llvm-6502/lib/Target/ARM/MCTargetDesc/ARMAddressingModes.h
Renato Golin 6765c34b0c Add aliases for VAND imm to VBIC ~imm
On ARM NEON, VAND with immediate (16/32 bits) is an alias to VBIC ~imm with
the same type size. Adding that logic to the parser, and generating VBIC
instructions from VAND asm files.

This patch also fixes the validation routines for NEON splat immediates which
were wrong.

Fixes PR20702.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218450 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-25 11:31:24 +00:00

716 lines
24 KiB
C++

//===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the ARM addressing mode implementation stuff.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
#define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
namespace llvm {
/// ARM_AM - ARM Addressing Mode Stuff
namespace ARM_AM {
enum ShiftOpc {
no_shift = 0,
asr,
lsl,
lsr,
ror,
rrx
};
enum AddrOpc {
sub = 0,
add
};
static inline const char *getAddrOpcStr(AddrOpc Op) {
return Op == sub ? "-" : "";
}
static inline const char *getShiftOpcStr(ShiftOpc Op) {
switch (Op) {
default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::asr: return "asr";
case ARM_AM::lsl: return "lsl";
case ARM_AM::lsr: return "lsr";
case ARM_AM::ror: return "ror";
case ARM_AM::rrx: return "rrx";
}
}
static inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
switch (Op) {
default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::asr: return 2;
case ARM_AM::lsl: return 0;
case ARM_AM::lsr: return 1;
case ARM_AM::ror: return 3;
}
}
enum AMSubMode {
bad_am_submode = 0,
ia,
ib,
da,
db
};
static inline const char *getAMSubModeStr(AMSubMode Mode) {
switch (Mode) {
default: llvm_unreachable("Unknown addressing sub-mode!");
case ARM_AM::ia: return "ia";
case ARM_AM::ib: return "ib";
case ARM_AM::da: return "da";
case ARM_AM::db: return "db";
}
}
/// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
///
static inline unsigned rotr32(unsigned Val, unsigned Amt) {
assert(Amt < 32 && "Invalid rotate amount");
return (Val >> Amt) | (Val << ((32-Amt)&31));
}
/// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
///
static inline unsigned rotl32(unsigned Val, unsigned Amt) {
assert(Amt < 32 && "Invalid rotate amount");
return (Val << Amt) | (Val >> ((32-Amt)&31));
}
//===--------------------------------------------------------------------===//
// Addressing Mode #1: shift_operand with registers
//===--------------------------------------------------------------------===//
//
// This 'addressing mode' is used for arithmetic instructions. It can
// represent things like:
// reg
// reg [asr|lsl|lsr|ror|rrx] reg
// reg [asr|lsl|lsr|ror|rrx] imm
//
// This is stored three operands [rega, regb, opc]. The first is the base
// reg, the second is the shift amount (or reg0 if not present or imm). The
// third operand encodes the shift opcode and the imm if a reg isn't present.
//
static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
return ShOp | (Imm << 3);
}
static inline unsigned getSORegOffset(unsigned Op) {
return Op >> 3;
}
static inline ShiftOpc getSORegShOp(unsigned Op) {
return (ShiftOpc)(Op & 7);
}
/// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
/// the 8-bit imm value.
static inline unsigned getSOImmValImm(unsigned Imm) {
return Imm & 0xFF;
}
/// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
/// the rotate amount.
static inline unsigned getSOImmValRot(unsigned Imm) {
return (Imm >> 8) * 2;
}
/// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
/// computing the rotate amount to use. If this immediate value cannot be
/// handled with a single shifter-op, determine a good rotate amount that will
/// take a maximal chunk of bits out of the immediate.
static inline unsigned getSOImmValRotate(unsigned Imm) {
// 8-bit (or less) immediates are trivially shifter_operands with a rotate
// of zero.
if ((Imm & ~255U) == 0) return 0;
// Use CTZ to compute the rotate amount.
unsigned TZ = countTrailingZeros(Imm);
// Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
// not 9.
unsigned RotAmt = TZ & ~1;
// If we can handle this spread, return it.
if ((rotr32(Imm, RotAmt) & ~255U) == 0)
return (32-RotAmt)&31; // HW rotates right, not left.
// For values like 0xF000000F, we should ignore the low 6 bits, then
// retry the hunt.
if (Imm & 63U) {
unsigned TZ2 = countTrailingZeros(Imm & ~63U);
unsigned RotAmt2 = TZ2 & ~1;
if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
return (32-RotAmt2)&31; // HW rotates right, not left.
