mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 04:30:12 +00:00
506049f29f
- Eliminate TargetInstrInfo::isIdentical and replace it with produceSameValue. In the default case, produceSameValue just checks whether two machine instructions are identical (except for virtual register defs). But targets may override it to check for unusual cases (e.g. ARM pic loads from constant pools). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97628 91177308-0d34-0410-b5e6-96231b3b80d8
327 lines
12 KiB
C++
327 lines
12 KiB
C++
//===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the TargetInstrInfoImpl class, it just provides default
|
|
// implementations of various methods.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
// commuteInstruction - The default implementation of this method just exchanges
|
|
// the two operands returned by findCommutedOpIndices.
|
|
MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
|
|
bool NewMI) const {
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
bool HasDef = TID.getNumDefs();
|
|
if (HasDef && !MI->getOperand(0).isReg())
|
|
// No idea how to commute this instruction. Target should implement its own.
|
|
return 0;
|
|
unsigned Idx1, Idx2;
|
|
if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
|
|
std::string msg;
|
|
raw_string_ostream Msg(msg);
|
|
Msg << "Don't know how to commute: " << *MI;
|
|
llvm_report_error(Msg.str());
|
|
}
|
|
|
|
assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
|
|
"This only knows how to commute register operands so far");
|
|
unsigned Reg1 = MI->getOperand(Idx1).getReg();
|
|
unsigned Reg2 = MI->getOperand(Idx2).getReg();
|
|
bool Reg1IsKill = MI->getOperand(Idx1).isKill();
|
|
bool Reg2IsKill = MI->getOperand(Idx2).isKill();
|
|
bool ChangeReg0 = false;
|
|
if (HasDef && MI->getOperand(0).getReg() == Reg1) {
|
|
// Must be two address instruction!
|
|
assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
|
|
"Expecting a two-address instruction!");
|
|
Reg2IsKill = false;
|
|
ChangeReg0 = true;
|
|
}
|
|
|
|
if (NewMI) {
|
|
// Create a new instruction.
|
|
unsigned Reg0 = HasDef
|
|
? (ChangeReg0 ? Reg2 : MI->getOperand(0).getReg()) : 0;
|
|
bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false;
|
|
MachineFunction &MF = *MI->getParent()->getParent();
|
|
if (HasDef)
|
|
return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
|
|
.addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
|
|
.addReg(Reg2, getKillRegState(Reg2IsKill))
|
|
.addReg(Reg1, getKillRegState(Reg2IsKill));
|
|
else
|
|
return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
|
|
.addReg(Reg2, getKillRegState(Reg2IsKill))
|
|
.addReg(Reg1, getKillRegState(Reg2IsKill));
|
|
}
|
|
|
|
if (ChangeReg0)
|
|
MI->getOperand(0).setReg(Reg2);
|
|
MI->getOperand(Idx2).setReg(Reg1);
|
|
MI->getOperand(Idx1).setReg(Reg2);
|
|
MI->getOperand(Idx2).setIsKill(Reg1IsKill);
|
|
MI->getOperand(Idx1).setIsKill(Reg2IsKill);
|
|
return MI;
|
|
}
|
|
|
|
/// findCommutedOpIndices - If specified MI is commutable, return the two
|
|
/// operand indices that would swap value. Return true if the instruction
|
|
/// is not in a form which this routine understands.
|
|
bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI,
|
|
unsigned &SrcOpIdx1,
|
|
unsigned &SrcOpIdx2) const {
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
if (!TID.isCommutable())
|
|
return false;
|
|
// This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
|
|
// is not true, then the target must implement this.
|
|
SrcOpIdx1 = TID.getNumDefs();
|
|
SrcOpIdx2 = SrcOpIdx1 + 1;
|
|
if (!MI->getOperand(SrcOpIdx1).isReg() ||
|
|
!MI->getOperand(SrcOpIdx2).isReg())
|
|
// No idea.
