llvm-6502/utils/TableGen/AsmWriterEmitter.cpp
Bill Wendling f415d8b646 Use a more efficient data structure for the "operand map". The number of
operands to an instruction aren't great, so an iterative search is fairly quick
and doesn't have the overhead of std::map.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@131886 91177308-0d34-0410-b5e6-96231b3b80d8
2011-05-23 00:18:33 +00:00

1058 lines
36 KiB
C++

//===- AsmWriterEmitter.cpp - Generate an assembly writer -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is emits an assembly printer for the current target.
// Note that this is currently fairly skeletal, but will grow over time.
//
//===----------------------------------------------------------------------===//
#include "AsmWriterEmitter.h"
#include "AsmWriterInst.h"
#include "CodeGenTarget.h"
#include "Record.h"
#include "StringToOffsetTable.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
using namespace llvm;
static void PrintCases(std::vector<std::pair<std::string,
AsmWriterOperand> > &OpsToPrint, raw_ostream &O) {
O << " case " << OpsToPrint.back().first << ": ";
AsmWriterOperand TheOp = OpsToPrint.back().second;
OpsToPrint.pop_back();
// Check to see if any other operands are identical in this list, and if so,
// emit a case label for them.
for (unsigned i = OpsToPrint.size(); i != 0; --i)
if (OpsToPrint[i-1].second == TheOp) {
O << "\n case " << OpsToPrint[i-1].first << ": ";
OpsToPrint.erase(OpsToPrint.begin()+i-1);
}
// Finally, emit the code.
O << TheOp.getCode();
O << "break;\n";
}
/// EmitInstructions - Emit the last instruction in the vector and any other
/// instructions that are suitably similar to it.
static void EmitInstructions(std::vector<AsmWriterInst> &Insts,
raw_ostream &O) {
AsmWriterInst FirstInst = Insts.back();
Insts.pop_back();
std::vector<AsmWriterInst> SimilarInsts;
unsigned DifferingOperand = ~0;
for (unsigned i = Insts.size(); i != 0; --i) {
unsigned DiffOp = Insts[i-1].MatchesAllButOneOp(FirstInst);
if (DiffOp != ~1U) {
if (DifferingOperand == ~0U) // First match!
DifferingOperand = DiffOp;
// If this differs in the same operand as the rest of the instructions in
// this class, move it to the SimilarInsts list.
if (DifferingOperand == DiffOp || DiffOp == ~0U) {
SimilarInsts.push_back(Insts[i-1]);
Insts.erase(Insts.begin()+i-1);
}
}
}
O << " case " << FirstInst.CGI->Namespace << "::"
<< FirstInst.CGI->TheDef->getName() << ":\n";
for (unsigned i = 0, e = SimilarInsts.size(); i != e; ++i)
O << " case " << SimilarInsts[i].CGI->Namespace << "::"
<< SimilarInsts[i].CGI->TheDef->getName() << ":\n";
for (unsigned i = 0, e = FirstInst.Operands.size(); i != e; ++i) {
if (i != DifferingOperand) {
// If the operand is the same for all instructions, just print it.
O << " " << FirstInst.Operands[i].getCode();
} else {
// If this is the operand that varies between all of the instructions,
// emit a switch for just this operand now.
O << " switch (MI->getOpcode()) {\n";
std::vector<std::pair<std::string, AsmWriterOperand> > OpsToPrint;
OpsToPrint.push_back(std::make_pair(FirstInst.CGI->Namespace + "::" +
FirstInst.CGI->TheDef->getName(),
FirstInst.Operands[i]));
for (unsigned si = 0, e = SimilarInsts.size(); si != e; ++si) {
AsmWriterInst &AWI = SimilarInsts[si];
OpsToPrint.push_back(std::make_pair(AWI.CGI->Namespace+"::"+
AWI.CGI->TheDef->getName(),
AWI.Operands[i]));
}
std::reverse(OpsToPrint.begin(), OpsToPrint.end());
while (!OpsToPrint.empty())
PrintCases(OpsToPrint, O);
O << " }";
}
O << "\n";
}
O << " break;\n";
}
void AsmWriterEmitter::
FindUniqueOperandCommands(std::vector<std::string> &UniqueOperandCommands,
std::vector<unsigned> &InstIdxs,
std::vector<unsigned> &InstOpsUsed) const {
InstIdxs.assign(NumberedInstructions.size(), ~0U);
// This vector parallels UniqueOperandCommands, keeping track of which
// instructions each case are used for. It is a comma separated string of
// enums.
std::vector<std::string> InstrsForCase;
InstrsForCase.resize(UniqueOperandCommands.size());
InstOpsUsed.assign(UniqueOperandCommands.size(), 0);
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
const AsmWriterInst *Inst = getAsmWriterInstByID(i);
if (Inst == 0) continue; // PHI, INLINEASM, PROLOG_LABEL, etc.
std::string Command;
if (Inst->Operands.empty())
continue; // Instruction already done.