}
// Otherwise, we have no way to cover this span of bits with a single
// shifter_op immediate. Return a chunk of bits that will be useful to
// handle.
return (32-RotAmt)&31; // HW rotates right, not left.
}
/// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
/// into an shifter_operand immediate operand, return the 12-bit encoding for
/// it. If not, return -1.
static inline int getSOImmVal(unsigned Arg) {
// 8-bit (or less) immediates are trivially shifter_operands with a rotate
// of zero.
if ((Arg & ~255U) == 0) return Arg;
unsigned RotAmt = getSOImmValRotate(Arg);
// If this cannot be handled with a single shifter_op, bail out.
if (rotr32(~255U, RotAmt) & Arg)
return -1;
// Encode this correctly.
return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
}
/// isSOImmTwoPartVal - Return true if the specified value can be obtained by
/// or'ing together two SOImmVal's.
static inline bool isSOImmTwoPartVal(unsigned V) {
// If this can be handled with a single shifter_op, bail out.
V = rotr32(~255U, getSOImmValRotate(V)) & V;
if (V == 0)
return false;
// If this can be handled with two shifter_op's, accept.
V = rotr32(~255U, getSOImmValRotate(V)) & V;
return V == 0;
}
/// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
/// return the first chunk of it.
static inline unsigned getSOImmTwoPartFirst(unsigned V) {
return rotr32(255U, getSOImmValRotate(V)) & V;
}
/// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
/// return the second chunk of it.
static inline unsigned getSOImmTwoPartSecond(unsigned V) {
// Mask out the first hunk.
V = rotr32(~255U, getSOImmValRotate(V)) & V;
// Take what's left.
assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
return V;
}
/// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
/// by a left shift. Returns the shift amount to use.
static inline unsigned getThumbImmValShift(unsigned Imm) {
// 8-bit (or less) immediates are trivially immediate operand with a shift
// of zero.
if ((Imm & ~255U) == 0) return 0;
// Use CTZ to compute the shift amount.
return countTrailingZeros(Imm);
}
/// isThumbImmShiftedVal - Return true if the specified value can be obtained
/// by left shifting a 8-bit immediate.
static inline bool isThumbImmShiftedVal(unsigned V) {
// If this can be handled with
V = (~255U << getThumbImmValShift(V)) & V;
return V == 0;
}
/// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
/// by a left shift. Returns the shift amount to use.
static inline unsigned getThumbImm16ValShift(unsigned Imm) {
// 16-bit (or less) immediates are trivially immediate operand with a shift
// of zero.
if ((Imm & ~65535U) == 0) return 0;
// Use CTZ to compute the shift amount.
return countTrailingZeros(Imm);
}
/// isThumbImm16ShiftedVal - Return true if the specified value can be
/// obtained by left shifting a 16-bit immediate.
static inline bool isThumbImm16ShiftedVal(unsigned V) {
// If this can be handled with
V = (~65535U << getThumbImm16ValShift(V)) & V;
return V == 0;
}
/// getThumbImmNonShiftedVal - If V is a value that satisfies
/// isThumbImmShiftedVal, return the non-shiftd value.
static inline unsigned getThumbImmNonShiftedVal(unsigned V) {
return V >> getThumbImmValShift(V);
}
/// getT2SOImmValSplat - Return the 12-bit encoded representation
/// if the specified value can be obtained by splatting the low 8 bits
/// into every other byte or every byte of a 32-bit value. i.e.,
/// 00000000 00000000 00000000 abcdefgh control = 0
/// 00000000 abcdefgh 00000000 abcdefgh control = 1
/// abcdefgh 00000000 abcdefgh 00000000 control = 2
/// abcdefgh abcdefgh abcdefgh abcdefgh control = 3
/// Return -1 if none of the above apply.
/// See ARM Reference Manual A6.3.2.
static inline int getT2SOImmValSplatVal(unsigned V) {
unsigned u, Vs, Imm;
// control = 0
if ((V & 0xffffff00) == 0)
return V;
// If the value is zeroes in the first byte, just shift those off
Vs = ((V & 0xff) == 0) ? V >> 8 : V;
// Any passing value only has 8 bits of payload, splatted across the word
Imm = Vs & 0xff;
// Likewise, any passing values have the payload splatted into the 3rd byte
u = Imm | (Imm << 16);
// control = 1 or 2
if (Vs == u)
return (((Vs == V) ? 1 : 2) << 8) | Imm;
// control = 3
if (Vs == (u | (u << 8)))
return (3 << 8) | Imm;
return -1;
}
/// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
/// specified value is a rotated 8-bit value. Return -1 if no rotation
/// encoding is possible.
