llvm-6502/lib/VMCore/Type.cpp
Chris Lattner ca24d381e7 Use correct style casts
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@545 91177308-0d34-0410-b5e6-96231b3b80d8
2001-09-10 20:11:44 +00:00

942 lines
33 KiB
C++

//===-- Type.cpp - Implement the Type class ----------------------*- C++ -*--=//
//
// This file implements the Type class for the VMCore library.
//
//===----------------------------------------------------------------------===//
#include "llvm/DerivedTypes.h"
#include "llvm/Support/StringExtras.h"
#include "llvm/SymbolTable.h"
#include "llvm/Support/STLExtras.h"
// DEBUG_MERGE_TYPES - Enable this #define to see how and when derived types are
// created and later destroyed, all in an effort to make sure that there is only
// a single cannonical version of a type.
//
//#define DEBUG_MERGE_TYPES 1
//===----------------------------------------------------------------------===//
// Type Class Implementation
//===----------------------------------------------------------------------===//
static unsigned CurUID = 0;
static vector<const Type *> UIDMappings;
Type::Type(const string &name, PrimitiveID id)
: Value(Type::TypeTy, Value::TypeVal) {
setDescription(name);
ID = id;
Abstract = false;
UID = CurUID++; // Assign types UID's as they are created
UIDMappings.push_back(this);
}
void Type::setName(const string &Name, SymbolTable *ST) {
assert(ST && "Type::setName - Must provide symbol table argument!");
if (Name.size()) ST->insert(Name, this);
}
const Type *Type::getUniqueIDType(unsigned UID) {
assert(UID < UIDMappings.size() &&
"Type::getPrimitiveType: UID out of range!");
return UIDMappings[UID];
}
const Type *Type::getPrimitiveType(PrimitiveID IDNumber) {
switch (IDNumber) {
case VoidTyID : return VoidTy;
case BoolTyID : return BoolTy;
case UByteTyID : return UByteTy;
case SByteTyID : return SByteTy;
case UShortTyID: return UShortTy;
case ShortTyID : return ShortTy;
case UIntTyID : return UIntTy;
case IntTyID : return IntTy;
case ULongTyID : return ULongTy;
case LongTyID : return LongTy;
case FloatTyID : return FloatTy;
case DoubleTyID: return DoubleTy;
case TypeTyID : return TypeTy;
case LabelTyID : return LabelTy;
default:
return 0;
}
}
//===----------------------------------------------------------------------===//
// Auxilliary classes
//===----------------------------------------------------------------------===//
//
// These classes are used to implement specialized behavior for each different
// type.
//
class SignedIntType : public Type {
int Size;
public:
SignedIntType(const string &Name, PrimitiveID id, int size) : Type(Name, id) {
Size = size;
}
// isSigned - Return whether a numeric type is signed.
virtual bool isSigned() const { return 1; }
// isIntegral - Equivalent to isSigned() || isUnsigned, but with only a single
// virtual function invocation.
//
virtual bool isIntegral() const { return 1; }
};
class UnsignedIntType : public Type {
uint64_t Size;
public:
UnsignedIntType(const string &N, PrimitiveID id, int size) : Type(N, id) {
Size = size;
}
// isUnsigned - Return whether a numeric type is signed.
virtual bool isUnsigned() const { return 1; }
// isIntegral - Equivalent to isSigned() || isUnsigned, but with only a single
// virtual function invocation.
//
virtual bool isIntegral() const { return 1; }
};
static struct TypeType : public Type {
TypeType() : Type("type", TypeTyID) {}
} TheTypeType; // Implement the type that is global.
