mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-04-18 03:37:31 +00:00
that can have a big effect :). The first is to enable the iterative SCC passmanager juice that kicks in when the scc passmgr detects that a function pass has devirtualized a call. In this case, it will rerun all the passes it manages on the SCC, up to the iteration count limit (4). This is useful because a function pass may devirualize a call, and we want the inliner to inline it, or pruneeh to infer stuff about it, etc. The second patch is to add *all* call sites to the DevirtualizedCalls list the inliner uses. This list is about to get renamed, but the jist of this is that the inliner now reconsiders *all* inlined call sites as candidates for further inlining. The intuition is this that in cases like this: f() { g(1); } g(int x) { h(x); } We analyze this bottom up, and may decide that it isn't profitable to inline H into G. Next step, we decide that it is profitable to inline G into F, and do so, which means that F now calls H. Even though the call from G -> H may not have been profitable to inline, the call from F -> H may be (in this case because a constant allows folding etc). In my spot checks, this doesn't have a big impact on code. For example, the LLC output for 252.eon grew from 0.02% (from 317252 to 317308) and 176.gcc actually shrunk by .3% (from 1525612 to 1520964 bytes). 252.eon never iterated in the SCC Passmgr, 176.gcc iterated at most 1 time. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102823 91177308-0d34-0410-b5e6-96231b3b80d8
…
Low Level Virtual Machine (LLVM) ================================ This directory and its subdirectories contain source code for the Low Level Virtual Machine, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments. LLVM is open source software. You may freely distribute it under the terms of the license agreement found in LICENSE.txt. Please see the HTML documentation provided in docs/index.html for further assistance with LLVM. If you're writing a package for LLVM, see docs/Packaging.html for our suggestions.
Description
Languages
C++
48.7%
LLVM
38.5%
Assembly
10.2%
C
0.9%
Python
0.4%
Other
1.2%