llvm-6502/lib/Target/X86/X86RegisterInfo.td
Bill Wendling eebc8a1bc5 Add support for the v1i64 type. This makes better code for this:
#include <mmintrin.h>

extern __m64 C;

void baz(__v2si *A, __v2si *B)
{
  *A = C;
  _mm_empty();
}

We get this:

_baz:
        call "L1$pb"
"L1$pb":
        popl %eax
        movl L_C$non_lazy_ptr-"L1$pb"(%eax), %eax
        movq (%eax), %mm0
        movl 4(%esp), %eax
        movq %mm0, (%eax)
        emms
        ret

GCC gives us this:

_baz:
        pushl   %ebx
        call    L3
"L00000000001$pb":
L3:
        popl    %ebx
        subl    $8, %esp
        movl    L_C$non_lazy_ptr-"L00000000001$pb"(%ebx), %eax
        movl    (%eax), %edx
        movl    4(%eax), %ecx
        movl    16(%esp), %eax
        movl    %edx, (%eax)
        movl    %ecx, 4(%eax)
        emms
        addl    $8, %esp
        popl    %ebx
        ret


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35351 91177308-0d34-0410-b5e6-96231b3b80d8
2007-03-26 07:53:08 +00:00

465 lines
19 KiB
C++

//===- X86RegisterInfo.td - Describe the X86 Register File ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 Register file, defining the registers themselves,
// aliases between the registers, and the register classes built out of the
// registers.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Register definitions...
//
let Namespace = "X86" in {
// In the register alias definitions below, we define which registers alias
// which others. We only specify which registers the small registers alias,
// because the register file generator is smart enough to figure out that
// AL aliases AX if we tell it that AX aliased AL (for example).
// FIXME: X86-64 have different Dwarf numbers.
// 64-bit registers, X86-64 only
def RAX : Register<"RAX">, DwarfRegNum<0>;
def RDX : Register<"RDX">, DwarfRegNum<1>;
def RCX : Register<"RCX">, DwarfRegNum<2>;
def RBX : Register<"RBX">, DwarfRegNum<3>;
def RSI : Register<"RSI">, DwarfRegNum<4>;
def RDI : Register<"RDI">, DwarfRegNum<5>;
def RBP : Register<"RBP">, DwarfRegNum<6>;
def RSP : Register<"RSP">, DwarfRegNum<7>;
def R8 : Register<"R8">, DwarfRegNum<8>;
def R9 : Register<"R9">, DwarfRegNum<9>;
def R10 : Register<"R10">, DwarfRegNum<10>;
def R11 : Register<"R11">, DwarfRegNum<11>;
def R12 : Register<"R12">, DwarfRegNum<12>;
def R13 : Register<"R13">, DwarfRegNum<13>;
def R14 : Register<"R14">, DwarfRegNum<14>;
def R15 : Register<"R15">, DwarfRegNum<15>;
// 32-bit registers
def EAX : RegisterGroup<"EAX", [RAX]>, DwarfRegNum<0>;
def ECX : RegisterGroup<"ECX", [RCX]>, DwarfRegNum<1>;
def EDX : RegisterGroup<"EDX", [RDX]>, DwarfRegNum<2>;
def EBX : RegisterGroup<"EBX", [RBX]>, DwarfRegNum<3>;
def ESP : RegisterGroup<"ESP", [RSP]>, DwarfRegNum<4>;
def EBP : RegisterGroup<"EBP", [RBP]>, DwarfRegNum<5>;
def ESI : RegisterGroup<"ESI", [RSI]>, DwarfRegNum<6>;
def EDI : RegisterGroup<"EDI", [RDI]>, DwarfRegNum<7>;
// X86-64 only
def R8D : RegisterGroup<"R8D", [R8]>, DwarfRegNum<8>;
def R9D : RegisterGroup<"R9D", [R9]>, DwarfRegNum<9>;
def R10D : RegisterGroup<"R10D", [R10]>, DwarfRegNum<10>;
def R11D : RegisterGroup<"R11D", [R11]>, DwarfRegNum<11>;
def R12D : RegisterGroup<"R12D", [R12]>, DwarfRegNum<12>;
def R13D : RegisterGroup<"R13D", [R13]>, DwarfRegNum<13>;
def R14D : RegisterGroup<"R14D", [R14]>, DwarfRegNum<14>;
