llvm-6502/lib/VMCore/Dominators.cpp
Owen Anderson 2ab36d3502 Begin adding static dependence information to passes, which will allow us to
perform initialization without static constructors AND without explicit initialization
by the client.  For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve.  I hope to be able to relax
the latter requirement in the future.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116334 91177308-0d34-0410-b5e6-96231b3b80d8
2010-10-12 19:48:12 +00:00

364 lines
12 KiB
C++

//===- Dominators.cpp - Dominator Calculation -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements simple dominator construction algorithms for finding
// forward dominators. Postdominators are available in libanalysis, but are not
// included in libvmcore, because it's not needed. Forward dominators are
// needed to support the Verifier pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/DominatorInternals.h"
#include "llvm/Instructions.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
using namespace llvm;
// Always verify dominfo if expensive checking is enabled.
#ifdef XDEBUG
static bool VerifyDomInfo = true;
#else
static bool VerifyDomInfo = false;
#endif
static cl::opt<bool,true>
VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
cl::desc("Verify dominator info (time consuming)"));
//===----------------------------------------------------------------------===//
// DominatorTree Implementation
//===----------------------------------------------------------------------===//
//
// Provide public access to DominatorTree information. Implementation details
// can be found in DominatorCalculation.h.
//
//===----------------------------------------------------------------------===//
TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
char DominatorTree::ID = 0;
INITIALIZE_PASS(DominatorTree, "domtree",
"Dominator Tree Construction", true, true)
bool DominatorTree::runOnFunction(Function &F) {
DT->recalculate(F);
return false;
}
void DominatorTree::verifyAnalysis() const {
if (!VerifyDomInfo) return;
Function &F = *getRoot()->getParent();
DominatorTree OtherDT;
OtherDT.getBase().recalculate(F);
assert(!compare(OtherDT) && "Invalid DominatorTree info!");
}
void DominatorTree::print(raw_ostream &OS, const Module *) const {
DT->print(OS);
}
// dominates - Return true if A dominates a use in B. This performs the
// special checks necessary if A and B are in the same basic block.
bool DominatorTree::dominates(const Instruction *A, const Instruction *B) const{
const BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
// If A is an invoke instruction, its value is only available in this normal
// successor block.
if (const InvokeInst *II = dyn_cast<InvokeInst>(A))
BBA = II->getNormalDest();
if (BBA != BBB) return dominates(BBA, BBB);
// It is not possible to determine dominance between two PHI nodes
// based on their ordering.
if (isa<PHINode>(A) && isa<PHINode>(B))
return false;
// Loop through the basic block until we find A or B.
BasicBlock::const_iterator I = BBA->begin();
for (; &*I != A && &*I != B; ++I)
/*empty*/;
return &*I == A;
}
//===----------------------------------------------------------------------===//
// DominanceFrontier Implementation
//===----------------------------------------------------------------------===//
char DominanceFrontier::ID = 0;
INITIALIZE_PASS_BEGIN(DominanceFrontier, "domfrontier",
"Dominance Frontier Construction", true, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_END(DominanceFrontier, "domfrontier",
"Dominance Frontier Construction", true, true)
void DominanceFrontier::verifyAnalysis() const {
if (!VerifyDomInfo) return;
DominatorTree &DT = getAnalysis<DominatorTree>();
DominanceFrontier OtherDF;
const std::vector<BasicBlock*> &DTRoots = DT.getRoots();
OtherDF.calculate(DT, DT.getNode(DTRoots[0]));
assert(!compare(OtherDF) && "Invalid DominanceFrontier info!");
}
// NewBB is split and now it has one successor. Update dominance frontier to
// reflect this change.
void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
assert(NewBB->getTerminator()->getNumSuccessors() == 1 &&
"NewBB should have a single successor!");
BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
// NewBBSucc inherits original NewBB frontier.
DominanceFrontier::iterator NewBBI = find(NewBB);
if (NewBBI != end())
addBasicBlock(NewBBSucc, NewBBI->second);
// If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
// DF(NewBBSucc) without the stuff that the new block does not dominate
// a predecessor of.
DominatorTree &DT = getAnalysis<DominatorTree>();
DomTreeNode *NewBBNode = DT.getNode(NewBB);
DomTreeNode *NewBBSuccNode = DT.getNode(NewBBSucc);
if (DT.dominates(NewBBNode, NewBBSuccNode)) {
DominanceFrontier::iterator DFI = find(NewBBSucc);
if (DFI != end()) {
DominanceFrontier::DomSetType Set = DFI->second;
// Filter out stuff in Set that we do not dominate a predecessor of.
for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
E = Set.end(); SetI != E;) {
bool DominatesPred = false;
for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
PI != E; ++PI)
if (DT.dominates(NewBBNode, DT.getNode(*PI))) {
DominatesPred = true;
break;
}
if (!DominatesPred)
Set.erase(SetI++);
else
++SetI;
}
if (NewBBI != end()) {
for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
E = Set.end(); SetI != E; ++SetI) {
BasicBlock *SB = *SetI;
addToFrontier(NewBBI, SB);
}
} else
addBasicBlock(NewBB, Set);
}
} else {
// DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
// NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
// NewBBSucc)). NewBBSucc is the single successor of NewBB.
DominanceFrontier::DomSetType NewDFSet;
NewDFSet.insert(NewBBSucc);
addBasicBlock(NewBB, NewDFSet);
}
// Now update dominance frontiers which either used to contain NewBBSucc
// or which now need to include NewBB.
// Collect the set of blocks which dominate a predecessor of NewBB or
// NewSuccBB and which don't dominate both. This is an initial
// approximation of the blocks whose dominance frontiers will need updates.
