llvm-6502/lib/Transforms/Scalar/IndVarSimplify.cpp
Reid Spencer abaa8ca433 Comparison of primitive type sizes should now be done in bits, not bytes.
This patch converts getPrimitiveSize to getPrimitiveSizeInBits where it is
appropriate to do so (comparison of integer primitive types).


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33012 91177308-0d34-0410-b5e6-96231b3b80d8
2007-01-08 16:32:00 +00:00

597 lines
25 KiB
C++

//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation analyzes and transforms the induction variables (and
// computations derived from them) into simpler forms suitable for subsequent
// analysis and transformation.
//
// This transformation makes the following changes to each loop with an
// identifiable induction variable:
// 1. All loops are transformed to have a SINGLE canonical induction variable
// which starts at zero and steps by one.
// 2. The canonical induction variable is guaranteed to be the first PHI node
// in the loop header block.
// 3. Any pointer arithmetic recurrences are raised to use array subscripts.
//
// If the trip count of a loop is computable, this pass also makes the following
// changes:
// 1. The exit condition for the loop is canonicalized to compare the
// induction value against the exit value. This turns loops like:
// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
// 2. Any use outside of the loop of an expression derived from the indvar
// is changed to compute the derived value outside of the loop, eliminating
// the dependence on the exit value of the induction variable. If the only
// purpose of the loop is to compute the exit value of some derived
// expression, this transformation will make the loop dead.
//
// This transformation should be followed by strength reduction after all of the
// desired loop transformations have been performed. Additionally, on targets
// where it is profitable, the loop could be transformed to count down to zero
// (the "do loop" optimization).
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "indvars"
#include "llvm/Transforms/Scalar.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumRemoved , "Number of aux indvars removed");
STATISTIC(NumPointer , "Number of pointer indvars promoted");
STATISTIC(NumInserted, "Number of canonical indvars added");
STATISTIC(NumReplaced, "Number of exit values replaced");
STATISTIC(NumLFTR , "Number of loop exit tests replaced");
namespace {
class IndVarSimplify : public FunctionPass {
LoopInfo *LI;
ScalarEvolution *SE;
bool Changed;
public:
virtual bool runOnFunction(Function &) {
LI = &getAnalysis<LoopInfo>();
SE = &getAnalysis<ScalarEvolution>();
Changed = false;
// Induction Variables live in the header nodes of loops
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
runOnLoop(*I);
return Changed;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(LoopSimplifyID);
AU.addRequired<ScalarEvolution>();
AU.addRequired<LoopInfo>();
AU.addPreservedID(LoopSimplifyID);
AU.addPreservedID(LCSSAID);
AU.setPreservesCFG();
}
private:
void runOnLoop(Loop *L);
void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
std::set<Instruction*> &DeadInsts);
Instruction *LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
SCEVExpander &RW);
void RewriteLoopExitValues(Loop *L);
void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
};
RegisterPass<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
}
FunctionPass *llvm::createIndVarSimplifyPass() {
return new IndVarSimplify();
}
/// DeleteTriviallyDeadInstructions - If any of the instructions is the
/// specified set are trivially dead, delete them and see if this makes any of
/// their operands subsequently dead.
void IndVarSimplify::
DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
while (!Insts.empty()) {
Instruction *I = *Insts.begin();
Insts.erase(Insts.begin());
if (isInstructionTriviallyDead(I)) {
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
Insts.insert(U);
SE->deleteInstructionFromRecords(I);
DOUT << "INDVARS: Deleting: " << *I;
I->eraseFromParent();
Changed = true;
}
}
}
/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
/// recurrence. If so, change it into an integer recurrence, permitting
/// analysis by the SCEV routines.
void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
BasicBlock *Preheader,
std::set<Instruction*> &DeadInsts) {
assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
unsigned BackedgeIdx = PreheaderIdx^1;
if (GetElementPtrInst *GEPI =
dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
if (GEPI->getOperand(0) == PN) {
assert(GEPI->getNumOperands() == 2 && "GEP types must match!");
DOUT << "INDVARS: Eliminating pointer recurrence: " << *GEPI;
// Okay, we found a pointer recurrence. Transform this pointer
// recurrence into an integer recurrence. Compute the value that gets
// added to the pointer at every iteration.
