llvm-6502/lib/Target/R600/R600ISelLowering.cpp
Matt Arsenault e3ed404672 R600: Add dag combine for BFE
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209461 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-22 18:09:07 +00:00

2017 lines
71 KiB
C++

//===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Custom DAG lowering for R600
//
//===----------------------------------------------------------------------===//
#include "R600ISelLowering.h"
#include "R600Defines.h"
#include "R600InstrInfo.h"
#include "R600MachineFunctionInfo.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Function.h"
using namespace llvm;
R600TargetLowering::R600TargetLowering(TargetMachine &TM) :
AMDGPUTargetLowering(TM),
Gen(TM.getSubtarget<AMDGPUSubtarget>().getGeneration()) {
addRegisterClass(MVT::v4f32, &AMDGPU::R600_Reg128RegClass);
addRegisterClass(MVT::f32, &AMDGPU::R600_Reg32RegClass);
addRegisterClass(MVT::v4i32, &AMDGPU::R600_Reg128RegClass);
addRegisterClass(MVT::i32, &AMDGPU::R600_Reg32RegClass);
addRegisterClass(MVT::v2f32, &AMDGPU::R600_Reg64RegClass);
addRegisterClass(MVT::v2i32, &AMDGPU::R600_Reg64RegClass);
computeRegisterProperties();
// Set condition code actions
setCondCodeAction(ISD::SETO, MVT::f32, Expand);
setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
setCondCodeAction(ISD::SETLT, MVT::f32, Expand);
setCondCodeAction(ISD::SETLE, MVT::f32, Expand);
setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
setCondCodeAction(ISD::SETLE, MVT::i32, Expand);
setCondCodeAction(ISD::SETLT, MVT::i32, Expand);
setCondCodeAction(ISD::SETULE, MVT::i32, Expand);
setCondCodeAction(ISD::SETULT, MVT::i32, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Custom);
setOperationAction(ISD::FSIN, MVT::f32, Custom);
setOperationAction(ISD::SETCC, MVT::v4i32, Expand);
setOperationAction(ISD::SETCC, MVT::v2i32, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Expand);
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
setOperationAction(ISD::FSUB, MVT::f32, Expand);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i1, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SETCC, MVT::i32, Expand);
setOperationAction(ISD::SETCC, MVT::f32, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom);
setOperationAction(ISD::SELECT, MVT::i32, Expand);
setOperationAction(ISD::SELECT, MVT::f32, Expand);
setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
// Expand sign extension of vectors
if (!Subtarget->hasBFE())
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Expand);
if (!Subtarget->hasBFE())
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Expand);
if (!Subtarget->hasBFE())
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);
// Legalize loads and stores to the private address space.
setOperationAction(ISD::LOAD, MVT::i32, Custom);
setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
// EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
// spaces, so it is custom lowered to handle those where it isn't.
setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Custom);
setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Custom);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i8, Custom);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Custom);
setLoadExtAction(ISD::EXTLOAD, MVT::i8, Custom);
setLoadExtAction(ISD::EXTLOAD, MVT::i16, Custom);
setOperationAction(ISD::STORE, MVT::i8, Custom);
setOperationAction(ISD::STORE, MVT::i32, Custom);
setOperationAction(ISD::STORE, MVT::v2i32, Custom);
setOperationAction(ISD::STORE, MVT::v4i32, Custom);
setTruncStoreAction(MVT::i32, MVT::i8, Custom);
setTruncStoreAction(MVT::i32, MVT::i16, Custom);
setOperationAction(ISD::LOAD, MVT::i32, Custom);
setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
setTargetDAGCombine(ISD::FP_ROUND);
setTargetDAGCombine(ISD::FP_TO_SINT);
setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
setTargetDAGCombine(ISD::SELECT_CC);
setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
// These should be replaced by UDVIREM, but it does not happen automatically
// during Type Legalization
setOperationAction(ISD::UDIV, MVT::i64, Custom);
setOperationAction(ISD::UREM, MVT::i64, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setBooleanContents(ZeroOrNegativeOneBooleanContent);
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
setSchedulingPreference(Sched::Source);
}
MachineBasicBlock * R600TargetLowering::EmitInstrWithCustomInserter(
MachineInstr * MI, MachineBasicBlock * BB) const {
MachineFunction * MF = BB->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
MachineBasicBlock::iterator I = *MI;
const R600InstrInfo *TII =
static_cast<const R600InstrInfo*>(MF->getTarget().getInstrInfo());
switch (MI->getOpcode()) {
default:
// Replace LDS_*_RET instruction that don't have any uses with the
// equivalent LDS_*_NORET instruction.
if (TII->isLDSRetInstr(MI->getOpcode())) {
int DstIdx = TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::dst);
assert(DstIdx != -1);
MachineInstrBuilder NewMI;
if (!MRI.use_empty(MI->getOperand(DstIdx).getReg()))
return BB;
NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
TII->get(AMDGPU::getLDSNoRetOp(MI->getOpcode())));
for (unsigned i = 1, e = MI->getNumOperands(); i < e; ++i) {
NewMI.addOperand(MI->getOperand(i));
}
} else {
return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
}
break;
case AMDGPU::CLAMP_R600: {
MachineInstr *NewMI = TII->buildDefaultInstruction(*BB, I,
AMDGPU::MOV,
MI->getOperand(0).getReg(),
MI->getOperand(1).getReg());
TII->addFlag(NewMI, 0, MO_FLAG_CLAMP);
break;
}
case AMDGPU::FABS_R600: {
MachineInstr *NewMI = TII->buildDefaultInstruction(*BB, I,
AMDGPU::MOV,
MI->getOperand(0).getReg(),
MI->getOperand(1).getReg());
TII->addFlag(NewMI, 0, MO_FLAG_ABS);
break;
}
case AMDGPU::FNEG_R600: {
MachineInstr *NewMI = TII->buildDefaultInstruction(*BB, I,
AMDGPU::MOV,
MI->getOperand(0).getReg(),
MI->getOperand(1).getReg());
TII->addFlag(NewMI, 0, MO_FLAG_NEG);
break;
}
case AMDGPU::MASK_WRITE: {
unsigned maskedRegister = MI->getOperand(0).getReg();
assert(TargetRegisterInfo::isVirtualRegister(maskedRegister));
MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
TII->addFlag(defInstr, 0, MO_FLAG_MASK);
break;
}
case AMDGPU::MOV_IMM_F32:
TII->buildMovImm(*BB, I, MI->getOperand(0).getReg(),
MI->getOperand(1).getFPImm()->getValueAPF()
.bitcastToAPInt().getZExtValue());
break;
case AMDGPU::MOV_IMM_I32:
TII->buildMovImm(*BB, I, MI->getOperand(0).getReg(),
MI->getOperand(1).getImm());
break;
case AMDGPU::CONST_COPY: {
