X86::DEC8r: return MakeMInst( X86::DEC8m , FrameIndex, MI);
case X86::DEC16r: return MakeMInst( X86::DEC16m, FrameIndex, MI);
case X86::DEC32r: return MakeMInst( X86::DEC32m, FrameIndex, MI);
case X86::ADD8rr: return MakeMRInst(X86::ADD8mr , FrameIndex, MI);
case X86::ADD16rr: return MakeMRInst(X86::ADD16mr, FrameIndex, MI);
case X86::ADD32rr: return MakeMRInst(X86::ADD32mr, FrameIndex, MI);
case X86::ADC32rr: return MakeMRInst(X86::ADC32mr, FrameIndex, MI);
case X86::ADC32ri: return MakeMIInst(X86::ADC32mi, FrameIndex, MI);
case X86::ADD8ri: return MakeMIInst(X86::ADD8mi , FrameIndex, MI);
case X86::ADD16ri: return MakeMIInst(X86::ADD16mi, FrameIndex, MI);
case X86::ADD32ri: return MakeMIInst(X86::ADD32mi, FrameIndex, MI);
case X86::SUB8rr: return MakeMRInst(X86::SUB8mr , FrameIndex, MI);
case X86::SUB16rr: return MakeMRInst(X86::SUB16mr, FrameIndex, MI);
case X86::SUB32rr: return MakeMRInst(X86::SUB32mr, FrameIndex, MI);
case X86::SBB32rr: return MakeMRInst(X86::SBB32mr, FrameIndex, MI);
case X86::SBB8ri: return MakeMIInst(X86::SBB8mi, FrameIndex, MI);
case X86::SBB16ri: return MakeMIInst(X86::SBB16mi, FrameIndex, MI);
case X86::SBB32ri: return MakeMIInst(X86::SBB32mi, FrameIndex, MI);
case X86::SUB8ri: return MakeMIInst(X86::SUB8mi , FrameIndex, MI);
case X86::SUB16ri: return MakeMIInst(X86::SUB16mi, FrameIndex, MI);
case X86::SUB32ri: return MakeMIInst(X86::SUB32mi, FrameIndex, MI);
case X86::AND8rr: return MakeMRInst(X86::AND8mr , FrameIndex, MI);
case X86::AND16rr: return MakeMRInst(X86::AND16mr, FrameIndex, MI);
case X86::AND32rr: return MakeMRInst(X86::AND32mr, FrameIndex, MI);
case X86::AND8ri: return MakeMIInst(X86::AND8mi , FrameIndex, MI);
case X86::AND16ri: return MakeMIInst(X86::AND16mi, FrameIndex, MI);
case X86::AND32ri: return MakeMIInst(X86::AND32mi, FrameIndex, MI);
case X86::OR8rr: return MakeMRInst(X86::OR8mr , FrameIndex, MI);
case X86::OR16rr: return MakeMRInst(X86::OR16mr, FrameIndex, MI);
case X86::OR32rr: return MakeMRInst(X86::OR32mr, FrameIndex, MI);
case X86::OR8ri: return MakeMIInst(X86::OR8mi , FrameIndex, MI);
case X86::OR16ri: return MakeMIInst(X86::OR16mi, FrameIndex, MI);
case X86::OR32ri: return MakeMIInst(X86::OR32mi, FrameIndex, MI);
case X86::XOR8rr: return MakeMRInst(X86::XOR8mr , FrameIndex, MI);
case X86::XOR16rr: return MakeMRInst(X86::XOR16mr, FrameIndex, MI);
case X86::XOR32rr: return MakeMRInst(X86::XOR32mr, FrameIndex, MI);
case X86::XOR8ri: return MakeMIInst(X86::XOR8mi , FrameIndex, MI);
case X86::XOR16ri: return MakeMIInst(X86::XOR16mi, FrameIndex, MI);
case X86::XOR32ri: return MakeMIInst(X86::XOR32mi, FrameIndex, MI);
case X86::SHL8rCL: return MakeMInst( X86::SHL8mCL ,FrameIndex, MI);
case X86::SHL16rCL: return MakeMInst( X86::SHL16mCL,FrameIndex, MI);
case X86::SHL32rCL: return MakeMInst( X86::SHL32mCL,FrameIndex, MI);
case X86::SHL8ri: return MakeMIInst(X86::SHL8mi , FrameIndex, MI);
case X86::SHL16ri: return MakeMIInst(X86::SHL16mi, FrameIndex, MI);
case X86::SHL32ri: return MakeMIInst(X86::SHL32mi, FrameIndex, MI);
case X86::SHR8rCL: return MakeMInst( X86::SHR8mCL ,FrameIndex, MI);