//===----------------------------------------------------------------------===//
// Static 'Type' data
//===----------------------------------------------------------------------===//
Type *Type::VoidTy = new Type("void" , VoidTyID),
*Type::BoolTy = new Type("bool" , BoolTyID),
*Type::SByteTy = new SignedIntType("sbyte" , SByteTyID, 1),
*Type::UByteTy = new UnsignedIntType("ubyte" , UByteTyID, 1),
*Type::ShortTy = new SignedIntType("short" , ShortTyID, 2),
*Type::UShortTy = new UnsignedIntType("ushort", UShortTyID, 2),
*Type::IntTy = new SignedIntType("int" , IntTyID, 4),
*Type::UIntTy = new UnsignedIntType("uint" , UIntTyID, 4),
*Type::LongTy = new SignedIntType("long" , LongTyID, 8),
*Type::ULongTy = new UnsignedIntType("ulong" , ULongTyID, 8),
*Type::FloatTy = new Type("float" , FloatTyID),
*Type::DoubleTy = new Type("double", DoubleTyID),
*Type::TypeTy = &TheTypeType,
*Type::LabelTy = new Type("label" , LabelTyID);
//===----------------------------------------------------------------------===//
// Derived Type Constructors
//===----------------------------------------------------------------------===//
MethodType::MethodType(const Type *Result, const vector<const Type*> &Params,
bool IsVarArgs) : DerivedType("", MethodTyID),
ResultType(PATypeHandle<Type>(Result, this)),
isVarArgs(IsVarArgs) {
ParamTys.reserve(Params.size());
for (unsigned i = 0; i < Params.size()-IsVarArgs; ++i)
ParamTys.push_back(PATypeHandle<Type>(Params[i], this));
setDerivedTypeProperties();
}
ArrayType::ArrayType(const Type *ElType, int NumEl)
: DerivedType("", ArrayTyID), ElementType(PATypeHandle<Type>(ElType, this)) {
NumElements = NumEl;
setDerivedTypeProperties();
}
StructType::StructType(const vector<const Type*> &Types)
: DerivedType("", StructTyID) {
ETypes.reserve(Types.size());
for (unsigned i = 0; i < Types.size(); ++i)
ETypes.push_back(PATypeHandle<Type>(Types[i], this));
setDerivedTypeProperties();
}
PointerType::PointerType(const Type *E) : DerivedType("", PointerTyID),
ValueType(PATypeHandle<Type>(E, this)) {
setDerivedTypeProperties();
}
OpaqueType::OpaqueType() : DerivedType("", OpaqueTyID) {
setAbstract(true);
setDescription("opaque"+utostr(getUniqueID()));
#ifdef DEBUG_MERGE_TYPES
cerr << "Derived new type: " << getDescription() << endl;
#endif
}
//===----------------------------------------------------------------------===//
// Derived Type setDerivedTypeProperties Function
//===----------------------------------------------------------------------===//
// getTypeProps - This is a recursive function that walks a type hierarchy
// calculating the description for a type and whether or not it is abstract or
// recursive. Worst case it will have to do a lot of traversing if you have
// some whacko opaque types, but in most cases, it will do some simple stuff
// when it hits non-abstract types that aren't recursive.
//
static string getTypeProps(const Type *Ty, vector<const Type *> &TypeStack,
bool &isAbstract, bool &isRecursive) {
string Result;
if (!Ty->isAbstract() && !Ty->isRecursive() && // Base case for the recursion
Ty->getDescription().size()) {
Result = Ty->getDescription(); // Primitive = leaf type
} else if (Ty->isOpaqueType()) { // Base case for the recursion
Result = Ty->getDescription(); // Opaque = leaf type
isAbstract = true; // This whole type is abstract!
} else {
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
// This is another base case for the recursion. In this case, we know
// that we have looped back to a type that we have previously visited.
// Generate the appropriate upreference to handle this.
//
if (Slot < CurSize) {
Result = "\\" + utostr(CurSize-Slot); // Here's the upreference
isRecursive = true; // We know we are recursive
} else { // Recursive case: abstract derived type...