MachineInstr *NewMI = TII->buildDefaultInstruction(*BB, MI, AMDGPU::MOV,
MI->getOperand(0).getReg(), AMDGPU::ALU_CONST);
TII->setImmOperand(NewMI, AMDGPU::OpName::src0_sel,
MI->getOperand(1).getImm());
break;
}
case AMDGPU::RAT_WRITE_CACHELESS_32_eg:
case AMDGPU::RAT_WRITE_CACHELESS_64_eg:
case AMDGPU::RAT_WRITE_CACHELESS_128_eg: {
unsigned EOP = (std::next(I)->getOpcode() == AMDGPU::RETURN) ? 1 : 0;
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI->getOpcode()))
.addOperand(MI->getOperand(0))
.addOperand(MI->getOperand(1))
.addImm(EOP); // Set End of program bit
break;
}
case AMDGPU::TXD: {
unsigned T0 = MRI.createVirtualRegister(&AMDGPU::R600_Reg128RegClass);
unsigned T1 = MRI.createVirtualRegister(&AMDGPU::R600_Reg128RegClass);
MachineOperand &RID = MI->getOperand(4);
MachineOperand &SID = MI->getOperand(5);
unsigned TextureId = MI->getOperand(6).getImm();
unsigned SrcX = 0, SrcY = 1, SrcZ = 2, SrcW = 3;
unsigned CTX = 1, CTY = 1, CTZ = 1, CTW = 1;
switch (TextureId) {
case 5: // Rect
CTX = CTY = 0;
break;
case 6: // Shadow1D
SrcW = SrcZ;
break;
case 7: // Shadow2D
SrcW = SrcZ;
break;
case 8: // ShadowRect
CTX = CTY = 0;
SrcW = SrcZ;
break;
case 9: // 1DArray
SrcZ = SrcY;
CTZ = 0;
break;
case 10: // 2DArray
CTZ = 0;
break;
case 11: // Shadow1DArray
SrcZ = SrcY;
CTZ = 0;
break;
case 12: // Shadow2DArray
CTZ = 0;
break;
}
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SET_GRADIENTS_H), T0)
.addOperand(MI->getOperand(3))
.addImm(SrcX)
.addImm(SrcY)
.addImm(SrcZ)
.addImm(SrcW)
.addImm(0)
.addImm(0)
.addImm(0)
.addImm(0)
.addImm(1)
.addImm(2)
.addImm(3)
.addOperand(RID)
.addOperand(SID)
.addImm(CTX)
.addImm(CTY)
.addImm(CTZ)
.addImm(CTW);
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SET_GRADIENTS_V), T1)
.addOperand(MI->getOperand(2))
.addImm(SrcX)
.addImm(SrcY)
.addImm(SrcZ)
.addImm(SrcW)
.addImm(0)
.addImm(0)
.addImm(0)
.addImm(0)
.addImm(1)
.addImm(2)
.addImm(3)
.addOperand(RID)
.addOperand(SID)
.addImm(CTX)
.addImm(CTY)
.addImm(CTZ)
.addImm(CTW);
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SAMPLE_G))
.addOperand(MI->getOperand(0))
.addOperand(MI->getOperand(1))
.addImm(SrcX)
.addImm(SrcY)
.addImm(SrcZ)
.addImm(SrcW)
.addImm(0)
.addImm(0)
.addImm(0)
.addImm(0)
.addImm(1)
.addImm(2)
.addImm(3)
.addOperand(RID)
.addOperand(SID)
.addImm(CTX)
.addImm(CTY)
.addImm(CTZ)
.addImm(CTW)
.addReg(T0, RegState::Implicit)
.addReg(T1, RegState::Implicit);
break;
}
case AMDGPU::TXD_SHADOW: {
unsigned T0 = MRI.createVirtualRegister(&AMDGPU::R600_Reg128RegClass);
unsigned T1 = MRI.createVirtualRegister(&AMDGPU::R600_Reg128RegClass);
MachineOperand &RID = MI->getOperand(4);
MachineOperand &SID = MI->getOperand(5);
unsigned TextureId = MI->getOperand(6).getImm();
unsigned SrcX = 0, SrcY = 1, SrcZ = 2, SrcW = 3;
unsigned CTX = 1, CTY = 1, CTZ = 1, CTW = 1;
switch (TextureId) {
case 5: // Rect
CTX = CTY = 0;
break;
case 6: // Shadow1D
SrcW = SrcZ;
break;
case 7: // Shadow2D
SrcW = SrcZ;
break;
case 8: // ShadowRect
CTX = CTY = 0;
SrcW = SrcZ;
break;
case 9: // 1DArray
SrcZ = SrcY;
CTZ = 0;
break;
case 10: // 2DArray
CTZ = 0;
break;
case 11: // Shadow1DArray
SrcZ = SrcY;
CTZ = 0;
break;
case 12: // Shadow2DArray
CTZ = 0;
break;
}
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SET_GRADIENTS_H), T0)
.addOperand(MI->getOperand(3))
.addImm(SrcX)
.addImm(SrcY)
.addImm(SrcZ)
.addImm(SrcW)
.addImm(0)
.addImm(0)
.addImm(0)
.addImm(0)
.addImm(1)
.addImm(2)
.addImm(3)
.addOperand(RID)
.addOperand(SID)
.addImm(CTX)
.addImm(CTY)
.addImm(CTZ)
.addImm(CTW);
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SET_GRADIENTS_V), T1)
.addOperand(MI->getOperand(2))
.addImm(SrcX)
.addImm(SrcY)
.addImm(SrcZ)
.addImm(SrcW)
.addImm(0)
.addImm(0)
.addImm(0)
.addImm(0)
.addImm(1)
.addImm(2)
.addImm(3)
.addOperand(RID)
.addOperand(SID)
.addImm(CTX)
.addImm(CTY)
.addImm(CTZ)
.addImm(CTW);
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::TEX_SAMPLE_C_G))
.addOperand(MI->getOperand(0))
.addOperand(MI->getOperand(1))
.addImm(SrcX)
.addImm(SrcY)
.addImm(SrcZ)
.addImm(SrcW)
.addImm(0)
.addImm(0)
.addImm(0)
.addImm(0)
.addImm(1)
.addImm(2)
.addImm(3)
.addOperand(RID)
.addOperand(SID)
.addImm(CTX)
.addImm(CTY)
.addImm(CTZ)
.addImm(CTW)
.addReg(T0, RegState::Implicit)
.addReg(T1, RegState::Implicit);
break;
}
case AMDGPU::BRANCH:
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::JUMP))
.addOperand(MI->getOperand(0));
break;
case AMDGPU::BRANCH_COND_f32: {
MachineInstr *NewMI =
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::PRED_X),
AMDGPU::PREDICATE_BIT)
.addOperand(MI->getOperand(1))
.addImm(OPCODE_IS_NOT_ZERO)
.addImm(0); // Flags
TII->addFlag(NewMI, 0, MO_FLAG_PUSH);
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::JUMP_COND))
.addOperand(MI->getOperand(0))
.addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
break;
}
case AMDGPU::BRANCH_COND_i32: {
MachineInstr *NewMI =
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::PRED_X),
AMDGPU::PREDICATE_BIT)
.addOperand(MI->getOperand(1))
.addImm(OPCODE_IS_NOT_ZERO_INT)
.addImm(0); // Flags
TII->addFlag(NewMI, 0, MO_FLAG_PUSH);
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::JUMP_COND))
.addOperand(MI->getOperand(0))
.addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
break;
}
case AMDGPU::EG_ExportSwz:
case AMDGPU::R600_ExportSwz: {
// Instruction is left unmodified if its not the last one of its type
bool isLastInstructionOfItsType = true;
unsigned InstExportType = MI->getOperand(1).getImm();
for (MachineBasicBlock::iterator NextExportInst = std::next(I),
EndBlock = BB->end(); NextExportInst != EndBlock;
NextExportInst = std::next(NextExportInst)) {
if (NextExportInst->getOpcode() == AMDGPU::EG_ExportSwz ||
NextExportInst->getOpcode() == AMDGPU::R600_ExportSwz) {
unsigned CurrentInstExportType = NextExportInst->getOperand(1)
.getImm();
if (CurrentInstExportType == InstExportType) {
isLastInstructionOfItsType = false;
break;
}
}
}
bool EOP = (std::next(I)->getOpcode() == AMDGPU::RETURN) ? 1 : 0;
if (!EOP && !isLastInstructionOfItsType)
return BB;
unsigned CfInst = (MI->getOpcode() == AMDGPU::EG_ExportSwz)? 84 : 40;
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI->getOpcode()))
.addOperand(MI->getOperand(0))
.addOperand(MI->getOperand(1))
.addOperand(MI->getOperand(2))
.addOperand(MI->getOperand(3))
.addOperand(MI->getOperand(4))
.addOperand(MI->getOperand(5))
.addOperand(MI->getOperand(6))
.addImm(CfInst)
.addImm(EOP);
break;
}
case AMDGPU::RETURN: {
// RETURN instructions must have the live-out registers as implicit uses,
// otherwise they appear dead.