case X86::SHR16rCL: return MakeMInst( X86::SHR16mCL,FrameIndex, MI);
case X86::SHR32rCL: return MakeMInst( X86::SHR32mCL,FrameIndex, MI);
case X86::SHR8ri: return MakeMIInst(X86::SHR8mi , FrameIndex, MI);
case X86::SHR16ri: return MakeMIInst(X86::SHR16mi, FrameIndex, MI);
case X86::SHR32ri: return MakeMIInst(X86::SHR32mi, FrameIndex, MI);
case X86::SAR8rCL: return MakeMInst( X86::SAR8mCL ,FrameIndex, MI);
case X86::SAR16rCL: return MakeMInst( X86::SAR16mCL,FrameIndex, MI);
case X86::SAR32rCL: return MakeMInst( X86::SAR32mCL,FrameIndex, MI);
case X86::SAR8ri: return MakeMIInst(X86::SAR8mi , FrameIndex, MI);
case X86::SAR16ri: return MakeMIInst(X86::SAR16mi, FrameIndex, MI);
case X86::SAR32ri: return MakeMIInst(X86::SAR32mi, FrameIndex, MI);
case X86::ROL8rCL: return MakeMInst( X86::ROL8mCL ,FrameIndex, MI);
case X86::ROL16rCL: return MakeMInst( X86::ROL16mCL,FrameIndex, MI);
case X86::ROL32rCL: return MakeMInst( X86::ROL32mCL,FrameIndex, MI);
case X86::ROL8ri: return MakeMIInst(X86::ROL8mi , FrameIndex, MI);
case X86::ROL16ri: return MakeMIInst(X86::ROL16mi, FrameIndex, MI);
case X86::ROL32ri: return MakeMIInst(X86::ROL32mi, FrameIndex, MI);
case X86::ROR8rCL: return MakeMInst( X86::ROR8mCL ,FrameIndex, MI);
case X86::ROR16rCL: return MakeMInst( X86::ROR16mCL,FrameIndex, MI);
case X86::ROR32rCL: return MakeMInst( X86::ROR32mCL,FrameIndex, MI);
case X86::ROR8ri: return MakeMIInst(X86::ROR8mi , FrameIndex, MI);
case X86::ROR16ri: return MakeMIInst(X86::ROR16mi, FrameIndex, MI);
case X86::ROR32ri: return MakeMIInst(X86::ROR32mi, FrameIndex, MI);
case X86::SHLD32rrCL:return MakeMRInst( X86::SHLD32mrCL,FrameIndex, MI);
case X86::SHLD32rri8:return MakeMRIInst(X86::SHLD32mri8,FrameIndex, MI);
case X86::SHRD32rrCL:return MakeMRInst( X86::SHRD32mrCL,FrameIndex, MI);
case X86::SHRD32rri8:return MakeMRIInst(X86::SHRD32mri8,FrameIndex, MI);
case X86::SHLD16rrCL:return MakeMRInst( X86::SHLD16mrCL,FrameIndex, MI);
case X86::SHLD16rri8:return MakeMRIInst(X86::SHLD16mri8,FrameIndex, MI);
case X86::SHRD16rrCL:return MakeMRInst( X86::SHRD16mrCL,FrameIndex, MI);
case X86::SHRD16rri8:return MakeMRIInst(X86::SHRD16mri8,FrameIndex, MI);
case X86::SETBr: return MakeMInst( X86::SETBm, FrameIndex, MI);
case X86::SETAEr: return MakeMInst( X86::SETAEm, FrameIndex, MI);
case X86::SETEr: return MakeMInst( X86::SETEm, FrameIndex, MI);
case X86::SETNEr: return MakeMInst( X86::SETNEm, FrameIndex, MI);
case X86::SETBEr: return MakeMInst( X86::SETBEm, FrameIndex, MI);
case X86::SETAr: return MakeMInst( X86::SETAm, FrameIndex, MI);
case X86::SETSr: return MakeMInst( X86::SETSm, FrameIndex, MI);
case X86::SETNSr: return MakeMInst( X86::SETNSm, FrameIndex, MI);
case X86::SETPr: return MakeMInst( X86::SETPm, FrameIndex, MI);
case X86::SETNPr: return MakeMInst( X86::SETNPm, FrameIndex, MI);
case X86::SETLr: return MakeMInst( X86::SETLm, FrameIndex, MI);
case X86::SETGEr: return MakeMInst( X86::SETGEm, FrameIndex, MI);
case X86::SETLEr: return MakeMInst( X86::SETLEm, FrameIndex, MI);
case X86::SETGr: return MakeMInst( X86::SETGm, FrameIndex, MI);