Command = " " + Inst->Operands[0].getCode() + "\n";
// Check to see if we already have 'Command' in UniqueOperandCommands.
// If not, add it.
bool FoundIt = false;
for (unsigned idx = 0, e = UniqueOperandCommands.size(); idx != e; ++idx)
if (UniqueOperandCommands[idx] == Command) {
InstIdxs[i] = idx;
InstrsForCase[idx] += ", ";
InstrsForCase[idx] += Inst->CGI->TheDef->getName();
FoundIt = true;
break;
}
if (!FoundIt) {
InstIdxs[i] = UniqueOperandCommands.size();
UniqueOperandCommands.push_back(Command);
InstrsForCase.push_back(Inst->CGI->TheDef->getName());
// This command matches one operand so far.
InstOpsUsed.push_back(1);
}
}
// For each entry of UniqueOperandCommands, there is a set of instructions
// that uses it. If the next command of all instructions in the set are
// identical, fold it into the command.
for (unsigned CommandIdx = 0, e = UniqueOperandCommands.size();
CommandIdx != e; ++CommandIdx) {
for (unsigned Op = 1; ; ++Op) {
// Scan for the first instruction in the set.
std::vector<unsigned>::iterator NIT =
std::find(InstIdxs.begin(), InstIdxs.end(), CommandIdx);
if (NIT == InstIdxs.end()) break; // No commonality.
// If this instruction has no more operands, we isn't anything to merge
// into this command.
const AsmWriterInst *FirstInst =
getAsmWriterInstByID(NIT-InstIdxs.begin());
if (!FirstInst || FirstInst->Operands.size() == Op)
break;
// Otherwise, scan to see if all of the other instructions in this command
// set share the operand.
bool AllSame = true;
// Keep track of the maximum, number of operands or any
// instruction we see in the group.
size_t MaxSize = FirstInst->Operands.size();
for (NIT = std::find(NIT+1, InstIdxs.end(), CommandIdx);
NIT != InstIdxs.end();
NIT = std::find(NIT+1, InstIdxs.end(), CommandIdx)) {
// Okay, found another instruction in this command set. If the operand
// matches, we're ok, otherwise bail out.
const AsmWriterInst *OtherInst =
getAsmWriterInstByID(NIT-InstIdxs.begin());
if (OtherInst &&
OtherInst->Operands.size() > FirstInst->Operands.size())
MaxSize = std::max(MaxSize, OtherInst->Operands.size());
if (!OtherInst || OtherInst->Operands.size() == Op ||
OtherInst->Operands[Op] != FirstInst->Operands[Op]) {
AllSame = false;
break;
}
}
if (!AllSame) break;
// Okay, everything in this command set has the same next operand. Add it
// to UniqueOperandCommands and remember that it was consumed.
std::string Command = " " + FirstInst->Operands[Op].getCode() + "\n";
UniqueOperandCommands[CommandIdx] += Command;
InstOpsUsed[CommandIdx]++;
}
}
// Prepend some of the instructions each case is used for onto the case val.
for (unsigned i = 0, e = InstrsForCase.size(); i != e; ++i) {
std::string Instrs = InstrsForCase[i];
if (Instrs.size() > 70) {
Instrs.erase(Instrs.begin()+70, Instrs.end());
Instrs += "...";
}
if (!Instrs.empty())
UniqueOperandCommands[i] = " // " + Instrs + "\n" +
UniqueOperandCommands[i];
}
}
static void UnescapeString(std::string &Str) {
for (unsigned i = 0; i != Str.size(); ++i) {
if (Str[i] == '\\' && i != Str.size()-1) {
switch (Str[i+1]) {
default: continue; // Don't execute the code after the switch.
case 'a': Str[i] = '\a'; break;
case 'b': Str[i] = '\b'; break;
case 'e': Str[i] = 27; break;
case 'f': Str[i] = '\f'; break;
case 'n': Str[i] = '\n'; break;
case 'r': Str[i] = '\r'; break;
case 't': Str[i] = '\t'; break;
case 'v': Str[i] = '\v'; break;
case '"': Str[i] = '\"'; break;
case '\'': Str[i] = '\''; break;
case '\\': Str[i] = '\\'; break;
}
// Nuke the second character.