R600MachineFunctionInfo *MFI = MF->getInfo<R600MachineFunctionInfo>();
MachineInstrBuilder MIB(*MF, MI);
for (unsigned i = 0, e = MFI->LiveOuts.size(); i != e; ++i)
MIB.addReg(MFI->LiveOuts[i], RegState::Implicit);
return BB;
}
}
MI->eraseFromParent();
return BB;
}
//===----------------------------------------------------------------------===//
// Custom DAG Lowering Operations
//===----------------------------------------------------------------------===//
SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
switch (Op.getOpcode()) {
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
case ISD::FCOS:
case ISD::FSIN: return LowerTrig(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::LOAD: return LowerLOAD(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
case ISD::INTRINSIC_VOID: {
SDValue Chain = Op.getOperand(0);
unsigned IntrinsicID =
cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
switch (IntrinsicID) {
case AMDGPUIntrinsic::AMDGPU_store_output: {
int64_t RegIndex = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
unsigned Reg = AMDGPU::R600_TReg32RegClass.getRegister(RegIndex);
MFI->LiveOuts.push_back(Reg);
return DAG.getCopyToReg(Chain, SDLoc(Op), Reg, Op.getOperand(2));
}
case AMDGPUIntrinsic::R600_store_swizzle: {
const SDValue Args[8] = {
Chain,
Op.getOperand(2), // Export Value
Op.getOperand(3), // ArrayBase
Op.getOperand(4), // Type
DAG.getConstant(0, MVT::i32), // SWZ_X
DAG.getConstant(1, MVT::i32), // SWZ_Y
DAG.getConstant(2, MVT::i32), // SWZ_Z
DAG.getConstant(3, MVT::i32) // SWZ_W
};
return DAG.getNode(AMDGPUISD::EXPORT, SDLoc(Op), Op.getValueType(), Args);
}
// default for switch(IntrinsicID)
default: break;
}
// break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
break;
}
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IntrinsicID =
cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
EVT VT = Op.getValueType();
SDLoc DL(Op);
switch(IntrinsicID) {
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
case AMDGPUIntrinsic::R600_load_input: {
int64_t RegIndex = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
unsigned Reg = AMDGPU::R600_TReg32RegClass.getRegister(RegIndex);
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &MRI = MF.getRegInfo();
MRI.addLiveIn(Reg);
return DAG.getCopyFromReg(DAG.getEntryNode(),
SDLoc(DAG.getEntryNode()), Reg, VT);
}
case AMDGPUIntrinsic::R600_interp_input: {
int slot = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
int ijb = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
MachineSDNode *interp;
if (ijb < 0) {
const MachineFunction &MF = DAG.getMachineFunction();
const R600InstrInfo *TII =
static_cast<const R600InstrInfo*>(MF.getTarget().getInstrInfo());
interp = DAG.getMachineNode(AMDGPU::INTERP_VEC_LOAD, DL,
MVT::v4f32, DAG.getTargetConstant(slot / 4 , MVT::i32));
return DAG.getTargetExtractSubreg(
TII->getRegisterInfo().getSubRegFromChannel(slot % 4),
DL, MVT::f32, SDValue(interp, 0));
}
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned RegisterI = AMDGPU::R600_TReg32RegClass.getRegister(2 * ijb);
unsigned RegisterJ = AMDGPU::R600_TReg32RegClass.getRegister(2 * ijb + 1);
MRI.addLiveIn(RegisterI);
MRI.addLiveIn(RegisterJ);
SDValue RegisterINode = DAG.getCopyFromReg(DAG.getEntryNode(),
SDLoc(DAG.getEntryNode()), RegisterI, MVT::f32);
SDValue RegisterJNode = DAG.getCopyFromReg(DAG.getEntryNode(),
SDLoc(DAG.getEntryNode()), RegisterJ, MVT::f32);
if (slot % 4 < 2)
interp = DAG.getMachineNode(AMDGPU::INTERP_PAIR_XY, DL,
MVT::f32, MVT::f32, DAG.getTargetConstant(slot / 4 , MVT::i32),
RegisterJNode, RegisterINode);
else
interp = DAG.getMachineNode(AMDGPU::INTERP_PAIR_ZW, DL,
MVT::f32, MVT::f32, DAG.getTargetConstant(slot / 4 , MVT::i32),
RegisterJNode, RegisterINode);
return SDValue(interp, slot % 2);
}
case AMDGPUIntrinsic::R600_interp_xy:
case AMDGPUIntrinsic::R600_interp_zw: {
int slot = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
MachineSDNode *interp;
SDValue RegisterINode = Op.getOperand(2);
SDValue RegisterJNode = Op.getOperand(3);
if (IntrinsicID == AMDGPUIntrinsic::R600_interp_xy)
interp = DAG.getMachineNode(AMDGPU::INTERP_PAIR_XY, DL,
MVT::f32, MVT::f32, DAG.getTargetConstant(slot, MVT::i32),
RegisterJNode, RegisterINode);
else
interp = DAG.getMachineNode(AMDGPU::INTERP_PAIR_ZW, DL,
MVT::f32, MVT::f32, DAG.getTargetConstant(slot, MVT::i32),
RegisterJNode, RegisterINode);
return DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f32,
SDValue(interp, 0), SDValue(interp, 1));
}
case AMDGPUIntrinsic::R600_tex:
case AMDGPUIntrinsic::R600_texc:
case AMDGPUIntrinsic::R600_txl:
case AMDGPUIntrinsic::R600_txlc:
case AMDGPUIntrinsic::R600_txb:
case AMDGPUIntrinsic::R600_txbc:
case AMDGPUIntrinsic::R600_txf:
case AMDGPUIntrinsic::R600_txq:
case AMDGPUIntrinsic::R600_ddx:
case AMDGPUIntrinsic::R600_ddy:
case AMDGPUIntrinsic::R600_ldptr: {
unsigned TextureOp;
switch (IntrinsicID) {
case AMDGPUIntrinsic::R600_tex:
TextureOp = 0;
break;
case AMDGPUIntrinsic::R600_texc:
TextureOp = 1;
break;
case AMDGPUIntrinsic::R600_txl:
TextureOp = 2;
break;
case AMDGPUIntrinsic::R600_txlc:
TextureOp = 3;
break;
case AMDGPUIntrinsic::R600_txb:
TextureOp = 4;
break;
case AMDGPUIntrinsic::R600_txbc:
TextureOp = 5;
break;
case AMDGPUIntrinsic::R600_txf:
TextureOp = 6;
break;
case AMDGPUIntrinsic::R600_txq:
TextureOp = 7;
break;
case AMDGPUIntrinsic::R600_ddx:
TextureOp = 8;
break;
case AMDGPUIntrinsic::R600_ddy:
TextureOp = 9;
break;
case AMDGPUIntrinsic::R600_ldptr:
TextureOp = 10;
break;
default:
llvm_unreachable("Unknow Texture Operation");
}
SDValue TexArgs[19] = {
DAG.getConstant(TextureOp, MVT::i32),
Op.getOperand(1),
DAG.getConstant(0, MVT::i32),
DAG.getConstant(1, MVT::i32),
DAG.getConstant(2, MVT::i32),
DAG.getConstant(3, MVT::i32),
Op.getOperand(2),
Op.getOperand(3),
Op.getOperand(4),
DAG.getConstant(0, MVT::i32),
DAG.getConstant(1, MVT::i32),
DAG.getConstant(2, MVT::i32),
DAG.getConstant(3, MVT::i32),
Op.getOperand(5),
Op.getOperand(6),
Op.getOperand(7),
Op.getOperand(8),
Op.getOperand(9),
Op.getOperand(10)
};
return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
}
case AMDGPUIntrinsic::AMDGPU_dp4: {
SDValue Args[8] = {
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
DAG.getConstant(0, MVT::i32)),
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
DAG.getConstant(0, MVT::i32)),
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
DAG.getConstant(1, MVT::i32)),
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
DAG.getConstant(1, MVT::i32)),
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
DAG.getConstant(2, MVT::i32)),
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
DAG.getConstant(2, MVT::i32)),
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
DAG.getConstant(3, MVT::i32)),
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
DAG.getConstant(3, MVT::i32))
};
return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
}
case Intrinsic::r600_read_ngroups_x:
return LowerImplicitParameter(DAG, VT, DL, 0);
case Intrinsic::r600_read_ngroups_y:
return LowerImplicitParameter(DAG, VT, DL, 1);