def R15D : RegisterGroup<"R15D", [R15]>, DwarfRegNum<15>;
// 16-bit registers
def AX : RegisterGroup<"AX", [EAX,RAX]>, DwarfRegNum<0>;
def CX : RegisterGroup<"CX", [ECX,RCX]>, DwarfRegNum<1>;
def DX : RegisterGroup<"DX", [EDX,RDX]>, DwarfRegNum<2>;
def BX : RegisterGroup<"BX", [EBX,RBX]>, DwarfRegNum<3>;
def SP : RegisterGroup<"SP", [ESP,RSP]>, DwarfRegNum<4>;
def BP : RegisterGroup<"BP", [EBP,RBP]>, DwarfRegNum<5>;
def SI : RegisterGroup<"SI", [ESI,RSI]>, DwarfRegNum<6>;
def DI : RegisterGroup<"DI", [EDI,RDI]>, DwarfRegNum<7>;
// X86-64 only
def R8W : RegisterGroup<"R8W", [R8D,R8]>, DwarfRegNum<8>;
def R9W : RegisterGroup<"R9W", [R9D,R9]>, DwarfRegNum<9>;
def R10W : RegisterGroup<"R10W", [R10D,R10]>, DwarfRegNum<10>;
def R11W : RegisterGroup<"R11W", [R11D,R11]>, DwarfRegNum<11>;
def R12W : RegisterGroup<"R12W", [R12D,R12]>, DwarfRegNum<12>;
def R13W : RegisterGroup<"R13W", [R13D,R13]>, DwarfRegNum<13>;
def R14W : RegisterGroup<"R14W", [R14D,R14]>, DwarfRegNum<14>;
def R15W : RegisterGroup<"R15W", [R15D,R15]>, DwarfRegNum<15>;
// 8-bit registers
// Low registers
def AL : RegisterGroup<"AL", [AX,EAX,RAX]>, DwarfRegNum<0>;
def CL : RegisterGroup<"CL", [CX,ECX,RCX]>, DwarfRegNum<1>;
def DL : RegisterGroup<"DL", [DX,EDX,RDX]>, DwarfRegNum<2>;
def BL : RegisterGroup<"BL", [BX,EBX,RBX]>, DwarfRegNum<3>;
// X86-64 only
def SIL : RegisterGroup<"SIL", [SI,ESI,RSI]>, DwarfRegNum<4>;
def DIL : RegisterGroup<"DIL", [DI,EDI,RDI]>, DwarfRegNum<5>;
def BPL : RegisterGroup<"BPL", [BP,EBP,RBP]>, DwarfRegNum<6>;
def SPL : RegisterGroup<"SPL", [SP,ESP,RSP]>, DwarfRegNum<7>;
def R8B : RegisterGroup<"R8B", [R8W,R8D,R8]>, DwarfRegNum<8>;
def R9B : RegisterGroup<"R9B", [R9W,R9D,R9]>, DwarfRegNum<9>;
def R10B : RegisterGroup<"R10B", [R10W,R10D,R10]>, DwarfRegNum<10>;
def R11B : RegisterGroup<"R11B", [R11W,R11D,R11]>, DwarfRegNum<11>;
def R12B : RegisterGroup<"R12B", [R12W,R12D,R12]>, DwarfRegNum<12>;
def R13B : RegisterGroup<"R13B", [R13W,R13D,R13]>, DwarfRegNum<13>;
def R14B : RegisterGroup<"R14B", [R14W,R14D,R14]>, DwarfRegNum<14>;
def R15B : RegisterGroup<"R15B", [R15W,R15D,R15]>, DwarfRegNum<15>;
// High registers X86-32 only
def AH : RegisterGroup<"AH", [AX,EAX,RAX]>, DwarfRegNum<0>;
def CH : RegisterGroup<"CH", [CX,ECX,RCX]>, DwarfRegNum<1>;
def DH : RegisterGroup<"DH", [DX,EDX,RDX]>, DwarfRegNum<2>;
def BH : RegisterGroup<"BH", [BX,EBX,RBX]>, DwarfRegNum<3>;
// MMX Registers. These are actually aliased to ST0 .. ST7
def MM0 : Register<"MM0">, DwarfRegNum<29>;
def MM1 : Register<"MM1">, DwarfRegNum<30>;
def MM2 : Register<"MM2">, DwarfRegNum<31>;
def MM3 : Register<"MM3">, DwarfRegNum<32>;
def MM4 : Register<"MM4">, DwarfRegNum<33>;
def MM5 : Register<"MM5">, DwarfRegNum<34>;
def MM6 : Register<"MM6">, DwarfRegNum<35>;
def MM7 : Register<"MM7">, DwarfRegNum<36>;
// Pseudo Floating Point registers
def FP0 : Register<"FP0">, DwarfRegNum<-1>;
def FP1 : Register<"FP1">, DwarfRegNum<-1>;
def FP2 : Register<"FP2">, DwarfRegNum<-1>;
def FP3 : Register<"FP3">, DwarfRegNum<-1>;
def FP4 : Register<"FP4">, DwarfRegNum<-1>;
def FP5 : Register<"FP5">, DwarfRegNum<-1>;
def FP6 : Register<"FP6">, DwarfRegNum<-1>;
// XMM Registers, used by the various SSE instruction set extensions
def XMM0: Register<"XMM0">, DwarfRegNum<17>;
def XMM1: Register<"XMM1">, DwarfRegNum<18>;