Str.erase(Str.begin()+i+1);
}
}
}
/// EmitPrintInstruction - Generate the code for the "printInstruction" method
/// implementation.
void AsmWriterEmitter::EmitPrintInstruction(raw_ostream &O) {
CodeGenTarget Target(Records);
Record *AsmWriter = Target.getAsmWriter();
std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName");
bool isMC = AsmWriter->getValueAsBit("isMCAsmWriter");
const char *MachineInstrClassName = isMC ? "MCInst" : "MachineInstr";
O <<
"/// printInstruction - This method is automatically generated by tablegen\n"
"/// from the instruction set description.\n"
"void " << Target.getName() << ClassName
<< "::printInstruction(const " << MachineInstrClassName
<< " *MI, raw_ostream &O) {\n";
std::vector<AsmWriterInst> Instructions;
for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
E = Target.inst_end(); I != E; ++I)
if (!(*I)->AsmString.empty() &&
(*I)->TheDef->getName() != "PHI")
Instructions.push_back(
AsmWriterInst(**I,
AsmWriter->getValueAsInt("Variant"),
AsmWriter->getValueAsInt("FirstOperandColumn"),
AsmWriter->getValueAsInt("OperandSpacing")));
// Get the instruction numbering.
NumberedInstructions = Target.getInstructionsByEnumValue();
// Compute the CodeGenInstruction -> AsmWriterInst mapping. Note that not
// all machine instructions are necessarily being printed, so there may be
// target instructions not in this map.
for (unsigned i = 0, e = Instructions.size(); i != e; ++i)
CGIAWIMap.insert(std::make_pair(Instructions[i].CGI, &Instructions[i]));
// Build an aggregate string, and build a table of offsets into it.
StringToOffsetTable StringTable;
/// OpcodeInfo - This encodes the index of the string to use for the first
/// chunk of the output as well as indices used for operand printing.
std::vector<unsigned> OpcodeInfo;
unsigned MaxStringIdx = 0;
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
AsmWriterInst *AWI = CGIAWIMap[NumberedInstructions[i]];
unsigned Idx;
if (AWI == 0) {
// Something not handled by the asmwriter printer.
Idx = ~0U;
} else if (AWI->Operands[0].OperandType !=
AsmWriterOperand::isLiteralTextOperand ||
AWI->Operands[0].Str.empty()) {
// Something handled by the asmwriter printer, but with no leading string.
Idx = StringTable.GetOrAddStringOffset("");
} else {
std::string Str = AWI->Operands[0].Str;
UnescapeString(Str);
Idx = StringTable.GetOrAddStringOffset(Str);
MaxStringIdx = std::max(MaxStringIdx, Idx);
// Nuke the string from the operand list. It is now handled!
AWI->Operands.erase(AWI->Operands.begin());
}
// Bias offset by one since we want 0 as a sentinel.
OpcodeInfo.push_back(Idx+1);
}
// Figure out how many bits we used for the string index.
unsigned AsmStrBits = Log2_32_Ceil(MaxStringIdx+2);
// To reduce code size, we compactify common instructions into a few bits
// in the opcode-indexed table.
unsigned BitsLeft = 32-AsmStrBits;
std::vector<std::vector<std::string> > TableDrivenOperandPrinters;
while (1) {
std::vector<std::string> UniqueOperandCommands;
std::vector<unsigned> InstIdxs;
std::vector<unsigned> NumInstOpsHandled;
FindUniqueOperandCommands(UniqueOperandCommands, InstIdxs,
NumInstOpsHandled);
// If we ran out of operands to print, we're done.
if (UniqueOperandCommands.empty()) break;
// Compute the number of bits we need to represent these cases, this is
// ceil(log2(numentries)).
unsigned NumBits = Log2_32_Ceil(UniqueOperandCommands.size());
// If we don't have enough bits for this operand, don't include it.
if (NumBits > BitsLeft) {
DEBUG(errs() << "Not enough bits to densely encode " << NumBits
<< " more bits\n");
break;
}
// Otherwise, we can include this in the initial lookup table. Add it in.
BitsLeft -= NumBits;
for (unsigned i = 0, e = InstIdxs.size(); i != e; ++i)
if (InstIdxs[i] != ~0U)
OpcodeInfo[i] |= InstIdxs[i] << (BitsLeft+AsmStrBits);
// Remove the info about this operand.
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
if (AsmWriterInst *Inst = getAsmWriterInstByID(i))
if (!Inst->Operands.empty()) {
unsigned NumOps = NumInstOpsHandled[InstIdxs[i]];
assert(NumOps <= Inst->Operands.size() &&
"Can't remove this many ops!");
Inst->Operands.erase(Inst->Operands.begin(),
Inst->Operands.begin()+NumOps);
}
}
// Remember the handlers for this set of operands.
TableDrivenOperandPrinters.push_back(UniqueOperandCommands);
}
O<<" static const unsigned OpInfo[] = {\n";
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
O << " " << OpcodeInfo[i] << "U,\t// "
<< NumberedInstructions[i]->TheDef->getName() << "\n";
}
// Add a dummy entry so the array init doesn't end with a comma.