case Intrinsic::r600_read_ngroups_z:
return LowerImplicitParameter(DAG, VT, DL, 2);
case Intrinsic::r600_read_global_size_x:
return LowerImplicitParameter(DAG, VT, DL, 3);
case Intrinsic::r600_read_global_size_y:
return LowerImplicitParameter(DAG, VT, DL, 4);
case Intrinsic::r600_read_global_size_z:
return LowerImplicitParameter(DAG, VT, DL, 5);
case Intrinsic::r600_read_local_size_x:
return LowerImplicitParameter(DAG, VT, DL, 6);
case Intrinsic::r600_read_local_size_y:
return LowerImplicitParameter(DAG, VT, DL, 7);
case Intrinsic::r600_read_local_size_z:
return LowerImplicitParameter(DAG, VT, DL, 8);
case Intrinsic::r600_read_tgid_x:
return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
AMDGPU::T1_X, VT);
case Intrinsic::r600_read_tgid_y:
return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
AMDGPU::T1_Y, VT);
case Intrinsic::r600_read_tgid_z:
return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
AMDGPU::T1_Z, VT);
case Intrinsic::r600_read_tidig_x:
return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
AMDGPU::T0_X, VT);
case Intrinsic::r600_read_tidig_y:
return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
AMDGPU::T0_Y, VT);
case Intrinsic::r600_read_tidig_z:
return CreateLiveInRegister(DAG, &AMDGPU::R600_TReg32RegClass,
AMDGPU::T0_Z, VT);
}
// break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
break;
}
} // end switch(Op.getOpcode())
return SDValue();
}
void R600TargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
switch (N->getOpcode()) {
default:
AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
return;
case ISD::FP_TO_UINT: Results.push_back(LowerFPTOUINT(N->getOperand(0), DAG));
return;
case ISD::LOAD: {
SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode();
Results.push_back(SDValue(Node, 0));
Results.push_back(SDValue(Node, 1));
// XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode
// function
DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1));
return;
}
case ISD::STORE:
SDNode *Node = LowerSTORE(SDValue(N, 0), DAG).getNode();
Results.push_back(SDValue(Node, 0));
return;
}
}
SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
// On hw >= R700, COS/SIN input must be between -1. and 1.
// Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
EVT VT = Op.getValueType();
SDValue Arg = Op.getOperand(0);
SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, SDLoc(Op), VT,
DAG.getNode(ISD::FADD, SDLoc(Op), VT,
DAG.getNode(ISD::FMUL, SDLoc(Op), VT, Arg,
DAG.getConstantFP(0.15915494309, MVT::f32)),
DAG.getConstantFP(0.5, MVT::f32)));
unsigned TrigNode;
switch (Op.getOpcode()) {
case ISD::FCOS:
TrigNode = AMDGPUISD::COS_HW;
break;
case ISD::FSIN:
TrigNode = AMDGPUISD::SIN_HW;
break;
default:
llvm_unreachable("Wrong trig opcode");
}
SDValue TrigVal = DAG.getNode(TrigNode, SDLoc(Op), VT,
DAG.getNode(ISD::FADD, SDLoc(Op), VT, FractPart,
DAG.getConstantFP(-0.5, MVT::f32)));
if (Gen >= AMDGPUSubtarget::R700)
return TrigVal;
// On R600 hw, COS/SIN input must be between -Pi and Pi.
return DAG.getNode(ISD::FMUL, SDLoc(Op), VT, TrigVal,
DAG.getConstantFP(3.14159265359, MVT::f32));
}
SDValue R600TargetLowering::LowerFPTOUINT(SDValue Op, SelectionDAG &DAG) const {
return DAG.getNode(
ISD::SETCC,
SDLoc(Op),
MVT::i1,
Op, DAG.getConstantFP(0.0f, MVT::f32),
DAG.getCondCode(ISD::SETNE)
);
}
SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
SDLoc DL,
unsigned DwordOffset) const {
unsigned ByteOffset = DwordOffset * 4;
PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
AMDGPUAS::CONSTANT_BUFFER_0);
// We shouldn't be using an offset wider than 16-bits for implicit parameters.
assert(isInt<16>(ByteOffset));
return DAG.getLoad(VT, DL, DAG.getEntryNode(),
DAG.getConstant(ByteOffset, MVT::i32), // PTR
MachinePointerInfo(ConstantPointerNull::get(PtrType)),
false, false, false, 0);
}
bool R600TargetLowering::isZero(SDValue Op) const {
if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
return Cst->isNullValue();
} else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){
return CstFP->isZero();
} else {
return false;
}
}
SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue True = Op.getOperand(2);
SDValue False = Op.getOperand(3);
SDValue CC = Op.getOperand(4);
SDValue Temp;
// LHS and RHS are guaranteed to be the same value type
EVT CompareVT = LHS.getValueType();
// Check if we can lower this to a native operation.
// Try to lower to a SET* instruction:
//
// SET* can match the following patterns:
//
// select_cc f32, f32, -1, 0, cc_supported
// select_cc f32, f32, 1.0f, 0.0f, cc_supported
// select_cc i32, i32, -1, 0, cc_supported
//
// Move hardware True/False values to the correct operand.
ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
ISD::CondCode InverseCC =
ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32);
if (isHWTrueValue(False) && isHWFalseValue(True)) {
if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
std::swap(False, True);
CC = DAG.getCondCode(InverseCC);
} else {
ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
std::swap(False, True);
std::swap(LHS, RHS);
CC = DAG.getCondCode(SwapInvCC);
}
}
}
if (isHWTrueValue(True) && isHWFalseValue(False) &&
(CompareVT == VT || VT == MVT::i32)) {
// This can be matched by a SET* instruction.
return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
}
// Try to lower to a CND* instruction:
//
// CND* can match the following patterns:
//
// select_cc f32, 0.0, f32, f32, cc_supported
// select_cc f32, 0.0, i32, i32, cc_supported
// select_cc i32, 0, f32, f32, cc_supported
// select_cc i32, 0, i32, i32, cc_supported
//
// Try to move the zero value to the RHS
if (isZero(LHS)) {
ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
// Try swapping the operands
ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
std::swap(LHS, RHS);
CC = DAG.getCondCode(CCSwapped);
} else {
// Try inverting the conditon and then swapping the operands
ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT.isInteger());
CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
std::swap(True, False);
std::swap(LHS, RHS);
CC = DAG.getCondCode(CCSwapped);
}
}
}
if (isZero(RHS)) {
SDValue Cond = LHS;
SDValue Zero = RHS;
ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
if (CompareVT != VT) {
// Bitcast True / False to the correct types. This will end up being
// a nop, but it allows us to define only a single pattern in the
// .TD files for each CND* instruction rather than having to have
// one pattern for integer True/False and one for fp True/False
True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
}
switch (CCOpcode) {
case ISD::SETONE:
case ISD::SETUNE:
case ISD::SETNE:
CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32);
Temp = True;
True = False;
False = Temp;
break;
default:
break;
}
SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
Cond, Zero,
True, False,
DAG.getCondCode(CCOpcode));
return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
}
// If we make it this for it means we have no native instructions to handle
// this SELECT_CC, so we must lower it.