case X86::TEST8rr: return MakeMRInst(X86::TEST8mr ,FrameIndex, MI);
case X86::TEST16rr: return MakeMRInst(X86::TEST16mr,FrameIndex, MI);
case X86::TEST32rr: return MakeMRInst(X86::TEST32mr,FrameIndex, MI);
case X86::TEST8ri: return MakeMIInst(X86::TEST8mi ,FrameIndex, MI);
case X86::TEST16ri: return MakeMIInst(X86::TEST16mi,FrameIndex, MI);
case X86::TEST32ri: return MakeMIInst(X86::TEST32mi,FrameIndex, MI);
case X86::CMP8rr: return MakeMRInst(X86::CMP8mr , FrameIndex, MI);
case X86::CMP16rr: return MakeMRInst(X86::CMP16mr, FrameIndex, MI);
case X86::CMP32rr: return MakeMRInst(X86::CMP32mr, FrameIndex, MI);
case X86::CMP8ri: return MakeMIInst(X86::CMP8mi , FrameIndex, MI);
case X86::CMP16ri: return MakeMIInst(X86::CMP16mi, FrameIndex, MI);
case X86::CMP32ri: return MakeMIInst(X86::CMP32mi, FrameIndex, MI);
}
} else if (i == 1) {
switch(MI->getOpcode()) {
case X86::XCHG8rr: return MakeRMInst(X86::XCHG8rm ,FrameIndex, MI);
case X86::XCHG16rr: return MakeRMInst(X86::XCHG16rm,FrameIndex, MI);
case X86::XCHG32rr: return MakeRMInst(X86::XCHG32rm,FrameIndex, MI);
case X86::MOV8rr: return MakeRMInst(X86::MOV8rm , FrameIndex, MI);
case X86::MOV16rr: return MakeRMInst(X86::MOV16rm, FrameIndex, MI);
case X86::MOV32rr: return MakeRMInst(X86::MOV32rm, FrameIndex, MI);
case X86::CMOVB16rr: return MakeRMInst(X86::CMOVB16rm , FrameIndex, MI);
case X86::CMOVB32rr: return MakeRMInst(X86::CMOVB32rm , FrameIndex, MI);
case X86::CMOVAE16rr: return MakeRMInst(X86::CMOVAE16rm , FrameIndex, MI);
case X86::CMOVAE32rr: return MakeRMInst(X86::CMOVAE32rm , FrameIndex, MI);
case X86::CMOVE16rr: return MakeRMInst(X86::CMOVE16rm , FrameIndex, MI);
case X86::CMOVE32rr: return MakeRMInst(X86::CMOVE32rm , FrameIndex, MI);
case X86::CMOVNE16rr:return MakeRMInst(X86::CMOVNE16rm, FrameIndex, MI);
case X86::CMOVNE32rr:return MakeRMInst(X86::CMOVNE32rm, FrameIndex, MI);
case X86::CMOVBE16rr:return MakeRMInst(X86::CMOVBE16rm, FrameIndex, MI);
case X86::CMOVBE32rr:return MakeRMInst(X86::CMOVBE32rm, FrameIndex, MI);
case X86::CMOVA16rr:return MakeRMInst(X86::CMOVA16rm, FrameIndex, MI);
case X86::CMOVA32rr:return MakeRMInst(X86::CMOVA32rm, FrameIndex, MI);
case X86::CMOVS16rr: return MakeRMInst(X86::CMOVS16rm , FrameIndex, MI);
case X86::CMOVS32rr: return MakeRMInst(X86::CMOVS32rm , FrameIndex, MI);
case X86::CMOVNS16rr: return MakeRMInst(X86::CMOVNS16rm , FrameIndex, MI);
case X86::CMOVNS32rr: return MakeRMInst(X86::CMOVNS32rm , FrameIndex, MI);
case X86::CMOVP16rr: return MakeRMInst(X86::CMOVP16rm , FrameIndex, MI);
case X86::CMOVP32rr: return MakeRMInst(X86::CMOVP32rm , FrameIndex, MI);
case X86::CMOVNP16rr: return MakeRMInst(X86::CMOVNP16rm , FrameIndex, MI);
case X86::CMOVNP32rr: return MakeRMInst(X86::CMOVNP32rm , FrameIndex, MI);
case X86::CMOVL16rr: return MakeRMInst(X86::CMOVL16rm , FrameIndex, MI);
case X86::CMOVL32rr: return MakeRMInst(X86::CMOVL32rm , FrameIndex, MI);
case X86::CMOVGE16rr: return MakeRMInst(X86::CMOVGE16rm , FrameIndex, MI);
case X86::CMOVGE32rr: return MakeRMInst(X86::CMOVGE32rm , FrameIndex, MI);