O << " 0U\n";
O << " };\n\n";
// Emit the string itself.
O << " const char *AsmStrs = \n";
StringTable.EmitString(O);
O << ";\n\n";
O << " O << \"\\t\";\n\n";
O << " // Emit the opcode for the instruction.\n"
<< " unsigned Bits = OpInfo[MI->getOpcode()];\n"
<< " assert(Bits != 0 && \"Cannot print this instruction.\");\n"
<< " O << AsmStrs+(Bits & " << (1 << AsmStrBits)-1 << ")-1;\n\n";
// Output the table driven operand information.
BitsLeft = 32-AsmStrBits;
for (unsigned i = 0, e = TableDrivenOperandPrinters.size(); i != e; ++i) {
std::vector<std::string> &Commands = TableDrivenOperandPrinters[i];
// Compute the number of bits we need to represent these cases, this is
// ceil(log2(numentries)).
unsigned NumBits = Log2_32_Ceil(Commands.size());
assert(NumBits <= BitsLeft && "consistency error");
// Emit code to extract this field from Bits.
BitsLeft -= NumBits;
O << "\n // Fragment " << i << " encoded into " << NumBits
<< " bits for " << Commands.size() << " unique commands.\n";
if (Commands.size() == 2) {
// Emit two possibilitys with if/else.
O << " if ((Bits >> " << (BitsLeft+AsmStrBits) << ") & "
<< ((1 << NumBits)-1) << ") {\n"
<< Commands[1]
<< " } else {\n"
<< Commands[0]
<< " }\n\n";
} else if (Commands.size() == 1) {
// Emit a single possibility.
O << Commands[0] << "\n\n";
} else {
O << " switch ((Bits >> " << (BitsLeft+AsmStrBits) << ") & "
<< ((1 << NumBits)-1) << ") {\n"
<< " default: // unreachable.\n";
// Print out all the cases.
for (unsigned i = 0, e = Commands.size(); i != e; ++i) {
O << " case " << i << ":\n";
O << Commands[i];
O << " break;\n";
}
O << " }\n\n";
}
}
// Okay, delete instructions with no operand info left.
for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
// Entire instruction has been emitted?
AsmWriterInst &Inst = Instructions[i];
if (Inst.Operands.empty()) {
Instructions.erase(Instructions.begin()+i);
--i; --e;
}
}
// Because this is a vector, we want to emit from the end. Reverse all of the
// elements in the vector.
std::reverse(Instructions.begin(), Instructions.end());
// Now that we've emitted all of the operand info that fit into 32 bits, emit
// information for those instructions that are left. This is a less dense
// encoding, but we expect the main 32-bit table to handle the majority of
// instructions.
if (!Instructions.empty()) {
// Find the opcode # of inline asm.
O << " switch (MI->getOpcode()) {\n";
while (!Instructions.empty())
EmitInstructions(Instructions, O);
O << " }\n";
O << " return;\n";
}
O << "}\n";
}
void AsmWriterEmitter::EmitGetRegisterName(raw_ostream &O) {
CodeGenTarget Target(Records);
Record *AsmWriter = Target.getAsmWriter();
std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName");
const std::vector<CodeGenRegister> &Registers = Target.getRegisters();
StringToOffsetTable StringTable;
O <<
"\n\n/// getRegisterName - This method is automatically generated by tblgen\n"
"/// from the register set description. This returns the assembler name\n"
"/// for the specified register.\n"
"const char *" << Target.getName() << ClassName
<< "::getRegisterName(unsigned RegNo) {\n"
<< " assert(RegNo && RegNo < " << (Registers.size()+1)
<< " && \"Invalid register number!\");\n"
<< "\n"
<< " static const unsigned RegAsmOffset[] = {";
for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
const CodeGenRegister &Reg = Registers[i];
std::string AsmName = Reg.TheDef->getValueAsString("AsmName");
if (AsmName.empty())
AsmName = Reg.getName();
if ((i % 14) == 0)
O << "\n ";
O << StringTable.GetOrAddStringOffset(AsmName) << ", ";
}
O << "0\n"
<< " };\n"
<< "\n";
O << " const char *AsmStrs =\n";
StringTable.EmitString(O);
O << ";\n";
O << " return AsmStrs+RegAsmOffset[RegNo-1];\n"
<< "}\n";
}
void AsmWriterEmitter::EmitGetInstructionName(raw_ostream &O) {
CodeGenTarget Target(Records);
Record *AsmWriter = Target.getAsmWriter();
std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName");
const std::vector<const CodeGenInstruction*> &NumberedInstructions =
Target.getInstructionsByEnumValue();
StringToOffsetTable StringTable;
O <<
"\n\n#ifdef GET_INSTRUCTION_NAME\n"
"#undef GET_INSTRUCTION_NAME\n\n"
"/// getInstructionName: This method is automatically generated by tblgen\n"
"/// from the instruction set description. This returns the enum name of the\n"
"/// specified instruction.\n"
"const char *" << Target.getName() << ClassName
<< "::getInstructionName(unsigned Opcode) {\n"
<< " assert(Opcode < " << NumberedInstructions.size()
<< " && \"Invalid instruction number!\");\n"
<< "\n"
<< " static const unsigned InstAsmOffset[] = {";
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
const CodeGenInstruction &Inst = *NumberedInstructions[i];
std::string AsmName = Inst.TheDef->getName();
if ((i % 14) == 0)
O << "\n ";
O << StringTable.GetOrAddStringOffset(AsmName) << ", ";
}
O << "0\n"
<< " };\n"
<< "\n";
O << " const char *Strs =\n";
StringTable.EmitString(O);
O << ";\n";
O << " return Strs+InstAsmOffset[Opcode];\n"
<< "}\n\n#endif\n";
}
namespace {
/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
/// feature which participates in instruction matching.