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI,
|
|
const SmallVectorImpl<MachineOperand> &Pred) const {
|
|
bool MadeChange = false;
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
if (!TID.isPredicable())
|
|
return false;
|
|
|
|
for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
if (TID.OpInfo[i].isPredicate()) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg()) {
|
|
MO.setReg(Pred[j].getReg());
|
|
MadeChange = true;
|
|
} else if (MO.isImm()) {
|
|
MO.setImm(Pred[j].getImm());
|
|
MadeChange = true;
|
|
} else if (MO.isMBB()) {
|
|
MO.setMBB(Pred[j].getMBB());
|
|
MadeChange = true;
|
|
}
|
|
++j;
|
|
}
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
unsigned DestReg,
|
|
unsigned SubIdx,
|
|
const MachineInstr *Orig,
|
|
const TargetRegisterInfo *TRI) const {
|
|
MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
|
|
MachineOperand &MO = MI->getOperand(0);
|
|
if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
|
|
MO.setReg(DestReg);
|
|
MO.setSubReg(SubIdx);
|
|
} else if (SubIdx) {
|
|
MO.setReg(TRI->getSubReg(DestReg, SubIdx));
|
|
} else {
|
|
MO.setReg(DestReg);
|
|
}
|
|
MBB.insert(I, MI);
|
|
}
|
|
|
|
bool TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0,
|
|
const MachineInstr *MI1) const {
|
|
return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
|
|
}
|
|
|
|
MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig,
|
|
MachineFunction &MF) const {
|
|
assert(!Orig->getDesc().isNotDuplicable() &&
|
|
"Instruction cannot be duplicated");
|
|
return MF.CloneMachineInstr(Orig);
|
|
}
|
|
|
|
unsigned
|
|
TargetInstrInfoImpl::GetFunctionSizeInBytes(const MachineFunction &MF) const {
|
|
unsigned FnSize = 0;
|
|
for (MachineFunction::const_iterator MBBI = MF.begin(), E = MF.end();
|
|
MBBI != E; ++MBBI) {
|
|
const MachineBasicBlock &MBB = *MBBI;
|
|
for (MachineBasicBlock::const_iterator I = MBB.begin(),E = MBB.end();
|
|
I != E; ++I)
|
|
FnSize += GetInstSizeInBytes(I);
|
|
}
|
|
return FnSize;
|
|
}
|
|
|
|
/// foldMemoryOperand - Attempt to fold a load or store of the specified stack
|
|
/// slot into the specified machine instruction for the specified operand(s).
|
|
/// If this is possible, a new instruction is returned with the specified
|
|
/// operand folded, otherwise NULL is returned. The client is responsible for
|
|
/// removing the old instruction and adding the new one in the instruction
|
|
/// stream.
|
|
MachineInstr*
|
|
TargetInstrInfo::foldMemoryOperand(MachineFunction &MF,
|
|
MachineInstr* MI,
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
int FrameIndex) const {
|
|
unsigned Flags = 0;
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
|
if (MI->getOperand(Ops[i]).isDef())
|
|
Flags |= MachineMemOperand::MOStore;
|
|
else
|
|
Flags |= MachineMemOperand::MOLoad;
|
|
|
|
// Ask the target to do the actual folding.
|
|
MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FrameIndex);
|
|
if (!NewMI) return 0;
|
|
|
|
assert((!(Flags & MachineMemOperand::MOStore) ||
|
|
NewMI->getDesc().mayStore()) &&
|
|
"Folded a def to a non-store!");
|
|
assert((!(Flags & MachineMemOperand::MOLoad) ||
|
|
NewMI->getDesc().mayLoad()) &&
|
|
"Folded a use to a non-load!");
|
|
const MachineFrameInfo &MFI = *MF.getFrameInfo();
|
|
assert(MFI.getObjectOffset(FrameIndex) != -1);
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FrameIndex),
|
|
Flags, /*Offset=*/0,
|
|
MFI.getObjectSize(FrameIndex),
|
|
MFI.getObjectAlignment(FrameIndex));
|
|
NewMI->addMemOperand(MF, MMO);
|
|
|
|
return NewMI;
|
|
}
|
|
|
|
/// foldMemoryOperand - Same as the previous version except it allows folding
|
|
/// of any load and store from / to any address, not just from a specific
|
|
/// stack slot.