/// See ARM Reference Manual A6.3.2.
static inline int getT2SOImmValRotateVal(unsigned V) {
unsigned RotAmt = countLeadingZeros(V);
if (RotAmt >= 24)
return -1;
// If 'Arg' can be handled with a single shifter_op return the value.
if ((rotr32(0xff000000U, RotAmt) & V) == V)
return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
return -1;
}
/// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
/// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
/// encoding for it. If not, return -1.
/// See ARM Reference Manual A6.3.2.
static inline int getT2SOImmVal(unsigned Arg) {
// If 'Arg' is an 8-bit splat, then get the encoded value.
int Splat = getT2SOImmValSplatVal(Arg);
if (Splat != -1)
return Splat;
// If 'Arg' can be handled with a single shifter_op return the value.
int Rot = getT2SOImmValRotateVal(Arg);
if (Rot != -1)
return Rot;
return -1;
}
static inline unsigned getT2SOImmValRotate(unsigned V) {
if ((V & ~255U) == 0) return 0;
// Use CTZ to compute the rotate amount.
unsigned RotAmt = countTrailingZeros(V);
return (32 - RotAmt) & 31;
}
static inline bool isT2SOImmTwoPartVal (unsigned Imm) {
unsigned V = Imm;
// Passing values can be any combination of splat values and shifter
// values. If this can be handled with a single shifter or splat, bail
// out. Those should be handled directly, not with a two-part val.
if (getT2SOImmValSplatVal(V) != -1)
return false;
V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
if (V == 0)
return false;
// If this can be handled as an immediate, accept.
if (getT2SOImmVal(V) != -1) return true;
// Likewise, try masking out a splat value first.
V = Imm;
if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
V &= ~0xff00ff00U;
else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
V &= ~0x00ff00ffU;
// If what's left can be handled as an immediate, accept.
if (getT2SOImmVal(V) != -1) return true;
// Otherwise, do not accept.
return false;
}
static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
assert (isT2SOImmTwoPartVal(Imm) &&
"Immedate cannot be encoded as two part immediate!");
// Try a shifter operand as one part
unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
// If the rest is encodable as an immediate, then return it.
if (getT2SOImmVal(V) != -1) return V;
// Try masking out a splat value first.
if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
return Imm & 0xff00ff00U;
// The other splat is all that's left as an option.
assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
return Imm & 0x00ff00ffU;
}
static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
// Mask out the first hunk
Imm ^= getT2SOImmTwoPartFirst(Imm);
// Return what's left
assert (getT2SOImmVal(Imm) != -1 &&
"Unable to encode second part of T2 two part SO immediate");
return Imm;
}
//===--------------------------------------------------------------------===//
// Addressing Mode #2
//===--------------------------------------------------------------------===//
//
// This is used for most simple load/store instructions.
//
// addrmode2 := reg +/- reg shop imm
// addrmode2 := reg +/- imm12
//
// The first operand is always a Reg. The second operand is a reg if in
// reg/reg form, otherwise it's reg#0. The third field encodes the operation
// in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
// fourth operand 16-17 encodes the index mode.
//
// If this addressing mode is a frame index (before prolog/epilog insertion
// and code rewriting), this operand will have the form: FI#, reg0, <offs>
// with no shift amount for the frame offset.
//
static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
unsigned IdxMode = 0) {
assert(Imm12 < (1 << 12) && "Imm too large!");
bool isSub = Opc == sub;
return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
}
static inline unsigned getAM2Offset(unsigned AM2Opc) {
return AM2Opc & ((1 << 12)-1);
}
static inline AddrOpc getAM2Op(unsigned AM2Opc) {
return ((AM2Opc >> 12) & 1) ? sub : add;
}
static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
return (ShiftOpc)((AM2Opc >> 13) & 7);
}
static inline unsigned getAM2IdxMode(unsigned AM2Opc) {
return (AM2Opc >> 16);
}
//===--------------------------------------------------------------------===//
// Addressing Mode #3
//===--------------------------------------------------------------------===//
//
// This is used for sign-extending loads, and load/store-pair instructions.