struct SubtargetFeatureInfo {
/// \brief The predicate record for this feature.
const Record *TheDef;
/// \brief An unique index assigned to represent this feature.
unsigned Index;
SubtargetFeatureInfo(const Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
/// \brief The name of the enumerated constant identifying this feature.
std::string getEnumName() const {
return "Feature_" + TheDef->getName();
}
};
struct AsmWriterInfo {
/// Map of Predicate records to their subtarget information.
std::map<const Record*, SubtargetFeatureInfo*> SubtargetFeatures;
/// getSubtargetFeature - Lookup or create the subtarget feature info for the
/// given operand.
SubtargetFeatureInfo *getSubtargetFeature(const Record *Def) const {
assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
std::map<const Record*, SubtargetFeatureInfo*>::const_iterator I =
SubtargetFeatures.find(Def);
return I == SubtargetFeatures.end() ? 0 : I->second;
}
void addReqFeatures(const std::vector<Record*> &Features) {
for (std::vector<Record*>::const_iterator
I = Features.begin(), E = Features.end(); I != E; ++I) {
const Record *Pred = *I;
// Ignore predicates that are not intended for the assembler.
if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
continue;
if (Pred->getName().empty())
throw TGError(Pred->getLoc(), "Predicate has no name!");
// Don't add the predicate again.
if (getSubtargetFeature(Pred))
continue;
unsigned FeatureNo = SubtargetFeatures.size();
SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
assert(FeatureNo < 32 && "Too many subtarget features!");
}
}
const SubtargetFeatureInfo *getFeatureInfo(const Record *R) {
return SubtargetFeatures[R];
}
};
// IAPrinter - Holds information about an InstAlias. Two InstAliases match if
// they both have the same conditionals. In which case, we cannot print out the
// alias for that pattern.
class IAPrinter {
AsmWriterInfo &AWI;
std::vector<std::string> Conds;
std::map<StringRef, unsigned> OpMap;
std::string Result;
std::string AsmString;
std::vector<Record*> ReqFeatures;
public:
IAPrinter(AsmWriterInfo &Info, std::string R, std::string AS)
: AWI(Info), Result(R), AsmString(AS) {}
void addCond(const std::string &C) { Conds.push_back(C); }
void addReqFeatures(const std::vector<Record*> &Features) {
AWI.addReqFeatures(Features);
ReqFeatures = Features;
}
void addOperand(StringRef Op, unsigned Idx) { OpMap[Op] = Idx; }
unsigned getOpIndex(StringRef Op) { return OpMap[Op]; }
bool isOpMapped(StringRef Op) { return OpMap.find(Op) != OpMap.end(); }
bool print(raw_ostream &O) {
if (Conds.empty() && ReqFeatures.empty()) {
O.indent(6) << "return true;\n";
return false;
}
O << "if (";
for (std::vector<std::string>::iterator
I = Conds.begin(), E = Conds.end(); I != E; ++I) {
if (I != Conds.begin()) {
O << " &&\n";
O.indent(8);
}
O << *I;
}
if (!ReqFeatures.empty()) {
if (Conds.begin() != Conds.end()) {
O << " &&\n";
O.indent(8);
} else {
O << "if (";
}
std::string Req;
raw_string_ostream ReqO(Req);
for (std::vector<Record*>::iterator
I = ReqFeatures.begin(), E = ReqFeatures.end(); I != E; ++I) {
if (I != ReqFeatures.begin()) ReqO << " | ";
ReqO << AWI.getFeatureInfo(*I)->getEnumName();
}
O << "(AvailableFeatures & (" << ReqO.str() << ")) == ("
<< ReqO.str() << ')';
}
O << ") {\n";
O.indent(6) << "// " << Result << "\n";
O.indent(6) << "AsmString = \"" << AsmString << "\";\n";
for (std::map<StringRef, unsigned>::iterator
I = OpMap.begin(), E = OpMap.end(); I != E; ++I)
O.indent(6) << "OpMap.push_back(std::make_pair(\"" << I->first << "\", "
<< I->second << "));\n";
O.indent(6) << "break;\n";
O.indent(4) << '}';
return !ReqFeatures.empty();
}
bool operator==(const IAPrinter &RHS) {
if (Conds.size() != RHS.Conds.size())
return false;
unsigned Idx = 0;
for (std::vector<std::string>::iterator
I = Conds.begin(), E = Conds.end(); I != E; ++I)
if (*I != RHS.Conds[Idx++])
return false;
return true;
}
bool operator()(const IAPrinter &RHS) {
if (Conds.size() < RHS.Conds.size())
return true;
unsigned Idx = 0;
for (std::vector<std::string>::iterator
I = Conds.begin(), E = Conds.end(); I != E; ++I)
if (*I != RHS.Conds[Idx++])
return *I < RHS.Conds[Idx++];
return false;
}
};
} // end anonymous namespace
/// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
/// definitions.