|
|
MachineInstr*
|
|
TargetInstrInfo::foldMemoryOperand(MachineFunction &MF,
|
|
MachineInstr* MI,
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
MachineInstr* LoadMI) const {
|
|
assert(LoadMI->getDesc().canFoldAsLoad() && "LoadMI isn't foldable!");
|
|
#ifndef NDEBUG
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
|
assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
|
|
#endif
|
|
|
|
// Ask the target to do the actual folding.
|
|
MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
|
|
if (!NewMI) return 0;
|
|
|
|
// Copy the memoperands from the load to the folded instruction.
|
|
NewMI->setMemRefs(LoadMI->memoperands_begin(),
|
|
LoadMI->memoperands_end());
|
|
|
|
return NewMI;
|
|
}
|
|
|
|
bool
|
|
TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(const MachineInstr *
|
|
MI,
|
|
AliasAnalysis *
|
|
AA) const {
|
|
const MachineFunction &MF = *MI->getParent()->getParent();
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const TargetMachine &TM = MF.getTarget();
|
|
const TargetInstrInfo &TII = *TM.getInstrInfo();
|
|
const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
|
|
|
|
// A load from a fixed stack slot can be rematerialized. This may be
|
|
// redundant with subsequent checks, but it's target-independent,
|
|
// simple, and a common case.
|
|
int FrameIdx = 0;
|
|
if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
|
|
MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
|
|
return true;
|
|
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
|
|
// Avoid instructions obviously unsafe for remat.
|
|
if (TID.hasUnmodeledSideEffects() || TID.isNotDuplicable() ||
|
|
TID.mayStore())
|
|
return false;
|
|
|
|
// Avoid instructions which load from potentially varying memory.
|
|
if (TID.mayLoad() && !MI->isInvariantLoad(AA))
|
|
return false;
|
|
|
|
// If any of the registers accessed are non-constant, conservatively assume
|
|
// the instruction is not rematerializable.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0)
|
|
continue;
|
|
|
|
// Check for a well-behaved physical register.
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
if (MO.isUse()) {
|
|
// If the physreg has no defs anywhere, it's just an ambient register
|
|
// and we can freely move its uses. Alternatively, if it's allocatable,
|
|
// it could get allocated to something with a def during allocation.
|
|
if (!MRI.def_empty(Reg))
|
|
return false;
|
|
BitVector AllocatableRegs = TRI.getAllocatableSet(MF, 0);
|
|
if (AllocatableRegs.test(Reg))
|
|
return false;
|
|
// Check for a def among the register's aliases too.
|
|
for (const unsigned *Alias = TRI.getAliasSet(Reg); *Alias; ++Alias) {
|
|
unsigned AliasReg = *Alias;
|
|
if (!MRI.def_empty(AliasReg))
|
|
return false;
|
|
if (AllocatableRegs.test(AliasReg))
|
|
return false;
|
|
}
|
|
} else {
|
|
// A physreg def. We can't remat it.
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Only allow one virtual-register def, and that in the first operand.
|
|
if (MO.isDef() != (i == 0))
|
|
return false;
|
|
|
|
// For the def, it should be the only def of that register.
|
|
if (MO.isDef() && (llvm::next(MRI.def_begin(Reg)) != MRI.def_end() ||
|
|
MRI.isLiveIn(Reg)))
|
|
return false;
|
|
|
|
// Don't allow any virtual-register uses. Rematting an instruction with
|
|
// virtual register uses would length the live ranges of the uses, which
|
|
// is not necessarily a good idea, certainly not "trivial".
|
|
if (MO.isUse())
|
|
return false;
|
|
}
|
|
|
|
// Everything checked out.
|
|
return true;
|
|
}
|