Value *AddedVal = GEPI->getOperand(1);
// Insert a new integer PHI node into the top of the block.
PHINode *NewPhi = new PHINode(AddedVal->getType(),
PN->getName()+".rec", PN);
NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);
// Create the new add instruction.
Value *NewAdd = BinaryOperator::createAdd(NewPhi, AddedVal,
GEPI->getName()+".rec", GEPI);
NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
// Update the existing GEP to use the recurrence.
GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
// Update the GEP to use the new recurrence we just inserted.
GEPI->setOperand(1, NewAdd);
// If the incoming value is a constant expr GEP, try peeling out the array
// 0 index if possible to make things simpler.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0)))
if (CE->getOpcode() == Instruction::GetElementPtr) {
unsigned NumOps = CE->getNumOperands();
assert(NumOps > 1 && "CE folding didn't work!");
if (CE->getOperand(NumOps-1)->isNullValue()) {
// Check to make sure the last index really is an array index.
gep_type_iterator GTI = gep_type_begin(CE);
for (unsigned i = 1, e = CE->getNumOperands()-1;
i != e; ++i, ++GTI)
/*empty*/;
if (isa<SequentialType>(*GTI)) {
// Pull the last index out of the constant expr GEP.
std::vector<Value*> CEIdxs(CE->op_begin()+1, CE->op_end()-1);
Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0),
CEIdxs);
GetElementPtrInst *NGEPI =
new GetElementPtrInst(NCE, Constant::getNullValue(Type::Int32Ty),
NewAdd, GEPI->getName(), GEPI);
GEPI->replaceAllUsesWith(NGEPI);
GEPI->eraseFromParent();
GEPI = NGEPI;
}
}
}
// Finally, if there are any other users of the PHI node, we must
// insert a new GEP instruction that uses the pre-incremented version
// of the induction amount.
if (!PN->use_empty()) {
BasicBlock::iterator InsertPos = PN; ++InsertPos;
while (isa<PHINode>(InsertPos)) ++InsertPos;
std::string Name = PN->getName(); PN->setName("");
Value *PreInc =
new GetElementPtrInst(PN->getIncomingValue(PreheaderIdx),
std::vector<Value*>(1, NewPhi), Name,
InsertPos);
PN->replaceAllUsesWith(PreInc);
}
// Delete the old PHI for sure, and the GEP if its otherwise unused.
DeadInsts.insert(PN);
++NumPointer;
Changed = true;
}
}
/// LinearFunctionTestReplace - This method rewrites the exit condition of the
/// loop to be a canonical != comparison against the incremented loop induction
/// variable. This pass is able to rewrite the exit tests of any loop where the
/// SCEV analysis can determine a loop-invariant trip count of the loop, which
/// is actually a much broader range than just linear tests.
///
/// This method returns a "potentially dead" instruction whose computation chain
/// should be deleted when convenient.
Instruction *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
SCEV *IterationCount,
SCEVExpander &RW) {
// Find the exit block for the loop. We can currently only handle loops with
// a single exit.
std::vector<BasicBlock*> ExitBlocks;
L->getExitBlocks(ExitBlocks);
if (ExitBlocks.size() != 1) return 0;
BasicBlock *ExitBlock = ExitBlocks[0];
// Make sure there is only one predecessor block in the loop.
BasicBlock *ExitingBlock = 0;
for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
PI != PE; ++PI)
if (L->contains(*PI)) {
if (ExitingBlock == 0)
ExitingBlock = *PI;
else
return 0; // Multiple exits from loop to this block.
}
assert(ExitingBlock && "Loop info is broken");
if (!isa<BranchInst>(ExitingBlock->getTerminator()))
return 0; // Can't rewrite non-branch yet
BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator());
assert(BI->isConditional() && "Must be conditional to be part of loop!");
Instruction *PotentiallyDeadInst = dyn_cast<Instruction>(BI->getCondition());
// If the exiting block is not the same as the backedge block, we must compare
// against the preincremented value, otherwise we prefer to compare against
// the post-incremented value.