static void EmitSubtargetFeatureFlagEnumeration(AsmWriterInfo &Info,
raw_ostream &O) {
O << "namespace {\n\n";
O << "// Flags for subtarget features that participate in "
<< "alias instruction matching.\n";
O << "enum SubtargetFeatureFlag {\n";
for (std::map<const Record*, SubtargetFeatureInfo*>::const_iterator
I = Info.SubtargetFeatures.begin(),
E = Info.SubtargetFeatures.end(); I != E; ++I) {
SubtargetFeatureInfo &SFI = *I->second;
O << " " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
}
O << " Feature_None = 0\n";
O << "};\n\n";
O << "} // end anonymous namespace\n\n";
}
/// EmitComputeAvailableFeatures - Emit the function to compute the list of
/// available features given a subtarget.
static void EmitComputeAvailableFeatures(AsmWriterInfo &Info,
Record *AsmWriter,
CodeGenTarget &Target,
raw_ostream &O) {
std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName");
O << "unsigned " << Target.getName() << ClassName << "::\n"
<< "ComputeAvailableFeatures(const " << Target.getName()
<< "Subtarget *Subtarget) const {\n";
O << " unsigned Features = 0;\n";
for (std::map<const Record*, SubtargetFeatureInfo*>::const_iterator
I = Info.SubtargetFeatures.begin(),
E = Info.SubtargetFeatures.end(); I != E; ++I) {
SubtargetFeatureInfo &SFI = *I->second;
O << " if (" << SFI.TheDef->getValueAsString("CondString")
<< ")\n";
O << " Features |= " << SFI.getEnumName() << ";\n";
}
O << " return Features;\n";
O << "}\n\n";
}
static void EmitGetMapOperandNumber(raw_ostream &O) {
O << "static unsigned getMapOperandNumber("
<< "const SmallVectorImpl<std::pair<StringRef, unsigned> > &OpMap,\n";
O << " StringRef Name) {\n";
O << " for (SmallVectorImpl<std::pair<StringRef, unsigned> >::"
<< "const_iterator\n";
O << " I = OpMap.begin(), E = OpMap.end(); I != E; ++I)\n";
O << " if (I->first == Name)\n";
O << " return I->second;\n";
O << " assert(false && \"Operand not in map!\");\n";
O << " return 0;\n";
O << "}\n\n";
}
void AsmWriterEmitter::EmitRegIsInRegClass(raw_ostream &O) {
CodeGenTarget Target(Records);
// Enumerate the register classes.
const std::vector<CodeGenRegisterClass> &RegisterClasses =
Target.getRegisterClasses();
O << "namespace { // Register classes\n";
O << " enum RegClass {\n";
// Emit the register enum value for each RegisterClass.
for (unsigned I = 0, E = RegisterClasses.size(); I != E; ++I) {
if (I != 0) O << ",\n";
O << " RC_" << RegisterClasses[I].TheDef->getName();
}
O << "\n };\n";
O << "} // end anonymous namespace\n\n";
// Emit a function that returns 'true' if a regsiter is part of a particular
// register class. I.e., RAX is part of GR64 on X86.
O << "static bool regIsInRegisterClass"
<< "(unsigned RegClass, unsigned Reg) {\n";
// Emit the switch that checks if a register belongs to a particular register
// class.