SDValue HWTrue, HWFalse;
if (CompareVT == MVT::f32) {
HWTrue = DAG.getConstantFP(1.0f, CompareVT);
HWFalse = DAG.getConstantFP(0.0f, CompareVT);
} else if (CompareVT == MVT::i32) {
HWTrue = DAG.getConstant(-1, CompareVT);
HWFalse = DAG.getConstant(0, CompareVT);
}
else {
llvm_unreachable("Unhandled value type in LowerSELECT_CC");
}
// Lower this unsupported SELECT_CC into a combination of two supported
// SELECT_CC operations.
SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
return DAG.getNode(ISD::SELECT_CC, DL, VT,
Cond, HWFalse,
True, False,
DAG.getCondCode(ISD::SETNE));
}
/// LLVM generates byte-addressed pointers. For indirect addressing, we need to
/// convert these pointers to a register index. Each register holds
/// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
/// \p StackWidth, which tells us how many of the 4 sub-registrers will be used
/// for indirect addressing.
SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
unsigned StackWidth,
SelectionDAG &DAG) const {
unsigned SRLPad;
switch(StackWidth) {
case 1:
SRLPad = 2;
break;
case 2:
SRLPad = 3;
break;
case 4:
SRLPad = 4;
break;
default: llvm_unreachable("Invalid stack width");
}
return DAG.getNode(ISD::SRL, SDLoc(Ptr), Ptr.getValueType(), Ptr,
DAG.getConstant(SRLPad, MVT::i32));
}
void R600TargetLowering::getStackAddress(unsigned StackWidth,
unsigned ElemIdx,
unsigned &Channel,
unsigned &PtrIncr) const {
switch (StackWidth) {
default:
case 1:
Channel = 0;
if (ElemIdx > 0) {
PtrIncr = 1;
} else {
PtrIncr = 0;
}
break;
case 2:
Channel = ElemIdx % 2;
if (ElemIdx == 2) {
PtrIncr = 1;
} else {
PtrIncr = 0;
}
break;
case 4:
Channel = ElemIdx;
PtrIncr = 0;
break;
}
}
SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
SDValue Chain = Op.getOperand(0);
SDValue Value = Op.getOperand(1);
SDValue Ptr = Op.getOperand(2);
SDValue Result = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
if (Result.getNode()) {
return Result;
}
if (StoreNode->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS) {
if (StoreNode->isTruncatingStore()) {
EVT VT = Value.getValueType();
assert(VT.bitsLE(MVT::i32));
EVT MemVT = StoreNode->getMemoryVT();
SDValue MaskConstant;
if (MemVT == MVT::i8) {
MaskConstant = DAG.getConstant(0xFF, MVT::i32);
} else {
assert(MemVT == MVT::i16);
MaskConstant = DAG.getConstant(0xFFFF, MVT::i32);
}
SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, VT, Ptr,
DAG.getConstant(2, MVT::i32));
SDValue ByteIndex = DAG.getNode(ISD::AND, DL, Ptr.getValueType(), Ptr,
DAG.getConstant(0x00000003, VT));
SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
SDValue Shift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
DAG.getConstant(3, VT));
SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, Shift);
SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, Shift);
// XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
// vector instead.
SDValue Src[4] = {
ShiftedValue,
DAG.getConstant(0, MVT::i32),
DAG.getConstant(0, MVT::i32),
Mask
};
SDValue Input = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i32, Src);
SDValue Args[3] = { Chain, Input, DWordAddr };
return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL,
Op->getVTList(), Args, MemVT,
StoreNode->getMemOperand());
} else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR &&
Value.getValueType().bitsGE(MVT::i32)) {
// Convert pointer from byte address to dword address.
Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, Ptr.getValueType(),
DAG.getNode(ISD::SRL, DL, Ptr.getValueType(),
Ptr, DAG.getConstant(2, MVT::i32)));
if (StoreNode->isTruncatingStore() || StoreNode->isIndexed()) {
llvm_unreachable("Truncated and indexed stores not supported yet");
} else {
Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
}
return Chain;
}
}
EVT ValueVT = Value.getValueType();
if (StoreNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
return SDValue();
}
SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
if (Ret.getNode()) {
return Ret;
}
// Lowering for indirect addressing
const MachineFunction &MF = DAG.getMachineFunction();
const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering*>(
getTargetMachine().getFrameLowering());
unsigned StackWidth = TFL->getStackWidth(MF);
Ptr = stackPtrToRegIndex(Ptr, StackWidth, DAG);
if (ValueVT.isVector()) {
unsigned NumElemVT = ValueVT.getVectorNumElements();
EVT ElemVT = ValueVT.getVectorElementType();
SmallVector<SDValue, 4> Stores(NumElemVT);
assert(NumElemVT >= StackWidth && "Stack width cannot be greater than "
"vector width in load");
for (unsigned i = 0; i < NumElemVT; ++i) {
unsigned Channel, PtrIncr;
getStackAddress(StackWidth, i, Channel, PtrIncr);
Ptr = DAG.getNode(ISD::ADD, DL, MVT::i32, Ptr,
DAG.getConstant(PtrIncr, MVT::i32));
SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT,
Value, DAG.getConstant(i, MVT::i32));
Stores[i] = DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
Chain, Elem, Ptr,
DAG.getTargetConstant(Channel, MVT::i32));
}
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
} else {
if (ValueVT == MVT::i8) {
Value = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Value);
}
Chain = DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other, Chain, Value, Ptr,
DAG.getTargetConstant(0, MVT::i32)); // Channel
}
return Chain;
}
// return (512 + (kc_bank << 12)
static int
ConstantAddressBlock(unsigned AddressSpace) {
switch (AddressSpace) {
case AMDGPUAS::CONSTANT_BUFFER_0:
return 512;
case AMDGPUAS::CONSTANT_BUFFER_1:
return 512 + 4096;
case AMDGPUAS::CONSTANT_BUFFER_2:
return 512 + 4096 * 2;
case AMDGPUAS::CONSTANT_BUFFER_3:
return 512 + 4096 * 3;
case AMDGPUAS::CONSTANT_BUFFER_4:
return 512 + 4096 * 4;
case AMDGPUAS::CONSTANT_BUFFER_5:
return 512 + 4096 * 5;
case AMDGPUAS::CONSTANT_BUFFER_6:
return 512 + 4096 * 6;
case AMDGPUAS::CONSTANT_BUFFER_7:
return 512 + 4096 * 7;
case AMDGPUAS::CONSTANT_BUFFER_8:
return 512 + 4096 * 8;
case AMDGPUAS::CONSTANT_BUFFER_9:
return 512 + 4096 * 9;
case AMDGPUAS::CONSTANT_BUFFER_10:
return 512 + 4096 * 10;
case AMDGPUAS::CONSTANT_BUFFER_11:
return 512 + 4096 * 11;
case AMDGPUAS::CONSTANT_BUFFER_12:
return 512 + 4096 * 12;
case AMDGPUAS::CONSTANT_BUFFER_13:
return 512 + 4096 * 13;
case AMDGPUAS::CONSTANT_BUFFER_14:
return 512 + 4096 * 14;
case AMDGPUAS::CONSTANT_BUFFER_15:
return 512 + 4096 * 15;
default:
return -1;
}
}
SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const
{
EVT VT = Op.getValueType();
SDLoc DL(Op);
LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
SDValue Chain = Op.getOperand(0);
SDValue Ptr = Op.getOperand(1);
SDValue LoweredLoad;
SDValue Ret = AMDGPUTargetLowering::LowerLOAD(Op, DAG);
if (Ret.getNode()) {
SDValue Ops[2] = {
Ret,
Chain
};
return DAG.getMergeValues(Ops, DL);
}
if (LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && VT.isVector()) {
SDValue MergedValues[2] = {
SplitVectorLoad(Op, DAG),
Chain
};
return DAG.getMergeValues(MergedValues, DL);
}
int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
if (ConstantBlock > -1 &&
((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
(LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
SDValue Result;
if (isa<ConstantExpr>(LoadNode->getMemOperand()->getValue()) ||
isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
isa<ConstantSDNode>(Ptr)) {
SDValue Slots[4];
for (unsigned i = 0; i < 4; i++) {
// We want Const position encoded with the following formula :
// (((512 + (kc_bank << 12) + const_index) << 2) + chan)
// const_index is Ptr computed by llvm using an alignment of 16.
// Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
// then div by 4 at the ISel step
SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
DAG.getConstant(4 * i + ConstantBlock * 16, MVT::i32));
Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
}
EVT NewVT = MVT::v4i32;
unsigned NumElements = 4;
if (VT.isVector()) {
NewVT = VT;
NumElements = VT.getVectorNumElements();
}
Result = DAG.getNode(ISD::BUILD_VECTOR, DL, NewVT,
makeArrayRef(Slots, NumElements));
} else {
// non-constant ptr can't be folded, keeps it as a v4f32 load
Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(4, MVT::i32)),
DAG.getConstant(LoadNode->getAddressSpace() -
AMDGPUAS::CONSTANT_BUFFER_0, MVT::i32)
);
}
if (!VT.isVector()) {
Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
DAG.getConstant(0, MVT::i32));
}
SDValue MergedValues[2] = {
Result,
Chain
};
return DAG.getMergeValues(MergedValues, DL);
}
// For most operations returning SDValue() will result in the node being
// expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
// need to manually expand loads that may be legal in some address spaces and
// illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
// compute shaders, since the data is sign extended when it is uploaded to the
// buffer. However SEXT loads from other address spaces are not supported, so
// we need to expand them here.
if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
EVT MemVT = LoadNode->getMemoryVT();
assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
SDValue ShiftAmount =
DAG.getConstant(VT.getSizeInBits() - MemVT.getSizeInBits(), MVT::i32);
SDValue NewLoad = DAG.getExtLoad(ISD::EXTLOAD, DL, VT, Chain, Ptr,
LoadNode->getPointerInfo(), MemVT,
LoadNode->isVolatile(),
LoadNode->isNonTemporal(),
LoadNode->getAlignment());
SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, NewLoad, ShiftAmount);
SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Shl, ShiftAmount);
SDValue MergedValues[2] = { Sra, Chain };
return DAG.getMergeValues(MergedValues, DL);
}
if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
return SDValue();
}
// Lowering for indirect addressing
const MachineFunction &MF = DAG.getMachineFunction();
const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering*>(
getTargetMachine().getFrameLowering());
unsigned StackWidth = TFL->getStackWidth(MF);
Ptr = stackPtrToRegIndex(Ptr, StackWidth, DAG);
if (VT.isVector()) {
unsigned NumElemVT = VT.getVectorNumElements();
EVT ElemVT = VT.getVectorElementType();
SDValue Loads[4];
assert(NumElemVT >= StackWidth && "Stack width cannot be greater than "
"vector width in load");
for (unsigned i = 0; i < NumElemVT; ++i) {
unsigned Channel, PtrIncr;
getStackAddress(StackWidth, i, Channel, PtrIncr);
Ptr = DAG.getNode(ISD::ADD, DL, MVT::i32, Ptr,
DAG.getConstant(PtrIncr, MVT::i32));
Loads[i] = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, ElemVT,
Chain, Ptr,
DAG.getTargetConstant(Channel, MVT::i32),
Op.getOperand(2));
}
for (unsigned i = NumElemVT; i < 4; ++i) {
Loads[i] = DAG.getUNDEF(ElemVT);
}
EVT TargetVT = EVT::getVectorVT(*DAG.getContext(), ElemVT, 4);
LoweredLoad = DAG.getNode(ISD::BUILD_VECTOR, DL, TargetVT, Loads);
} else {
LoweredLoad = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, VT,
Chain, Ptr,
DAG.getTargetConstant(0, MVT::i32), // Channel
Op.getOperand(2));
}
SDValue Ops[2] = {
LoweredLoad,
Chain
};
return DAG.getMergeValues(Ops, DL);
}
/// XXX Only kernel functions are supported, so we can assume for now that
/// every function is a kernel function, but in the future we should use
/// separate calling conventions for kernel and non-kernel functions.
SDValue R600TargetLowering::LowerFormalArguments(
SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
MachineFunction &MF = DAG.getMachineFunction();
unsigned ShaderType = MF.getInfo<R600MachineFunctionInfo>()->ShaderType;
SmallVector<ISD::InputArg, 8> LocalIns;
getOriginalFunctionArgs(DAG, MF.getFunction(), Ins, LocalIns);
AnalyzeFormalArguments(CCInfo, LocalIns);
for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
CCValAssign &VA = ArgLocs[i];
EVT VT = Ins[i].VT;
EVT MemVT = LocalIns[i].VT;
if (ShaderType != ShaderType::COMPUTE) {
unsigned Reg = MF.addLiveIn(VA.getLocReg(), &AMDGPU::R600_Reg128RegClass);
SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
InVals.push_back(Register);
continue;
}
PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
AMDGPUAS::CONSTANT_BUFFER_0);
// i64 isn't a legal type, so the register type used ends up as i32, which
// isn't expected here. It attempts to create this sextload, but it ends up
// being invalid. Somehow this seems to work with i64 arguments, but breaks
// for <1 x i64>.
// The first 36 bytes of the input buffer contains information about
// thread group and global sizes.
// FIXME: This should really check the extload type, but the handling of
// extload vecto parameters seems to be broken.
//ISD::LoadExtType Ext = Ins[i].Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
ISD::LoadExtType Ext = ISD::SEXTLOAD;
SDValue Arg = DAG.getExtLoad(Ext, DL, VT, Chain,
DAG.getConstant(36 + VA.getLocMemOffset(), MVT::i32),
MachinePointerInfo(UndefValue::get(PtrTy)),
MemVT, false, false, 4);
// 4 is the preferred alignment for the CONSTANT memory space.
InVals.push_back(Arg);
}
return Chain;
}
EVT R600TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
if (!VT.isVector())
return MVT::i32;
return VT.changeVectorElementTypeToInteger();
}
static SDValue CompactSwizzlableVector(
SelectionDAG &DAG, SDValue VectorEntry,
DenseMap<unsigned, unsigned> &RemapSwizzle) {
assert(VectorEntry.getOpcode() == ISD::BUILD_VECTOR);
assert(RemapSwizzle.empty());
SDValue NewBldVec[4] = {
VectorEntry.getOperand(0),
VectorEntry.getOperand(1),
VectorEntry.getOperand(2),
VectorEntry.getOperand(3)
};
for (unsigned i = 0; i < 4; i++) {
if (NewBldVec[i].getOpcode() == ISD::UNDEF)
// We mask write here to teach later passes that the ith element of this
// vector is undef. Thus we can use it to reduce 128 bits reg usage,
// break false dependencies and additionnaly make assembly easier to read.