//
// addrmode3 := reg +/- reg
// addrmode3 := reg +/- imm8
//
// The first operand is always a Reg. The second operand is a reg if in
// reg/reg form, otherwise it's reg#0. The third field encodes the operation
// in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
// index mode.
/// getAM3Opc - This function encodes the addrmode3 opc field.
static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
unsigned IdxMode = 0) {
bool isSub = Opc == sub;
return ((int)isSub << 8) | Offset | (IdxMode << 9);
}
static inline unsigned char getAM3Offset(unsigned AM3Opc) {
return AM3Opc & 0xFF;
}
static inline AddrOpc getAM3Op(unsigned AM3Opc) {
return ((AM3Opc >> 8) & 1) ? sub : add;
}
static inline unsigned getAM3IdxMode(unsigned AM3Opc) {
return (AM3Opc >> 9);
}
//===--------------------------------------------------------------------===//
// Addressing Mode #4
//===--------------------------------------------------------------------===//
//
// This is used for load / store multiple instructions.
//
// addrmode4 := reg, <mode>
//
// The four modes are:
// IA - Increment after
// IB - Increment before
// DA - Decrement after
// DB - Decrement before
// For VFP instructions, only the IA and DB modes are valid.
static inline AMSubMode getAM4SubMode(unsigned Mode) {
return (AMSubMode)(Mode & 0x7);
}
static inline unsigned getAM4ModeImm(AMSubMode SubMode) {
return (int)SubMode;
}
//===--------------------------------------------------------------------===//
// Addressing Mode #5
//===--------------------------------------------------------------------===//
//
// This is used for coprocessor instructions, such as FP load/stores.
//
// addrmode5 := reg +/- imm8*4
//
// The first operand is always a Reg. The second operand encodes the
// operation in bit 8 and the immediate in bits 0-7.
/// getAM5Opc - This function encodes the addrmode5 opc field.
static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
bool isSub = Opc == sub;
return ((int)isSub << 8) | Offset;
}
static inline unsigned char getAM5Offset(unsigned AM5Opc) {
return AM5Opc & 0xFF;
}
static inline AddrOpc getAM5Op(unsigned AM5Opc) {
return ((AM5Opc >> 8) & 1) ? sub : add;
}
//===--------------------------------------------------------------------===//
// Addressing Mode #6
//===--------------------------------------------------------------------===//
//
// This is used for NEON load / store instructions.
//
// addrmode6 := reg with optional alignment
//
// This is stored in two operands [regaddr, align]. The first is the
// address register. The second operand is the value of the alignment
// specifier in bytes or zero if no explicit alignment.
// Valid alignments depend on the specific instruction.
//===--------------------------------------------------------------------===//
// NEON Modified Immediates
//===--------------------------------------------------------------------===//
//
// Several NEON instructions (e.g., VMOV) take a "modified immediate"
// vector operand, where a small immediate encoded in the instruction
// specifies a full NEON vector value. These modified immediates are
// represented here as encoded integers. The low 8 bits hold the immediate
// value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
// the "Cmode" field of the instruction. The interfaces below treat the
// Op and Cmode values as a single 5-bit value.
static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) {
return (OpCmode << 8) | Val;
}
static inline unsigned getNEONModImmOpCmode(unsigned ModImm) {
return (ModImm >> 8) & 0x1f;
}
static inline unsigned getNEONModImmVal(unsigned ModImm) {
return ModImm & 0xff;
}
/// decodeNEONModImm - Decode a NEON modified immediate value into the
/// element value and the element size in bits. (If the element size is
/// smaller than the vector, it is splatted into all the elements.)
static inline uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits) {
unsigned OpCmode = getNEONModImmOpCmode(ModImm);
unsigned Imm8 = getNEONModImmVal(ModImm);
uint64_t Val = 0;
if (OpCmode == 0xe) {
// 8-bit vector elements
Val = Imm8;
EltBits = 8;
} else if ((OpCmode & 0xc) == 0x8) {
// 16-bit vector elements
unsigned ByteNum = (OpCmode & 0x6) >> 1;
Val = Imm8 << (8 * ByteNum);
EltBits = 16;
} else if ((OpCmode & 0x8) == 0) {
// 32-bit vector elements, zero with one byte set
unsigned ByteNum = (OpCmode & 0x6) >> 1;
Val = Imm8 << (8 * ByteNum);
EltBits = 32;
} else if ((OpCmode & 0xe) == 0xc) {
// 32-bit vector elements, one byte with low bits set
unsigned ByteNum = 1 + (OpCmode & 0x1);
Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
EltBits = 32;
} else if (OpCmode == 0x1e) {
// 64-bit vector elements
for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
if ((ModImm >> ByteNum) & 1)
Val |= (uint64_t)0xff << (8 * ByteNum);
}
EltBits = 64;
} else {
llvm_unreachable("Unsupported NEON immediate");
}
return Val;
}
// Generic validation for single-byte immediate (0X00, 00X0, etc).