BasicBlock *Header = L->getHeader();
pred_iterator HPI = pred_begin(Header);
assert(HPI != pred_end(Header) && "Loop with zero preds???");
if (!L->contains(*HPI)) ++HPI;
assert(HPI != pred_end(Header) && L->contains(*HPI) &&
"No backedge in loop?");
SCEVHandle TripCount = IterationCount;
Value *IndVar;
if (*HPI == ExitingBlock) {
// The IterationCount expression contains the number of times that the
// backedge actually branches to the loop header. This is one less than the
// number of times the loop executes, so add one to it.
Constant *OneC = ConstantInt::get(IterationCount->getType(), 1);
TripCount = SCEVAddExpr::get(IterationCount, SCEVUnknown::get(OneC));
IndVar = L->getCanonicalInductionVariableIncrement();
} else {
// We have to use the preincremented value...
IndVar = L->getCanonicalInductionVariable();
}
DOUT << "INDVARS: LFTR: TripCount = " << *TripCount
<< " IndVar = " << *IndVar << "\n";
// Expand the code for the iteration count into the preheader of the loop.
BasicBlock *Preheader = L->getLoopPreheader();
Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator(),
IndVar->getType());
// Insert a new icmp_ne or icmp_eq instruction before the branch.
ICmpInst::Predicate Opcode;
if (L->contains(BI->getSuccessor(0)))
Opcode = ICmpInst::ICMP_NE;
else
Opcode = ICmpInst::ICMP_EQ;
Value *Cond = new ICmpInst(Opcode, IndVar, ExitCnt, "exitcond", BI);
BI->setCondition(Cond);
++NumLFTR;
Changed = true;
return PotentiallyDeadInst;
}
/// RewriteLoopExitValues - Check to see if this loop has a computable
/// loop-invariant execution count. If so, this means that we can compute the
/// final value of any expressions that are recurrent in the loop, and
/// substitute the exit values from the loop into any instructions outside of
/// the loop that use the final values of the current expressions.
void IndVarSimplify::RewriteLoopExitValues(Loop *L) {
BasicBlock *Preheader = L->getLoopPreheader();
// Scan all of the instructions in the loop, looking at those that have
// extra-loop users and which are recurrences.
SCEVExpander Rewriter(*SE, *LI);
// We insert the code into the preheader of the loop if the loop contains
// multiple exit blocks, or in the exit block if there is exactly one.
BasicBlock *BlockToInsertInto;
std::vector<BasicBlock*> ExitBlocks;
L->getExitBlocks(ExitBlocks);
if (ExitBlocks.size() == 1)
BlockToInsertInto = ExitBlocks[0];
else
BlockToInsertInto = Preheader;
BasicBlock::iterator InsertPt = BlockToInsertInto->begin();
while (isa<PHINode>(InsertPt)) ++InsertPt;
bool HasConstantItCount = isa<SCEVConstant>(SE->getIterationCount(L));
std::set<Instruction*> InstructionsToDelete;
for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
if (LI->getLoopFor(L->getBlocks()[i]) == L) { // Not in a subloop...
BasicBlock *BB = L->getBlocks()[i];
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
if (I->getType()->isInteger()) { // Is an integer instruction
SCEVHandle SH = SE->getSCEV(I);
if (SH->hasComputableLoopEvolution(L) || // Varies predictably
HasConstantItCount) {
// Find out if this predictably varying value is actually used
// outside of the loop. "extra" as opposed to "intra".
std::vector<Instruction*> ExtraLoopUsers;
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
UI != E; ++UI) {
Instruction *User = cast<Instruction>(*UI);
if (!L->contains(User->getParent())) {
// If this is a PHI node in the exit block and we're inserting,
// into the exit block, it must have a single entry. In this
// case, we can't insert the code after the PHI and have the PHI
// still use it. Instead, don't insert the the PHI.
if (PHINode *PN = dyn_cast<PHINode>(User)) {
// FIXME: This is a case where LCSSA pessimizes code, this
// should be fixed better.
if (PN->getNumOperands() == 2 &&
PN->getParent() == BlockToInsertInto)
continue;
}
ExtraLoopUsers.push_back(User);
}
}
if (!ExtraLoopUsers.empty()) {
// Okay, this instruction has a user outside of the current loop
// and varies predictably in this loop. Evaluate the value it
// contains when the loop exits, and insert code for it.