SmallVector<DomTreeNode *, 16> AllPredDoms;
// Compute the block which dominates both NewBBSucc and NewBB. This is
// the immediate dominator of NewBBSucc unless NewBB dominates NewBBSucc.
// The code below which climbs dominator trees will stop at this point,
// because from this point up, dominance frontiers are unaffected.
DomTreeNode *DominatesBoth = 0;
if (NewBBSuccNode) {
DominatesBoth = NewBBSuccNode->getIDom();
if (DominatesBoth == NewBBNode)
DominatesBoth = NewBBNode->getIDom();
}
// Collect the set of all blocks which dominate a predecessor of NewBB.
SmallPtrSet<DomTreeNode *, 8> NewBBPredDoms;
for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); PI != E; ++PI)
for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) {
if (DTN == DominatesBoth)
break;
if (!NewBBPredDoms.insert(DTN))
break;
AllPredDoms.push_back(DTN);
}
// Collect the set of all blocks which dominate a predecessor of NewSuccBB.
SmallPtrSet<DomTreeNode *, 8> NewBBSuccPredDoms;
for (pred_iterator PI = pred_begin(NewBBSucc),
E = pred_end(NewBBSucc); PI != E; ++PI)
for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) {
if (DTN == DominatesBoth)
break;
if (!NewBBSuccPredDoms.insert(DTN))
break;
if (!NewBBPredDoms.count(DTN))
AllPredDoms.push_back(DTN);
}
// Visit all relevant dominance frontiers and make any needed updates.
for (SmallVectorImpl<DomTreeNode *>::const_iterator I = AllPredDoms.begin(),
E = AllPredDoms.end(); I != E; ++I) {
DomTreeNode *DTN = *I;
iterator DFI = find((*I)->getBlock());
// Only consider nodes that have NewBBSucc in their dominator frontier.
if (DFI == end() || !DFI->second.count(NewBBSucc)) continue;
// If the block dominates a predecessor of NewBB but does not properly
// dominate NewBB itself, add NewBB to its dominance frontier.
if (NewBBPredDoms.count(DTN) &&
!DT.properlyDominates(DTN, NewBBNode))
addToFrontier(DFI, NewBB);
// If the block does not dominate a predecessor of NewBBSucc or
// properly dominates NewBBSucc itself, remove NewBBSucc from its
// dominance frontier.
if (!NewBBSuccPredDoms.count(DTN) ||
DT.properlyDominates(DTN, NewBBSuccNode))
removeFromFrontier(DFI, NewBBSucc);
}
}
namespace {
class DFCalculateWorkObject {
public:
DFCalculateWorkObject(BasicBlock *B, BasicBlock *P,
const DomTreeNode *N,
const DomTreeNode *PN)
: currentBB(B), parentBB(P), Node(N), parentNode(PN) {}
BasicBlock *currentBB;
BasicBlock *parentBB;
const DomTreeNode *Node;
const DomTreeNode *parentNode;
};
}
const DominanceFrontier::DomSetType &
DominanceFrontier::calculate(const DominatorTree &DT,
const DomTreeNode *Node) {
BasicBlock *BB = Node->getBlock();
DomSetType *Result = NULL;
std::vector<DFCalculateWorkObject> workList;
SmallPtrSet<BasicBlock *, 32> visited;
workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL));
do {
DFCalculateWorkObject *currentW = &workList.back();
assert (currentW && "Missing work object.");
BasicBlock *currentBB = currentW->currentBB;
BasicBlock *parentBB = currentW->parentBB;
const DomTreeNode *currentNode = currentW->Node;
const DomTreeNode *parentNode = currentW->parentNode;
assert (currentBB && "Invalid work object. Missing current Basic Block");
assert (currentNode && "Invalid work object. Missing current Node");
DomSetType &S = Frontiers[currentBB];
// Visit each block only once.
if (visited.count(currentBB) == 0) {
visited.insert(currentBB);
// Loop over CFG successors to calculate DFlocal[currentNode]
for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB);
SI != SE; ++SI) {
// Does Node immediately dominate this successor?
if (DT[*SI]->getIDom() != currentNode)
S.insert(*SI);
}
}
// At this point, S is DFlocal. Now we union in DFup's of our children...
// Loop through and visit the nodes that Node immediately dominates (Node's
// children in the IDomTree)
bool visitChild = false;
for (DomTreeNode::const_iterator NI = currentNode->begin(),
NE = currentNode->end(); NI != NE; ++NI) {
DomTreeNode *IDominee = *NI;
BasicBlock *childBB = IDominee->getBlock();
if (visited.count(childBB) == 0) {
workList.push_back(DFCalculateWorkObject(childBB, currentBB,
IDominee, currentNode));
visitChild = true;
}
}
// If all children are visited or there is any child then pop this block
// from the workList.
if (!visitChild) {
if (!parentBB) {
Result = &S;
break;
}
DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end();
DomSetType &parentSet = Frontiers[parentBB];
for (; CDFI != CDFE; ++CDFI) {
if (!DT.properlyDominates(parentNode, DT[*CDFI]))
parentSet.insert(*CDFI);
}
workList.pop_back();
}
} while (!workList.empty());
return *Result;
}
void DominanceFrontierBase::print(raw_ostream &OS, const Module* ) const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
OS << " DomFrontier for BB ";
if (I->first)
WriteAsOperand(OS, I->first, false);
else
OS << " <<exit node>>";
OS << " is:\t";
const std::set<BasicBlock*> &BBs = I->second;
for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
I != E; ++I) {
OS << ' ';
if (*I)
WriteAsOperand(OS, *I, false);
else
OS << "<<exit node>>";
}
OS << "\n";
}
}
void DominanceFrontierBase::dump() const {
print(dbgs());
}