case X86::CMOVLE16rr: return MakeRMInst(X86::CMOVLE16rm , FrameIndex, MI);
case X86::CMOVLE32rr: return MakeRMInst(X86::CMOVLE32rm , FrameIndex, MI);
case X86::CMOVG16rr: return MakeRMInst(X86::CMOVG16rm , FrameIndex, MI);
case X86::CMOVG32rr: return MakeRMInst(X86::CMOVG32rm , FrameIndex, MI);
case X86::ADD8rr: return MakeRMInst(X86::ADD8rm , FrameIndex, MI);
case X86::ADD16rr: return MakeRMInst(X86::ADD16rm, FrameIndex, MI);
case X86::ADD32rr: return MakeRMInst(X86::ADD32rm, FrameIndex, MI);
case X86::ADC32rr: return MakeRMInst(X86::ADC32rm, FrameIndex, MI);
case X86::SUB8rr: return MakeRMInst(X86::SUB8rm , FrameIndex, MI);
case X86::SUB16rr: return MakeRMInst(X86::SUB16rm, FrameIndex, MI);
case X86::SUB32rr: return MakeRMInst(X86::SUB32rm, FrameIndex, MI);
case X86::SBB32rr: return MakeRMInst(X86::SBB32rm, FrameIndex, MI);
case X86::AND8rr: return MakeRMInst(X86::AND8rm , FrameIndex, MI);
case X86::AND16rr: return MakeRMInst(X86::AND16rm, FrameIndex, MI);
case X86::AND32rr: return MakeRMInst(X86::AND32rm, FrameIndex, MI);
case X86::OR8rr: return MakeRMInst(X86::OR8rm , FrameIndex, MI);
case X86::OR16rr: return MakeRMInst(X86::OR16rm, FrameIndex, MI);
case X86::OR32rr: return MakeRMInst(X86::OR32rm, FrameIndex, MI);
case X86::XOR8rr: return MakeRMInst(X86::XOR8rm , FrameIndex, MI);
case X86::XOR16rr: return MakeRMInst(X86::XOR16rm, FrameIndex, MI);
case X86::XOR32rr: return MakeRMInst(X86::XOR32rm, FrameIndex, MI);
case X86::TEST8rr: return MakeRMInst(X86::TEST8rm ,FrameIndex, MI);
case X86::TEST16rr: return MakeRMInst(X86::TEST16rm,FrameIndex, MI);
case X86::TEST32rr: return MakeRMInst(X86::TEST32rm,FrameIndex, MI);
case X86::IMUL16rr: return MakeRMInst(X86::IMUL16rm,FrameIndex, MI);
case X86::IMUL32rr: return MakeRMInst(X86::IMUL32rm,FrameIndex, MI);
case X86::IMUL16rri: return MakeRMIInst(X86::IMUL16rmi, FrameIndex, MI);
case X86::IMUL32rri: return MakeRMIInst(X86::IMUL32rmi, FrameIndex, MI);
case X86::CMP8rr: return MakeRMInst(X86::CMP8rm , FrameIndex, MI);
case X86::CMP16rr: return MakeRMInst(X86::CMP16rm, FrameIndex, MI);
case X86::CMP32rr: return MakeRMInst(X86::CMP32rm, FrameIndex, MI);
case X86::MOVSX16rr8:return MakeRMInst(X86::MOVSX16rm8 , FrameIndex, MI);
case X86::MOVSX32rr8:return MakeRMInst(X86::MOVSX32rm8, FrameIndex, MI);
case X86::MOVSX32rr16:return MakeRMInst(X86::MOVSX32rm16, FrameIndex, MI);
case X86::MOVZX16rr8:return MakeRMInst(X86::MOVZX16rm8 , FrameIndex, MI);
case X86::MOVZX32rr8: return MakeRMInst(X86::MOVZX32rm8, FrameIndex, MI);
case X86::MOVZX32rr16:return MakeRMInst(X86::MOVZX32rm16, FrameIndex, MI);
}
}
if (PrintFailedFusing)
std::cerr << "We failed to fuse: " << *MI;
return NULL;
}
//===----------------------------------------------------------------------===//
// Stack Frame Processing methods
//===----------------------------------------------------------------------===//
// hasFP - Return true if the specified function should have a dedicated frame
// pointer register. This is true if the function has variable sized allocas or
// if frame pointer elimination is disabled.