TypeStack.push_back(Ty); // Add us to the stack..
switch (Ty->getPrimitiveID()) {
case Type::MethodTyID: {
const MethodType *MTy = (const MethodType*)Ty;
Result = getTypeProps(MTy->getReturnType(), TypeStack,
isAbstract, isRecursive)+" (";
for (MethodType::ParamTypes::const_iterator
I = MTy->getParamTypes().begin(),
E = MTy->getParamTypes().end(); I != E; ++I) {
if (I != MTy->getParamTypes().begin())
Result += ", ";
Result += getTypeProps(*I, TypeStack, isAbstract, isRecursive);
}
if (MTy->isVarArg()) {
if (!MTy->getParamTypes().empty()) Result += ", ";
Result += "...";
}
Result += ")";
break;
}
case Type::StructTyID: {
const StructType *STy = (const StructType*)Ty;
Result = "{ ";
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
if (I != STy->getElementTypes().begin())
Result += ", ";
Result += getTypeProps(*I, TypeStack, isAbstract, isRecursive);
}
Result += " }";
break;
}
case Type::PointerTyID: {
const PointerType *PTy = (const PointerType*)Ty;
Result = getTypeProps(PTy->getValueType(), TypeStack,
isAbstract, isRecursive) + " *";
break;
}
case Type::ArrayTyID: {
const ArrayType *ATy = (const ArrayType*)Ty;
int NumElements = ATy->getNumElements();
Result = "[";
if (NumElements != -1) Result += itostr(NumElements) + " x ";
Result += getTypeProps(ATy->getElementType(), TypeStack,
isAbstract, isRecursive) + "]";
break;
}
default:
assert(0 && "Unhandled case in getTypeProps!");
Result = "<error>";
}
TypeStack.pop_back(); // Remove self from stack...
}
}
return Result;
}
// setDerivedTypeProperties - This function is used to calculate the
// isAbstract, isRecursive, and the Description settings for a type. The
// getTypeProps function does all the dirty work.
//
void DerivedType::setDerivedTypeProperties() {
vector<const Type *> TypeStack;
bool isAbstract = false, isRecursive = false;
setDescription(getTypeProps(this, TypeStack, isAbstract, isRecursive));
setAbstract(isAbstract);
setRecursive(isRecursive);
}
//===----------------------------------------------------------------------===//
// Type Structural Equality Testing
//===----------------------------------------------------------------------===//
// TypesEqual - Two types are considered structurally equal if they have the
// same "shape": Every level and element of the types have identical primitive
// ID's, and the graphs have the same edges/nodes in them. Nodes do not have to
// be pointer equals to be equivalent though. This uses an optimistic algorithm
// that assumes that two graphs are the same until proven otherwise.
//
static bool TypesEqual(const Type *Ty, const Type *Ty2,
map<const Type *, const Type *> &EqTypes) {
if (Ty == Ty2) return true;
if (Ty->getPrimitiveID() != Ty2->getPrimitiveID()) return false;
if (Ty->isPrimitiveType()) return true;
if (Ty != Ty2) {
map<const Type*, const Type*>::iterator I = EqTypes.find(Ty);
if (I != EqTypes.end())
return I->second == Ty2; // Looping back on a type, check for equality
// Otherwise, add the mapping to the table to make sure we don't get
// recursion on the types...
EqTypes.insert(make_pair(Ty, Ty2));
}
// Iterate over the types and make sure the the contents are equivalent...
Type::subtype_iterator I = Ty ->subtype_begin(), IE = Ty ->subtype_end();
Type::subtype_iterator I2 = Ty2->subtype_begin(), IE2 = Ty2->subtype_end();
for (; I != IE && I2 != IE2; ++I, ++I2)
if (!TypesEqual(*I, *I2, EqTypes)) return false;
// One really annoying special case that breaks an otherwise nice simple
// algorithm is the fact that arraytypes have sizes that differentiates types,
// consider this now.
if (Ty->isArrayType())
if (((const ArrayType*)Ty)->getNumElements() !=
((const ArrayType*)Ty2)->getNumElements()) return false;
return I == IE && I2 == IE2; // Types equal if both iterators are done
}
static bool TypesEqual(const Type *Ty, const Type *Ty2) {
map<const Type *, const Type *> EqTypes;
return TypesEqual(Ty, Ty2, EqTypes);
}
//===----------------------------------------------------------------------===//
// Derived Type Factory Functions
//===----------------------------------------------------------------------===//
// TypeMap - Make sure that only one instance of a particular type may be
// created on any given run of the compiler... note that this involves updating
// our map if an abstract type gets refined somehow...