O << " switch (RegClass) {\n";
O << " default: break;\n";
for (unsigned I = 0, E = RegisterClasses.size(); I != E; ++I) {
const CodeGenRegisterClass &RC = RegisterClasses[I];
// Give the register class a legal C name if it's anonymous.
std::string Name = RC.TheDef->getName();
O << " case RC_" << Name << ":\n";
// Emit the register list now.
unsigned IE = RC.Elements.size();
if (IE == 1) {
O << " if (Reg == " << getQualifiedName(RC.Elements[0]) << ")\n";
O << " return true;\n";
} else {
O << " switch (Reg) {\n";
O << " default: break;\n";
for (unsigned II = 0; II != IE; ++II) {
Record *Reg = RC.Elements[II];
O << " case " << getQualifiedName(Reg) << ":\n";
}
O << " return true;\n";
O << " }\n";
}
O << " break;\n";
}
O << " }\n\n";
O << " return false;\n";
O << "}\n\n";
}
void AsmWriterEmitter::EmitPrintAliasInstruction(raw_ostream &O) {
CodeGenTarget Target(Records);
Record *AsmWriter = Target.getAsmWriter();
O << "\n#ifdef PRINT_ALIAS_INSTR\n";
O << "#undef PRINT_ALIAS_INSTR\n\n";
EmitRegIsInRegClass(O);
// Emit the method that prints the alias instruction.
std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName");
bool isMC = AsmWriter->getValueAsBit("isMCAsmWriter");
const char *MachineInstrClassName = isMC ? "MCInst" : "MachineInstr";
std::vector<Record*> AllInstAliases =
Records.getAllDerivedDefinitions("InstAlias");
// Create a map from the qualified name to a list of potential matches.
std::map<std::string, std::vector<CodeGenInstAlias*> > AliasMap;
for (std::vector<Record*>::iterator
I = AllInstAliases.begin(), E = AllInstAliases.end(); I != E; ++I) {
CodeGenInstAlias *Alias = new CodeGenInstAlias(*I, Target);
const Record *R = *I;
if (!R->getValueAsBit("EmitAlias"))
continue; // We were told not to emit the alias, but to emit the aliasee.
const DagInit *DI = R->getValueAsDag("ResultInst");
const DefInit *Op = dynamic_cast<const DefInit*>(DI->getOperator());
AliasMap[getQualifiedName(Op->getDef())].push_back(Alias);
}
// A map of which conditions need to be met for each instruction operand
// before it can be matched to the mnemonic.
std::map<std::string, std::vector<IAPrinter*> > IAPrinterMap;
AsmWriterInfo AWI;
for (std::map<std::string, std::vector<CodeGenInstAlias*> >::iterator
I = AliasMap.begin(), E = AliasMap.end(); I != E; ++I) {
std::vector<CodeGenInstAlias*> &Aliases = I->second;
for (std::vector<CodeGenInstAlias*>::iterator
II = Aliases.begin(), IE = Aliases.end(); II != IE; ++II) {
const CodeGenInstAlias *CGA = *II;
IAPrinter *IAP = new IAPrinter(AWI, CGA->Result->getAsString(),
CGA->AsmString);
IAP->addReqFeatures(CGA->TheDef->getValueAsListOfDefs("Predicates"));
unsigned LastOpNo = CGA->ResultInstOperandIndex.size();
std::string Cond;
Cond = std::string("MI->getNumOperands() == ") + llvm::utostr(LastOpNo);
IAP->addCond(Cond);
std::map<StringRef, unsigned> OpMap;
bool CantHandle = false;
for (unsigned i = 0, e = LastOpNo; i != e; ++i) {
const CodeGenInstAlias::ResultOperand &RO = CGA->ResultOperands[i];
switch (RO.Kind) {
default: assert(0 && "unexpected InstAlias operand kind");
case CodeGenInstAlias::ResultOperand::K_Record: {
const Record *Rec = RO.getRecord();
StringRef ROName = RO.getName();
if (Rec->isSubClassOf("RegisterClass")) {
Cond = std::string("MI->getOperand(")+llvm::utostr(i)+").isReg()";
IAP->addCond(Cond);
if (!IAP->isOpMapped(ROName)) {
IAP->addOperand(ROName, i);
Cond = std::string("regIsInRegisterClass(RC_") +
CGA->ResultOperands[i].getRecord()->getName() +
", MI->getOperand(" + llvm::utostr(i) + ").getReg())";
IAP->addCond(Cond);
} else {
Cond = std::string("MI->getOperand(") +
llvm::utostr(i) + ").getReg() == MI->getOperand(" +
llvm::utostr(IAP->getOpIndex(ROName)) + ").getReg()";
IAP->addCond(Cond);
}
} else {
assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
// FIXME: We need to handle these situations.