static inline bool isNEONBytesplat(unsigned Value, unsigned Size) {
assert(Size >= 1 && Size <= 4 && "Invalid size");
unsigned count = 0;
for (unsigned i = 0; i < Size; ++i) {
if (Value & 0xff) count++;
Value >>= 8;
}
return count == 1;
}
/// Checks if Value is a correct immediate for instructions like VBIC/VORR.
static inline bool isNEONi16splat(unsigned Value) {
if (Value > 0xffff)
return false;
// i16 value with set bits only in one byte X0 or 0X.
return Value == 0 || isNEONBytesplat(Value, 2);
}
// Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR
static inline unsigned encodeNEONi16splat(unsigned Value) {
assert(isNEONi16splat(Value) && "Invalid NEON splat value");
if (Value >= 0x100)
Value = (Value >> 8) | 0xa00;
else
Value |= 0x800;
return Value;
}
/// Checks if Value is a correct immediate for instructions like VBIC/VORR.
static inline bool isNEONi32splat(unsigned Value) {
// i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
return Value == 0 || isNEONBytesplat(Value, 4);
}
/// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR.
static inline unsigned encodeNEONi32splat(unsigned Value) {
assert(isNEONi32splat(Value) && "Invalid NEON splat value");
if (Value >= 0x100 && Value <= 0xff00)
Value = (Value >> 8) | 0x200;
else if (Value > 0xffff && Value <= 0xff0000)
Value = (Value >> 16) | 0x400;
else if (Value > 0xffffff)
Value = (Value >> 24) | 0x600;
return Value;
}
AMSubMode getLoadStoreMultipleSubMode(int Opcode);
//===--------------------------------------------------------------------===//
// Floating-point Immediates
//
static inline float getFPImmFloat(unsigned Imm) {
// We expect an 8-bit binary encoding of a floating-point number here.
union {
uint32_t I;
float F;
} FPUnion;
uint8_t Sign = (Imm >> 7) & 0x1;
uint8_t Exp = (Imm >> 4) & 0x7;
uint8_t Mantissa = Imm & 0xf;
// 8-bit FP iEEEE Float Encoding
// abcd efgh aBbbbbbc defgh000 00000000 00000000
//
// where B = NOT(b);
FPUnion.I = 0;
FPUnion.I |= Sign << 31;
FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
FPUnion.I |= (Exp & 0x3) << 23;
FPUnion.I |= Mantissa << 19;
return FPUnion.F;
}
/// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
/// floating-point value. If the value cannot be represented as an 8-bit
/// floating-point value, then return -1.
static inline int getFP32Imm(const APInt &Imm) {
uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
// We can handle 4 bits of mantissa.
// mantissa = (16+UInt(e:f:g:h))/16.
if (Mantissa & 0x7ffff)
return -1;
Mantissa >>= 19;
if ((Mantissa & 0xf) != Mantissa)
return -1;
// We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
if (Exp < -3 || Exp > 4)
return -1;
Exp = ((Exp+3) & 0x7) ^ 4;
return ((int)Sign << 7) | (Exp << 4) | Mantissa;
}
static inline int getFP32Imm(const APFloat &FPImm) {
return getFP32Imm(FPImm.bitcastToAPInt());
}
/// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
/// floating-point value. If the value cannot be represented as an 8-bit
/// floating-point value, then return -1.
static inline int getFP64Imm(const APInt &Imm) {
uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
// We can handle 4 bits of mantissa.
// mantissa = (16+UInt(e:f:g:h))/16.
if (Mantissa & 0xffffffffffffULL)
return -1;
Mantissa >>= 48;
if ((Mantissa & 0xf) != Mantissa)
return -1;
// We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
if (Exp < -3 || Exp > 4)
return -1;
Exp = ((Exp+3) & 0x7) ^ 4;
return ((int)Sign << 7) | (Exp << 4) | Mantissa;
}
static inline int getFP64Imm(const APFloat &FPImm) {
return getFP64Imm(FPImm.bitcastToAPInt());
}
} // end namespace ARM_AM
} // end namespace llvm
#endif