def XMM2: Register<"XMM2">, DwarfRegNum<19>;
def XMM3: Register<"XMM3">, DwarfRegNum<20>;
def XMM4: Register<"XMM4">, DwarfRegNum<21>;
def XMM5: Register<"XMM5">, DwarfRegNum<22>;
def XMM6: Register<"XMM6">, DwarfRegNum<23>;
def XMM7: Register<"XMM7">, DwarfRegNum<24>;
// X86-64 only
def XMM8: Register<"XMM8">, DwarfRegNum<25>;
def XMM9: Register<"XMM9">, DwarfRegNum<26>;
def XMM10: Register<"XMM10">, DwarfRegNum<27>;
def XMM11: Register<"XMM11">, DwarfRegNum<28>;
def XMM12: Register<"XMM12">, DwarfRegNum<29>;
def XMM13: Register<"XMM13">, DwarfRegNum<30>;
def XMM14: Register<"XMM14">, DwarfRegNum<31>;
def XMM15: Register<"XMM15">, DwarfRegNum<32>;
// Floating point stack registers
def ST0 : Register<"ST(0)">, DwarfRegNum<11>;
def ST1 : Register<"ST(1)">, DwarfRegNum<12>;
def ST2 : Register<"ST(2)">, DwarfRegNum<13>;
def ST3 : Register<"ST(3)">, DwarfRegNum<14>;
def ST4 : Register<"ST(4)">, DwarfRegNum<15>;
def ST5 : Register<"ST(5)">, DwarfRegNum<16>;
def ST6 : Register<"ST(6)">, DwarfRegNum<17>;
def ST7 : Register<"ST(7)">, DwarfRegNum<18>;
}
//===----------------------------------------------------------------------===//
// Register Class Definitions... now that we have all of the pieces, define the
// top-level register classes. The order specified in the register list is
// implicitly defined to be the register allocation order.
//
// List call-clobbered registers before callee-save registers. RBX, RBP, (and
// R12, R13, R14, and R15 for X86-64) are callee-save registers.
// In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and
// R8B, ... R15B.
// FIXME: Allow AH, CH, DH, BH in 64-mode for non-REX instructions,
def GR8 : RegisterClass<"X86", [i8], 8,
[AL, CL, DL, BL, AH, CH, DH, BH, SIL, DIL, BPL, SPL,
R8B, R9B, R10B, R11B, R12B, R13B, R14B, R15B]> {
let MethodProtos = [{
iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
// Does the function dedicate RBP / EBP to being a frame ptr?
// If so, don't allocate SPL or BPL.
static const unsigned X86_GR8_AO_64_fp[] =
{X86::AL, X86::CL, X86::DL, X86::SIL, X86::DIL,
X86::R8B, X86::R9B, X86::R10B, X86::R11B,
X86::BL, X86::R14B, X86::R15B, X86::R12B, X86::R13B};
// If not, just don't allocate SPL.
static const unsigned X86_GR8_AO_64[] =
{X86::AL, X86::CL, X86::DL, X86::SIL, X86::DIL,
X86::R8B, X86::R9B, X86::R10B, X86::R11B,
X86::BL, X86::R14B, X86::R15B, X86::R12B, X86::R13B, X86::BPL};
// In 32-mode, none of the 8-bit registers aliases EBP or ESP.
static const unsigned X86_GR8_AO_32[] =
{X86::AL, X86::CL, X86::DL, X86::AH, X86::CH, X86::DH, X86::BL, X86::BH};
GR8Class::iterator
GR8Class::allocation_order_begin(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (!Subtarget.is64Bit())
return X86_GR8_AO_32;
else if (RI->hasFP(MF))
return X86_GR8_AO_64_fp;
else
return X86_GR8_AO_64;
}
GR8Class::iterator
GR8Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (!Subtarget.is64Bit())
return X86_GR8_AO_32 + (sizeof(X86_GR8_AO_32) / sizeof(unsigned));
else if (RI->hasFP(MF))
return X86_GR8_AO_64_fp + (sizeof(X86_GR8_AO_64_fp) / sizeof(unsigned));
else
return X86_GR8_AO_64 + (sizeof(X86_GR8_AO_64) / sizeof(unsigned));
}
}];
}
def GR16 : RegisterClass<"X86", [i16], 16,
[AX, CX, DX, SI, DI, BX, BP, SP,
R8W, R9W, R10W, R11W, R12W, R13W, R14W, R15W]> {
let MethodProtos = [{
iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
// Does the function dedicate RBP / EBP to being a frame ptr?
// If so, don't allocate SP or BP.
static const unsigned X86_GR16_AO_64_fp[] =
{X86::AX, X86::CX, X86::DX, X86::SI, X86::DI,
X86::R8W, X86::R9W, X86::R10W, X86::R11W,
X86::BX, X86::R14W, X86::R15W, X86::R12W, X86::R13W};
static const unsigned X86_GR16_AO_32_fp[] =
{X86::AX, X86::CX, X86::DX, X86::SI, X86::DI, X86::BX};
// If not, just don't allocate SPL.
static const unsigned X86_GR16_AO_64[] =
{X86::AX, X86::CX, X86::DX, X86::SI, X86::DI,
X86::R8W, X86::R9W, X86::R10W, X86::R11W,
X86::BX, X86::R14W, X86::R15W, X86::R12W, X86::R13W, X86::BP};
static const unsigned X86_GR16_AO_32[] =
{X86::AX, X86::CX, X86::DX, X86::SI, X86::DI, X86::BX, X86::BP};
GR16Class::iterator
GR16Class::allocation_order_begin(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (Subtarget.is64Bit()) {
if (RI->hasFP(MF))
return X86_GR16_AO_64_fp;
else
return X86_GR16_AO_64;
} else {
if (RI->hasFP(MF))
return X86_GR16_AO_32_fp;
else
return X86_GR16_AO_32;
}
}
GR16Class::iterator
GR16Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (Subtarget.is64Bit()) {
if (RI->hasFP(MF))
return X86_GR16_AO_64_fp+(sizeof(X86_GR16_AO_64_fp)/sizeof(unsigned));
else
return X86_GR16_AO_64 + (sizeof(X86_GR16_AO_64) / sizeof(unsigned));
} else {
if (RI->hasFP(MF))
return X86_GR16_AO_32_fp+(sizeof(X86_GR16_AO_32_fp)/sizeof(unsigned));
else
return X86_GR16_AO_32 + (sizeof(X86_GR16_AO_32) / sizeof(unsigned));
}
}
}];
}
def GR32 : RegisterClass<"X86", [i32], 32,
[EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP,
R8D, R9D, R10D, R11D, R12D, R13D, R14D, R15D]> {
let MethodProtos = [{
iterator allocation_order_begin(const MachineFunction &MF) const;
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
// Does the function dedicate RBP / EBP to being a frame ptr?
// If so, don't allocate ESP or EBP.
static const unsigned X86_GR32_AO_64_fp[] =
{X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI,
X86::R8D, X86::R9D, X86::R10D, X86::R11D,
X86::EBX, X86::R14D, X86::R15D, X86::R12D, X86::R13D};
static const unsigned X86_GR32_AO_32_fp[] =
{X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, X86::EBX};
// If not, just don't allocate SPL.
static const unsigned X86_GR32_AO_64[] =
{X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI,
X86::R8D, X86::R9D, X86::R10D, X86::R11D,
X86::EBX, X86::R14D, X86::R15D, X86::R12D, X86::R13D, X86::EBP};
static const unsigned X86_GR32_AO_32[] =
{X86::EAX, X86::ECX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP};
GR32Class::iterator
GR32Class::allocation_order_begin(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (Subtarget.is64Bit()) {
if (RI->hasFP(MF))
return X86_GR32_AO_64_fp;
else
return X86_GR32_AO_64;
} else {
if (RI->hasFP(MF))
return X86_GR32_AO_32_fp;
else
return X86_GR32_AO_32;
}
}
GR32Class::iterator
GR32Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (Subtarget.is64Bit()) {
if (RI->hasFP(MF))
return X86_GR32_AO_64_fp+(sizeof(X86_GR32_AO_64_fp)/sizeof(unsigned));
else
return X86_GR32_AO_64 + (sizeof(X86_GR32_AO_64) / sizeof(unsigned));
} else {
if (RI->hasFP(MF))
return X86_GR32_AO_32_fp+(sizeof(X86_GR32_AO_32_fp)/sizeof(unsigned));
else
return X86_GR32_AO_32 + (sizeof(X86_GR32_AO_32) / sizeof(unsigned));