//
static bool hasFP(MachineFunction &MF) {
return NoFramePointerElim || MF.getFrameInfo()->hasVarSizedObjects();
}
void X86RegisterInfo::
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
if (hasFP(MF)) {
// If we have a frame pointer, turn the adjcallstackup instruction into a
// 'sub ESP, <amt>' and the adjcallstackdown instruction into 'add ESP,
// <amt>'
MachineInstr *Old = I;
unsigned Amount = Old->getOperand(0).getImmedValue();
if (Amount != 0) {
// We need to keep the stack aligned properly. To do this, we round the
// amount of space needed for the outgoing arguments up to the next
// alignment boundary.
unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
Amount = (Amount+Align-1)/Align*Align;
MachineInstr *New = 0;
if (Old->getOpcode() == X86::ADJCALLSTACKDOWN) {
New=BuildMI(X86::SUB32ri, 1, X86::ESP, MachineOperand::UseAndDef)
.addZImm(Amount);
} else {
assert(Old->getOpcode() == X86::ADJCALLSTACKUP);
// factor out the amount the callee already popped.
unsigned CalleeAmt = Old->getOperand(1).getImmedValue();
Amount -= CalleeAmt;
if (Amount)
New = BuildMI(X86::ADD32ri, 1, X86::ESP,
MachineOperand::UseAndDef).addZImm(Amount);
}
// Replace the pseudo instruction with a new instruction...
if (New) MBB.insert(I, New);
}
} else if (I->getOpcode() == X86::ADJCALLSTACKUP) {
// If we are performing frame pointer elimination and if the callee pops
// something off the stack pointer, add it back. We do this until we have
// more advanced stack pointer tracking ability.
if (unsigned CalleeAmt = I->getOperand(1).getImmedValue()) {
MachineInstr *New =
BuildMI(X86::SUB32ri, 1, X86::ESP,
MachineOperand::UseAndDef).addZImm(CalleeAmt);
MBB.insert(I, New);
}
}
MBB.erase(I);
}
void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II) const{
unsigned i = 0;
MachineInstr &MI = *II;
MachineFunction &MF = *MI.getParent()->getParent();
while (!MI.getOperand(i).isFrameIndex()) {
++i;
assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
}
int FrameIndex = MI.getOperand(i).getFrameIndex();
// This must be part of a four operand memory reference. Replace the
// FrameIndex with base register with EBP. Add add an offset to the offset.
MI.SetMachineOperandReg(i, hasFP(MF) ? X86::EBP : X86::ESP);
// Now add the frame object offset to the offset from EBP.
int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
MI.getOperand(i+3).getImmedValue()+4;
if (!hasFP(MF))
Offset += MF.getFrameInfo()->getStackSize();
else
Offset += 4; // Skip the saved EBP
MI.SetMachineOperandConst(i+3, MachineOperand::MO_SignExtendedImmed, Offset);
}
void
X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{
if (hasFP(MF)) {
// Create a frame entry for the EBP register that must be saved.
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, -8);
assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() &&
"Slot for EBP register must be last in order to be found!");
}
}
void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB
MachineBasicBlock::iterator MBBI = MBB.begin();
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineInstr *MI;
// Get the number of bytes to allocate from the FrameInfo
unsigned NumBytes = MFI->getStackSize();
if (hasFP(MF)) {
// Get the offset of the stack slot for the EBP register... which is
// guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
int EBPOffset = MFI->getObjectOffset(MFI->getObjectIndexBegin())+4;
if (NumBytes) { // adjust stack pointer: ESP -= numbytes
MI= BuildMI(X86::SUB32ri, 1, X86::ESP, MachineOperand::UseAndDef)
.addZImm(NumBytes);
MBB.insert(MBBI, MI);
}
// Save EBP into the appropriate stack slot...