delete IAP;
IAP = 0;
CantHandle = true;
break;
}
break;
}
case CodeGenInstAlias::ResultOperand::K_Imm:
Cond = std::string("MI->getOperand(") +
llvm::utostr(i) + ").getImm() == " +
llvm::utostr(CGA->ResultOperands[i].getImm());
IAP->addCond(Cond);
break;
case CodeGenInstAlias::ResultOperand::K_Reg:
Cond = std::string("MI->getOperand(") +
llvm::utostr(i) + ").getReg() == " + Target.getName() +
"::" + CGA->ResultOperands[i].getRegister()->getName();
IAP->addCond(Cond);
break;
}
if (!IAP) break;
}
if (CantHandle) continue;
IAPrinterMap[I->first].push_back(IAP);
}
}
EmitSubtargetFeatureFlagEnumeration(AWI, O);
EmitComputeAvailableFeatures(AWI, AsmWriter, Target, O);
std::string Header;
raw_string_ostream HeaderO(Header);
HeaderO << "bool " << Target.getName() << ClassName
<< "::printAliasInstr(const " << MachineInstrClassName
<< " *MI, raw_ostream &OS) {\n";
std::string Cases;
raw_string_ostream CasesO(Cases);
bool NeedAvailableFeatures = false;
for (std::map<std::string, std::vector<IAPrinter*> >::iterator
I = IAPrinterMap.begin(), E = IAPrinterMap.end(); I != E; ++I) {
std::vector<IAPrinter*> &IAPs = I->second;
std::vector<IAPrinter*> UniqueIAPs;
for (std::vector<IAPrinter*>::iterator
II = IAPs.begin(), IE = IAPs.end(); II != IE; ++II) {
IAPrinter *LHS = *II;
bool IsDup = false;
for (std::vector<IAPrinter*>::iterator
III = IAPs.begin(), IIE = IAPs.end(); III != IIE; ++III) {
IAPrinter *RHS = *III;
if (LHS != RHS && *LHS == *RHS) {
IsDup = true;
break;
}
}
if (!IsDup) UniqueIAPs.push_back(LHS);
}
if (UniqueIAPs.empty()) continue;
CasesO.indent(2) << "case " << I->first << ":\n";
for (std::vector<IAPrinter*>::iterator
II = UniqueIAPs.begin(), IE = UniqueIAPs.end(); II != IE; ++II) {
IAPrinter *IAP = *II;
CasesO.indent(4);
NeedAvailableFeatures |= IAP->print(CasesO);
CasesO << '\n';
}
CasesO.indent(4) << "return false;\n";
}
if (CasesO.str().empty() || !isMC) {
O << HeaderO.str();
O << " return false;\n";
O << "}\n\n";
O << "#endif // PRINT_ALIAS_INSTR\n";
return;
}
EmitGetMapOperandNumber(O);
O << HeaderO.str();
O.indent(2) << "StringRef AsmString;\n";
O.indent(2) << "SmallVector<std::pair<StringRef, unsigned>, 4> OpMap;\n";
if (NeedAvailableFeatures)
O.indent(2) << "unsigned AvailableFeatures = getAvailableFeatures();\n\n";
O.indent(2) << "switch (MI->getOpcode()) {\n";
O.indent(2) << "default: return false;\n";
O << CasesO.str();
O.indent(2) << "}\n\n";
// Code that prints the alias, replacing the operands with the ones from the
// MCInst.
O << " std::pair<StringRef, StringRef> ASM = AsmString.split(' ');\n";
O << " OS << '\\t' << ASM.first;\n";
O << " if (!ASM.second.empty()) {\n";
O << " OS << '\\t';\n";
O << " for (StringRef::iterator\n";
O << " I = ASM.second.begin(), E = ASM.second.end(); I != E; ) {\n";
O << " if (*I == '$') {\n";
O << " StringRef::iterator Start = ++I;\n";
O << " while (I != E &&\n";
O << " ((*I >= 'a' && *I <= 'z') ||\n";
O << " (*I >= 'A' && *I <= 'Z') ||\n";
O << " (*I >= '0' && *I <= '9') ||\n";
O << " *I == '_'))\n";
O << " ++I;\n";
O << " StringRef Name(Start, I - Start);\n";
O << " printOperand(MI, getMapOperandNumber(OpMap, Name), OS);\n";
O << " } else {\n";
O << " OS << *I++;\n";
O << " }\n";
O << " }\n";
O << " }\n\n";
O << " return true;\n";
O << "}\n\n";
O << "#endif // PRINT_ALIAS_INSTR\n";
}
void AsmWriterEmitter::run(raw_ostream &O) {
EmitSourceFileHeader("Assembly Writer Source Fragment", O);
EmitPrintInstruction(O);
EmitGetRegisterName(O);
EmitGetInstructionName(O);
EmitPrintAliasInstruction(O);
}