}
}
}];
}
def GR64 : RegisterClass<"X86", [i64], 64,
[RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
RBX, R14, R15, R12, R13, RBP, RSP]> {
let MethodProtos = [{
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
GR64Class::iterator
GR64Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo *RI = TM.getRegisterInfo();
if (RI->hasFP(MF)) // Does the function dedicate RBP to being a frame ptr?
return end()-2; // If so, don't allocate RSP or RBP
else
return end()-1; // If not, just don't allocate RSP
}
}];
}
// GR16, GR32 subclasses which contain registers that have R8 sub-registers.
// These should only be used for 32-bit mode.
def GR16_ : RegisterClass<"X86", [i16], 16, [AX, CX, DX, BX]>;
def GR32_ : RegisterClass<"X86", [i32], 32, [EAX, ECX, EDX, EBX]>;
// Scalar SSE2 floating point registers.
def FR32 : RegisterClass<"X86", [f32], 32,
[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11,
XMM12, XMM13, XMM14, XMM15]> {
let MethodProtos = [{
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
FR32Class::iterator
FR32Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (!Subtarget.is64Bit())
return end()-8; // Only XMM0 to XMM7 are available in 32-bit mode.
else
return end();
}
}];
}
def FR64 : RegisterClass<"X86", [f64], 64,
[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11,
XMM12, XMM13, XMM14, XMM15]> {
let MethodProtos = [{
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
FR64Class::iterator
FR64Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (!Subtarget.is64Bit())
return end()-8; // Only XMM0 to XMM7 are available in 32-bit mode.
else
return end();
}
}];
}
// FIXME: This sets up the floating point register files as though they are f64
// values, though they really are f80 values. This will cause us to spill
// values as 64-bit quantities instead of 80-bit quantities, which is much much
// faster on common hardware. In reality, this should be controlled by a
// command line option or something.
def RFP : RegisterClass<"X86", [f64], 32, [FP0, FP1, FP2, FP3, FP4, FP5, FP6]>;
// Floating point stack registers (these are not allocatable by the
// register allocator - the floating point stackifier is responsible
// for transforming FPn allocations to STn registers)
def RST : RegisterClass<"X86", [f64], 32,
[ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7]> {
let MethodProtos = [{
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
RSTClass::iterator
RSTClass::allocation_order_end(const MachineFunction &MF) const {
return begin();
}
}];
}
// Generic vector registers: VR64 and VR128.
def VR64 : RegisterClass<"X86", [v8i8, v4i16, v2i32, v1i64], 64,
[MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7]>;
def VR128 : RegisterClass<"X86", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],128,
[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11,
XMM12, XMM13, XMM14, XMM15]> {
let MethodProtos = [{
iterator allocation_order_end(const MachineFunction &MF) const;
}];
let MethodBodies = [{
VR128Class::iterator
VR128Class::allocation_order_end(const MachineFunction &MF) const {
const TargetMachine &TM = MF.getTarget();
const X86Subtarget &Subtarget = TM.getSubtarget<X86Subtarget>();
if (!Subtarget.is64Bit())
return end()-8; // Only XMM0 to XMM7 are available in 32-bit mode.
else
return end();
}
}];
}