SCEVHandle ExitValue = SE->getSCEVAtScope(I, L->getParentLoop());
if (!isa<SCEVCouldNotCompute>(ExitValue)) {
Changed = true;
++NumReplaced;
// Remember the next instruction. The rewriter can move code
// around in some cases.
BasicBlock::iterator NextI = I; ++NextI;
Value *NewVal = Rewriter.expandCodeFor(ExitValue, InsertPt,
I->getType());
DOUT << "INDVARS: RLEV: AfterLoopVal = " << *NewVal
<< " LoopVal = " << *I << "\n";
// Rewrite any users of the computed value outside of the loop
// with the newly computed value.
for (unsigned i = 0, e = ExtraLoopUsers.size(); i != e; ++i) {
PHINode* PN = dyn_cast<PHINode>(ExtraLoopUsers[i]);
if (PN && PN->getNumOperands() == 2 &&
!L->contains(PN->getParent())) {
// We're dealing with an LCSSA Phi. Handle it specially.
Instruction* LCSSAInsertPt = BlockToInsertInto->begin();
Instruction* NewInstr = dyn_cast<Instruction>(NewVal);
if (NewInstr && !isa<PHINode>(NewInstr) &&
!L->contains(NewInstr->getParent()))
for (unsigned j = 0; j < NewInstr->getNumOperands(); ++j){
Instruction* PredI =
dyn_cast<Instruction>(NewInstr->getOperand(j));
if (PredI && L->contains(PredI->getParent())) {
PHINode* NewLCSSA = new PHINode(PredI->getType(),
PredI->getName() + ".lcssa",
LCSSAInsertPt);
NewLCSSA->addIncoming(PredI,
BlockToInsertInto->getSinglePredecessor());
NewInstr->replaceUsesOfWith(PredI, NewLCSSA);
}
}
PN->replaceAllUsesWith(NewVal);
PN->eraseFromParent();
} else {
ExtraLoopUsers[i]->replaceUsesOfWith(I, NewVal);
}
}
// If this instruction is dead now, schedule it to be removed.
if (I->use_empty())
InstructionsToDelete.insert(I);
I = NextI;
continue; // Skip the ++I
}
}
}
}
// Next instruction. Continue instruction skips this.
++I;
}
}
DeleteTriviallyDeadInstructions(InstructionsToDelete);
}
void IndVarSimplify::runOnLoop(Loop *L) {
// First step. Check to see if there are any trivial GEP pointer recurrences.
// If there are, change them into integer recurrences, permitting analysis by
// the SCEV routines.
//
BasicBlock *Header = L->getHeader();
BasicBlock *Preheader = L->getLoopPreheader();
std::set<Instruction*> DeadInsts;
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
if (isa<PointerType>(PN->getType()))
EliminatePointerRecurrence(PN, Preheader, DeadInsts);
}
if (!DeadInsts.empty())
DeleteTriviallyDeadInstructions(DeadInsts);
// Next, transform all loops nesting inside of this loop.
for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
runOnLoop(*I);
// Check to see if this loop has a computable loop-invariant execution count.
// If so, this means that we can compute the final value of any expressions
// that are recurrent in the loop, and substitute the exit values from the
// loop into any instructions outside of the loop that use the final values of
// the current expressions.
//
SCEVHandle IterationCount = SE->getIterationCount(L);
if (!isa<SCEVCouldNotCompute>(IterationCount))
RewriteLoopExitValues(L);
// Next, analyze all of the induction variables in the loop, canonicalizing
// auxillary induction variables.
std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable!
SCEVHandle SCEV = SE->getSCEV(PN);
if (SCEV->hasComputableLoopEvolution(L))
// FIXME: It is an extremely bad idea to indvar substitute anything more
// complex than affine induction variables. Doing so will put expensive
// polynomial evaluations inside of the loop, and the str reduction pass
// currently can only reduce affine polynomials. For now just disable
// indvar subst on anything more complex than an affine addrec.
if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
if (AR->isAffine())
IndVars.push_back(std::make_pair(PN, SCEV));
}
}
// If there are no induction variables in the loop, there is nothing more to
// do.
if (IndVars.empty()) {
// Actually, if we know how many times the loop iterates, lets insert a
// canonical induction variable to help subsequent passes.
if (!isa<SCEVCouldNotCompute>(IterationCount)) {
SCEVExpander Rewriter(*SE, *LI);
Rewriter.getOrInsertCanonicalInductionVariable(L,
IterationCount->getType());
if (Instruction *I = LinearFunctionTestReplace(L, IterationCount,
Rewriter)) {
std::set<Instruction*> InstructionsToDelete;
InstructionsToDelete.insert(I);
DeleteTriviallyDeadInstructions(InstructionsToDelete);
}
}
return;
}
// Compute the type of the largest recurrence expression.