//
template<class ValType, class TypeClass>
class TypeMap : public AbstractTypeUser {
typedef map<ValType, PATypeHandle<TypeClass> > MapTy;
MapTy Map;
public:
~TypeMap() { print("ON EXIT"); }
inline TypeClass *get(const ValType &V) {
map<ValType, PATypeHandle<TypeClass> >::iterator I = Map.find(V);
// TODO: FIXME: When Types are not CONST.
return (I != Map.end()) ? (TypeClass*)I->second.get() : 0;
}
inline void add(const ValType &V, TypeClass *T) {
Map.insert(make_pair(V, PATypeHandle<TypeClass>(T, this)));
print("add");
}
// containsEquivalent - Return true if the typemap contains a type that is
// structurally equivalent to the specified type.
//
inline const TypeClass *containsEquivalent(const TypeClass *Ty) {
for (MapTy::iterator I = Map.begin(), E = Map.end(); I != E; ++I)
if (I->second.get() != Ty && TypesEqual(Ty, I->second.get()))
return (TypeClass*)I->second.get(); // FIXME TODO when types not const
return 0;
}
// refineAbstractType - This is called when one of the contained abstract
// types gets refined... this simply removes the abstract type from our table.
// We expect that whoever refined the type will add it back to the table,
// corrected.
//
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
if (OldTy == NewTy) return;
#ifdef DEBUG_MERGE_TYPES
cerr << "Removing Old type from Tab: " << (void*)OldTy << ", "
<< OldTy->getDescription() << " replacement == " << (void*)NewTy
<< ", " << NewTy->getDescription() << endl;
#endif
for (MapTy::iterator I = Map.begin(), E = Map.end(); I != E; ++I)
if (I->second == OldTy) {
Map.erase(I);
print("refineAbstractType after");
return;
}
assert(0 && "Abstract type not found in table!");
}
void remove(const ValType &OldVal) {
MapTy::iterator I = Map.find(OldVal);
assert(I != Map.end() && "TypeMap::remove, element not found!");
Map.erase(I);
}
void print(const char *Arg) {
#ifdef DEBUG_MERGE_TYPES
cerr << "TypeMap<>::" << Arg << " table contents:\n";
unsigned i = 0;
for (MapTy::iterator I = Map.begin(), E = Map.end(); I != E; ++I)
cerr << " " << (++i) << ". " << I->second << " "
<< I->second->getDescription() << endl;
#endif
}
};
// ValTypeBase - This is the base class that is used by the various
// instantiations of TypeMap. This class is an AbstractType user that notifies
// the underlying TypeMap when it gets modified.
//
template<class ValType, class TypeClass>
class ValTypeBase : public AbstractTypeUser {
TypeMap<ValType, TypeClass> &MyTable;
protected:
inline ValTypeBase(TypeMap<ValType, TypeClass> &tab) : MyTable(tab) {}
// Subclass should override this... to update self as usual
virtual void doRefinement(const DerivedType *OldTy, const Type *NewTy) = 0;
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
if (OldTy == NewTy) return;
TypeMap<ValType, TypeClass> &Table = MyTable; // Copy MyTable reference
ValType Tmp(*(ValType*)this); // Copy this.
PATypeHandle<TypeClass> OldType(Table.get(*(ValType*)this), this);
Table.remove(*(ValType*)this); // Destroy's this!
// Refine temporary to new state...
Tmp.doRefinement(OldTy, NewTy);
Table.add((ValType&)Tmp, (TypeClass*)OldType.get());
}
};
//===----------------------------------------------------------------------===//
// Method Type Factory and Value Class...