RemapSwizzle[i] = 7; // SEL_MASK_WRITE
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
if (C->isZero()) {
RemapSwizzle[i] = 4; // SEL_0
NewBldVec[i] = DAG.getUNDEF(MVT::f32);
} else if (C->isExactlyValue(1.0)) {
RemapSwizzle[i] = 5; // SEL_1
NewBldVec[i] = DAG.getUNDEF(MVT::f32);
}
}
if (NewBldVec[i].getOpcode() == ISD::UNDEF)
continue;
for (unsigned j = 0; j < i; j++) {
if (NewBldVec[i] == NewBldVec[j]) {
NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
RemapSwizzle[i] = j;
break;
}
}
}
return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(VectorEntry),
VectorEntry.getValueType(), NewBldVec);
}
static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry,
DenseMap<unsigned, unsigned> &RemapSwizzle) {
assert(VectorEntry.getOpcode() == ISD::BUILD_VECTOR);
assert(RemapSwizzle.empty());
SDValue NewBldVec[4] = {
VectorEntry.getOperand(0),
VectorEntry.getOperand(1),
VectorEntry.getOperand(2),
VectorEntry.getOperand(3)
};
bool isUnmovable[4] = { false, false, false, false };
for (unsigned i = 0; i < 4; i++) {
RemapSwizzle[i] = i;
if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
->getZExtValue();
if (i == Idx)
isUnmovable[Idx] = true;
}
}
for (unsigned i = 0; i < 4; i++) {
if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
->getZExtValue();
if (isUnmovable[Idx])
continue;
// Swap i and Idx
std::swap(NewBldVec[Idx], NewBldVec[i]);
std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
break;
}
}
return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(VectorEntry),
VectorEntry.getValueType(), NewBldVec);
}
SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector,
SDValue Swz[4], SelectionDAG &DAG) const {
assert(BuildVector.getOpcode() == ISD::BUILD_VECTOR);
// Old -> New swizzle values
DenseMap<unsigned, unsigned> SwizzleRemap;
BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
for (unsigned i = 0; i < 4; i++) {
unsigned Idx = dyn_cast<ConstantSDNode>(Swz[i])->getZExtValue();
if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
Swz[i] = DAG.getConstant(SwizzleRemap[Idx], MVT::i32);
}
SwizzleRemap.clear();
BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
for (unsigned i = 0; i < 4; i++) {
unsigned Idx = dyn_cast<ConstantSDNode>(Swz[i])->getZExtValue();
if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
Swz[i] = DAG.getConstant(SwizzleRemap[Idx], MVT::i32);
}
return BuildVector;
}
//===----------------------------------------------------------------------===//
// Custom DAG Optimizations
//===----------------------------------------------------------------------===//
SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
switch (N->getOpcode()) {
default: return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
// (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
case ISD::FP_ROUND: {
SDValue Arg = N->getOperand(0);
if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), N->getValueType(0),
Arg.getOperand(0));
}
break;
}
// (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
// (i32 select_cc f32, f32, -1, 0 cc)
//
// Mesa's GLSL frontend generates the above pattern a lot and we can lower
// this to one of the SET*_DX10 instructions.
case ISD::FP_TO_SINT: {
SDValue FNeg = N->getOperand(0);
if (FNeg.getOpcode() != ISD::FNEG) {
return SDValue();
}
SDValue SelectCC = FNeg.getOperand(0);
if (SelectCC.getOpcode() != ISD::SELECT_CC ||
SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
!isHWTrueValue(SelectCC.getOperand(2)) ||
!isHWFalseValue(SelectCC.getOperand(3))) {
return SDValue();
}
return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N->getValueType(0),
SelectCC.getOperand(0), // LHS
SelectCC.getOperand(1), // RHS
DAG.getConstant(-1, MVT::i32), // True
DAG.getConstant(0, MVT::i32), // Flase
SelectCC.getOperand(4)); // CC
break;
}
// insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
// => build_vector elt0, ... , NewEltIdx, ... , eltN
case ISD::INSERT_VECTOR_ELT: {
SDValue InVec = N->getOperand(0);
SDValue InVal = N->getOperand(1);
SDValue EltNo = N->getOperand(2);
SDLoc dl(N);
// If the inserted element is an UNDEF, just use the input vector.
if (InVal.getOpcode() == ISD::UNDEF)
return InVec;
EVT VT = InVec.getValueType();
// If we can't generate a legal BUILD_VECTOR, exit
if (!isOperationLegal(ISD::BUILD_VECTOR, VT))
return SDValue();
// Check that we know which element is being inserted
if (!isa<ConstantSDNode>(EltNo))
return SDValue();
unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
// Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
// be converted to a BUILD_VECTOR). Fill in the Ops vector with the
// vector elements.
SmallVector<SDValue, 8> Ops;
if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
Ops.append(InVec.getNode()->op_begin(),
InVec.getNode()->op_end());
} else if (InVec.getOpcode() == ISD::UNDEF) {
unsigned NElts = VT.getVectorNumElements();
Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
} else {
return SDValue();
}
// Insert the element
if (Elt < Ops.size()) {
// All the operands of BUILD_VECTOR must have the same type;
// we enforce that here.
EVT OpVT = Ops[0].getValueType();
if (InVal.getValueType() != OpVT)
InVal = OpVT.bitsGT(InVal.getValueType()) ?
DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
Ops[Elt] = InVal;
}
// Return the new vector
return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
}
// Extract_vec (Build_vector) generated by custom lowering
// also needs to be customly combined
case ISD::EXTRACT_VECTOR_ELT: {
SDValue Arg = N->getOperand(0);
if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
unsigned Element = Const->getZExtValue();
return Arg->getOperand(Element);
}
}
if (Arg.getOpcode() == ISD::BITCAST &&
Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
unsigned Element = Const->getZExtValue();
return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getVTList(),
Arg->getOperand(0).getOperand(Element));
}
}
}
case ISD::SELECT_CC: {
// Try common optimizations
SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
if (Ret.getNode())
return Ret;
// fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
// selectcc x, y, a, b, inv(cc)
//
// fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
// selectcc x, y, a, b, cc
SDValue LHS = N->getOperand(0);
if (LHS.getOpcode() != ISD::SELECT_CC) {
return SDValue();
}
SDValue RHS = N->getOperand(1);
SDValue True = N->getOperand(2);
SDValue False = N->getOperand(3);
ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
if (LHS.getOperand(2).getNode() != True.getNode() ||
LHS.getOperand(3).getNode() != False.getNode() ||
RHS.getNode() != False.getNode()) {
return SDValue();
}
switch (NCC) {
default: return SDValue();
case ISD::SETNE: return LHS;
case ISD::SETEQ: {
ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
LHSCC = ISD::getSetCCInverse(LHSCC,
LHS.getOperand(0).getValueType().isInteger());
if (DCI.isBeforeLegalizeOps() ||
isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
return DAG.getSelectCC(SDLoc(N),
LHS.getOperand(0),
LHS.getOperand(1),
LHS.getOperand(2),
LHS.getOperand(3),
LHSCC);
break;
}
}
return SDValue();
}
case AMDGPUISD::EXPORT: {
SDValue Arg = N->getOperand(1);
if (Arg.getOpcode() != ISD::BUILD_VECTOR)
break;
SDValue NewArgs[8] = {
N->getOperand(0), // Chain
SDValue(),
N->getOperand(2), // ArrayBase
N->getOperand(3), // Type
N->getOperand(4), // SWZ_X
N->getOperand(5), // SWZ_Y
N->getOperand(6), // SWZ_Z
N->getOperand(7) // SWZ_W
};
SDLoc DL(N);
NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG);
return DAG.getNode(AMDGPUISD::EXPORT, DL, N->getVTList(), NewArgs);
}
case AMDGPUISD::TEXTURE_FETCH: {
SDValue Arg = N->getOperand(1);
if (Arg.getOpcode() != ISD::BUILD_VECTOR)
break;
SDValue NewArgs[19] = {
N->getOperand(0),
N->getOperand(1),
N->getOperand(2),
N->getOperand(3),
N->getOperand(4),
N->getOperand(5),
N->getOperand(6),
N->getOperand(7),
N->getOperand(8),
N->getOperand(9),
N->getOperand(10),
N->getOperand(11),
N->getOperand(12),
N->getOperand(13),
N->getOperand(14),
N->getOperand(15),
N->getOperand(16),
N->getOperand(17),
N->getOperand(18),
};
NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG);
return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, SDLoc(N), N->getVTList(),
NewArgs);
}
}
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
}
static bool
FoldOperand(SDNode *ParentNode, unsigned SrcIdx, SDValue &Src, SDValue &Neg,
SDValue &Abs, SDValue &Sel, SDValue &Imm, SelectionDAG &DAG) {
const R600InstrInfo *TII =
static_cast<const R600InstrInfo *>(DAG.getTarget().getInstrInfo());
if (!Src.isMachineOpcode())
return false;
switch (Src.getMachineOpcode()) {
case AMDGPU::FNEG_R600:
if (!Neg.getNode())
return false;
Src = Src.getOperand(0);
Neg = DAG.getTargetConstant(1, MVT::i32);
return true;
case AMDGPU::FABS_R600:
if (!Abs.getNode())
return false;
Src = Src.getOperand(0);
Abs = DAG.getTargetConstant(1, MVT::i32);
return true;
case AMDGPU::CONST_COPY: {
unsigned Opcode = ParentNode->getMachineOpcode();
bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1;
if (!Sel.getNode())
return false;
SDValue CstOffset = Src.getOperand(0);
if (ParentNode->getValueType(0).isVector())
return false;
// Gather constants values
int SrcIndices[] = {
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src2),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_X),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Y),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Z),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_W),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_X),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Y),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Z),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_W)
};
std::vector<unsigned> Consts;
for (int OtherSrcIdx : SrcIndices) {
int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
if (OtherSrcIdx < 0 || OtherSelIdx < 0)
continue;
if (HasDst) {
OtherSrcIdx--;
OtherSelIdx--;
}
if (RegisterSDNode *Reg =
dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
if (Reg->getReg() == AMDGPU::ALU_CONST) {
ConstantSDNode *Cst
= cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx));
Consts.push_back(Cst->getZExtValue());
}
}
}
ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
Consts.push_back(Cst->getZExtValue());
if (!TII->fitsConstReadLimitations(Consts)) {
return false;
}
Sel = CstOffset;
Src = DAG.getRegister(AMDGPU::ALU_CONST, MVT::f32);
return true;
}
case AMDGPU::MOV_IMM_I32:
case AMDGPU::MOV_IMM_F32: {
unsigned ImmReg = AMDGPU::ALU_LITERAL_X;
uint64_t ImmValue = 0;
if (Src.getMachineOpcode() == AMDGPU::MOV_IMM_F32) {
ConstantFPSDNode *FPC = dyn_cast<ConstantFPSDNode>(Src.getOperand(0));
float FloatValue = FPC->getValueAPF().convertToFloat();
if (FloatValue == 0.0) {
ImmReg = AMDGPU::ZERO;
} else if (FloatValue == 0.5) {
ImmReg = AMDGPU::HALF;
} else if (FloatValue == 1.0) {
ImmReg = AMDGPU::ONE;
} else {
ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
}
} else {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(0));
uint64_t Value = C->getZExtValue();
if (Value == 0) {
ImmReg = AMDGPU::ZERO;
} else if (Value == 1) {
ImmReg = AMDGPU::ONE_INT;
} else {
ImmValue = Value;
}
}
// Check that we aren't already using an immediate.
// XXX: It's possible for an instruction to have more than one
// immediate operand, but this is not supported yet.
if (ImmReg == AMDGPU::ALU_LITERAL_X) {
if (!Imm.getNode())
return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Imm);
assert(C);
if (C->getZExtValue())
return false;
Imm = DAG.getTargetConstant(ImmValue, MVT::i32);
}
Src = DAG.getRegister(ImmReg, MVT::i32);
return true;
}
default:
return false;
}
}
/// \brief Fold the instructions after selecting them
SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
SelectionDAG &DAG) const {
const R600InstrInfo *TII =
static_cast<const R600InstrInfo *>(DAG.getTarget().getInstrInfo());
if (!Node->isMachineOpcode())
return Node;
unsigned Opcode = Node->getMachineOpcode();
SDValue FakeOp;
std::vector<SDValue> Ops;
for(SDNode::op_iterator I = Node->op_begin(), E = Node->op_end();
I != E; ++I)
Ops.push_back(*I);
if (Opcode == AMDGPU::DOT_4) {
int OperandIdx[] = {
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_X),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Y),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Z),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_W),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_X),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Y),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Z),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_W)
};
int NegIdx[] = {
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_X),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_Y),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_Z),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_W),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_X),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_Y),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_Z),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_W)
};
int AbsIdx[] = {
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_X),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_Y),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_Z),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_W),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_X),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_Y),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_Z),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_W)
};
for (unsigned i = 0; i < 8; i++) {
if (OperandIdx[i] < 0)
return Node;
SDValue &Src = Ops[OperandIdx[i] - 1];
SDValue &Neg = Ops[NegIdx[i] - 1];
SDValue &Abs = Ops[AbsIdx[i] - 1];
bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1;
int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
if (HasDst)
SelIdx--;
SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
}
} else if (Opcode == AMDGPU::REG_SEQUENCE) {
for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
SDValue &Src = Ops[i];
if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
}
} else if (Opcode == AMDGPU::CLAMP_R600) {
SDValue Src = Node->getOperand(0);
if (!Src.isMachineOpcode() ||
!TII->hasInstrModifiers(Src.getMachineOpcode()))
return Node;
int ClampIdx = TII->getOperandIdx(Src.getMachineOpcode(),
AMDGPU::OpName::clamp);
if (ClampIdx < 0)
return Node;
std::vector<SDValue> Ops;
unsigned NumOp = Src.getNumOperands();
for(unsigned i = 0; i < NumOp; ++i)
Ops.push_back(Src.getOperand(i));
Ops[ClampIdx - 1] = DAG.getTargetConstant(1, MVT::i32);
return DAG.getMachineNode(Src.getMachineOpcode(), SDLoc(Node),
Node->getVTList(), Ops);
} else {
if (!TII->hasInstrModifiers(Opcode))
return Node;
int OperandIdx[] = {
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src2)
};
int NegIdx[] = {
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src2_neg)
};
int AbsIdx[] = {
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs),
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs),
-1
};
for (unsigned i = 0; i < 3; i++) {
if (OperandIdx[i] < 0)
return Node;
SDValue &Src = Ops[OperandIdx[i] - 1];
SDValue &Neg = Ops[NegIdx[i] - 1];
SDValue FakeAbs;
SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1;
int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
int ImmIdx = TII->getOperandIdx(Opcode, AMDGPU::OpName::literal);
if (HasDst) {
SelIdx--;
ImmIdx--;
}
SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
SDValue &Imm = Ops[ImmIdx];
if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
}
}
return Node;
}