//
const Type *LargestType = IndVars[0].first->getType();
bool DifferingSizes = false;
for (unsigned i = 1, e = IndVars.size(); i != e; ++i) {
const Type *Ty = IndVars[i].first->getType();
DifferingSizes |=
Ty->getPrimitiveSizeInBits() != LargestType->getPrimitiveSizeInBits();
if (Ty->getPrimitiveSizeInBits() > LargestType->getPrimitiveSizeInBits())
LargestType = Ty;
}
// Create a rewriter object which we'll use to transform the code with.
SCEVExpander Rewriter(*SE, *LI);
// Now that we know the largest of of the induction variables in this loop,
// insert a canonical induction variable of the largest size.
Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
++NumInserted;
Changed = true;
DOUT << "INDVARS: New CanIV: " << *IndVar;
if (!isa<SCEVCouldNotCompute>(IterationCount))
if (Instruction *DI = LinearFunctionTestReplace(L, IterationCount,Rewriter))
DeadInsts.insert(DI);
// Now that we have a canonical induction variable, we can rewrite any
// recurrences in terms of the induction variable. Start with the auxillary
// induction variables, and recursively rewrite any of their uses.
BasicBlock::iterator InsertPt = Header->begin();
while (isa<PHINode>(InsertPt)) ++InsertPt;
// If there were induction variables of other sizes, cast the primary
// induction variable to the right size for them, avoiding the need for the
// code evaluation methods to insert induction variables of different sizes.
if (DifferingSizes) {
bool InsertedSizes[17] = { false };
InsertedSizes[LargestType->getPrimitiveSize()] = true;
for (unsigned i = 0, e = IndVars.size(); i != e; ++i)
if (!InsertedSizes[IndVars[i].first->getType()->getPrimitiveSize()]) {
PHINode *PN = IndVars[i].first;
InsertedSizes[PN->getType()->getPrimitiveSize()] = true;
Instruction *New = new TruncInst(IndVar, PN->getType(), "indvar",
InsertPt);
Rewriter.addInsertedValue(New, SE->getSCEV(New));
DOUT << "INDVARS: Made trunc IV for " << *PN
<< " NewVal = " << *New << "\n";
}
}
// Rewrite all induction variables in terms of the canonical induction
// variable.
std::map<unsigned, Value*> InsertedSizes;
while (!IndVars.empty()) {
PHINode *PN = IndVars.back().first;
Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt,
PN->getType());
DOUT << "INDVARS: Rewrote IV '" << *IndVars.back().second << "' " << *PN
<< " into = " << *NewVal << "\n";
std::string Name = PN->getName();
PN->setName("");
NewVal->setName(Name);
// Replace the old PHI Node with the inserted computation.
PN->replaceAllUsesWith(NewVal);
DeadInsts.insert(PN);
IndVars.pop_back();
++NumRemoved;
Changed = true;
}
#if 0
// Now replace all derived expressions in the loop body with simpler
// expressions.
for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
if (LI->getLoopFor(L->getBlocks()[i]) == L) { // Not in a subloop...
BasicBlock *BB = L->getBlocks()[i];
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (I->getType()->isInteger() && // Is an integer instruction
!I->use_empty() &&
!Rewriter.isInsertedInstruction(I)) {
SCEVHandle SH = SE->getSCEV(I);
Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
if (V != I) {
if (isa<Instruction>(V)) {
std::string Name = I->getName();
I->setName("");
V->setName(Name);
}
I->replaceAllUsesWith(V);
DeadInsts.insert(I);
++NumRemoved;
Changed = true;
}
}
}
#endif
DeleteTriviallyDeadInstructions(DeadInsts);
if (mustPreserveAnalysisID(LCSSAID)) assert(L->isLCSSAForm());
}