MI = addRegOffset(BuildMI(X86::MOV32mr, 5), // mov [ESP-<offset>], EBP
X86::ESP, EBPOffset+NumBytes).addReg(X86::EBP);
MBB.insert(MBBI, MI);
// Update EBP with the new base value...
if (NumBytes == 4) // mov EBP, ESP
MI = BuildMI(X86::MOV32rr, 2, X86::EBP).addReg(X86::ESP);
else // lea EBP, [ESP+StackSize]
MI = addRegOffset(BuildMI(X86::LEA32r, 5, X86::EBP), X86::ESP,NumBytes-4);
MBB.insert(MBBI, MI);
} else {
if (MFI->hasCalls()) {
// When we have no frame pointer, we reserve argument space for call sites
// in the function immediately on entry to the current function. This
// eliminates the need for add/sub ESP brackets around call sites.
//
NumBytes += MFI->getMaxCallFrameSize();
// Round the size to a multiple of the alignment (don't forget the 4 byte
// offset though).
unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
NumBytes = ((NumBytes+4)+Align-1)/Align*Align - 4;
}
// Update frame info to pretend that this is part of the stack...
MFI->setStackSize(NumBytes);
if (NumBytes) {
// adjust stack pointer: ESP -= numbytes
MI= BuildMI(X86::SUB32ri, 1, X86::ESP, MachineOperand::UseAndDef)
.addZImm(NumBytes);
MBB.insert(MBBI, MI);
}
}
}
void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
MachineBasicBlock::iterator MBBI = prior(MBB.end());
switch (MBBI->getOpcode()) {
case X86::RET:
case X86::RETI:
case X86::TAILJMPd:
case X86::TAILJMPr:
case X86::TAILJMPm: break; // These are ok
default:
assert(0 && "Can only insert epilog into returning blocks");
}
if (hasFP(MF)) {
// Get the offset of the stack slot for the EBP register... which is
// guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
int EBPOffset = MFI->getObjectOffset(MFI->getObjectIndexEnd()-1)+4;
// mov ESP, EBP
BuildMI(MBB, MBBI, X86::MOV32rr, 1,X86::ESP).addReg(X86::EBP);
// pop EBP
BuildMI(MBB, MBBI, X86::POP32r, 0, X86::EBP);
} else {
// Get the number of bytes allocated from the FrameInfo...
unsigned NumBytes = MFI->getStackSize();
if (NumBytes) { // adjust stack pointer back: ESP += numbytes
// If there is an ADD32ri or SUB32ri of ESP immediately before this
// instruction, merge the two instructions.
if (MBBI != MBB.begin()) {
MachineBasicBlock::iterator PI = prior(MBBI);
if (PI->getOpcode() == X86::ADD32ri &&
PI->getOperand(0).getReg() == X86::ESP) {
NumBytes += PI->getOperand(1).getImmedValue();
MBB.erase(PI);
} else if (PI->getOpcode() == X86::SUB32ri &&
PI->getOperand(0).getReg() == X86::ESP) {
NumBytes -= PI->getOperand(1).getImmedValue();
MBB.erase(PI);
} else if (PI->getOpcode() == X86::ADJSTACKPTRri) {
NumBytes += PI->getOperand(1).getImmedValue();
MBB.erase(PI);
}
}
if (NumBytes > 0)
BuildMI(MBB, MBBI, X86::ADD32ri, 2)
.addReg(X86::ESP, MachineOperand::UseAndDef).addZImm(NumBytes);
else if ((int)NumBytes < 0)
BuildMI(MBB, MBBI, X86::SUB32ri, 2)
.addReg(X86::ESP, MachineOperand::UseAndDef).addZImm(-NumBytes);
}
}
}
#include "X86GenRegisterInfo.inc"
const TargetRegisterClass*
X86RegisterInfo::getRegClassForType(const Type* Ty) const {
switch (Ty->getTypeID()) {
case Type::LongTyID:
case Type::ULongTyID: assert(0 && "Long values can't fit in registers!");
default: assert(0 && "Invalid type to getClass!");
case Type::BoolTyID:
case Type::SByteTyID:
case Type::UByteTyID: return &R8Instance;
case Type::ShortTyID:
case Type::UShortTyID: return &R16Instance;
case Type::IntTyID:
case Type::UIntTyID:
case Type::PointerTyID: return &R32Instance;
case Type::FloatTyID:
case Type::DoubleTyID: return &RFPInstance;
}
}