//
// MethodValType - Define a class to hold the key that goes into the TypeMap
//
class MethodValType : public ValTypeBase<MethodValType, MethodType> {
PATypeHandle<Type> RetTy;
vector<PATypeHandle<Type> > ArgTypes;
public:
MethodValType(const Type *ret, const vector<const Type*> &args,
TypeMap<MethodValType, MethodType> &Tab)
: ValTypeBase<MethodValType, MethodType>(Tab), RetTy(ret, this) {
for (unsigned i = 0; i < args.size(); ++i)
ArgTypes.push_back(PATypeHandle<Type>(args[i], this));
}
// We *MUST* have an explicit copy ctor so that the TypeHandles think that
// this MethodValType owns them, not the old one!
//
MethodValType(const MethodValType &MVT)
: ValTypeBase<MethodValType, MethodType>(MVT), RetTy(MVT.RetTy, this) {
ArgTypes.reserve(MVT.ArgTypes.size());
for (unsigned i = 0; i < MVT.ArgTypes.size(); ++i)
ArgTypes.push_back(PATypeHandle<Type>(MVT.ArgTypes[i], this));
}
// Subclass should override this... to update self as usual
virtual void doRefinement(const DerivedType *OldType, const Type *NewType) {
if (RetTy == OldType) RetTy = NewType;
for (unsigned i = 0; i < ArgTypes.size(); ++i)
if (ArgTypes[i] == OldType) ArgTypes[i] = NewType;
}
inline bool operator<(const MethodValType &MTV) const {
return RetTy.get() < MTV.RetTy.get() ||
(RetTy.get() == MTV.RetTy.get() && ArgTypes < MTV.ArgTypes);
}
};
// Define the actual map itself now...
static TypeMap<MethodValType, MethodType> MethodTypes;
// MethodType::get - The factory function for the MethodType class...
MethodType *MethodType::get(const Type *ReturnType,
const vector<const Type*> &Params) {
MethodValType VT(ReturnType, Params, MethodTypes);
MethodType *MT = MethodTypes.get(VT);
if (MT) return MT;
bool IsVarArg = Params.size() && (Params[Params.size()-1] == Type::VoidTy);
MethodTypes.add(VT, MT = new MethodType(ReturnType, Params, IsVarArg));
#ifdef DEBUG_MERGE_TYPES
cerr << "Derived new type: " << MT << endl;
#endif
return MT;
}
//===----------------------------------------------------------------------===//
// Array Type Factory...
//
class ArrayValType : public ValTypeBase<ArrayValType, ArrayType> {
PATypeHandle<Type> ValTy;
int Size;
public:
ArrayValType(const Type *val, int sz, TypeMap<ArrayValType, ArrayType> &Tab)
: ValTypeBase<ArrayValType, ArrayType>(Tab), ValTy(val, this), Size(sz) {}
// We *MUST* have an explicit copy ctor so that the ValTy thinks that this
// ArrayValType owns it, not the old one!
//
ArrayValType(const ArrayValType &AVT)
: ValTypeBase<ArrayValType, ArrayType>(AVT), ValTy(AVT.ValTy, this),
Size(AVT.Size) {}
// Subclass should override this... to update self as usual
virtual void doRefinement(const DerivedType *OldType, const Type *NewType) {
if (ValTy == OldType) ValTy = NewType;
}
inline bool operator<(const ArrayValType &MTV) const {
if (Size < MTV.Size) return true;
return Size == MTV.Size && ValTy.get() < MTV.ValTy.get();
}
};
static TypeMap<ArrayValType, ArrayType> ArrayTypes;
ArrayType *ArrayType::get(const Type *ElementType, int NumElements = -1) {
assert(ElementType && "Can't get array of null types!");
ArrayValType AVT(ElementType, NumElements, ArrayTypes);
ArrayType *AT = ArrayTypes.get(AVT);
if (AT) return AT; // Found a match, return it!
// Value not found. Derive a new type!
ArrayTypes.add(AVT, AT = new ArrayType(ElementType, NumElements));
#ifdef DEBUG_MERGE_TYPES
cerr << "Derived new type: " << AT->getDescription() << endl;
#endif
return AT;
}
//===----------------------------------------------------------------------===//
// Struct Type Factory...
//
// StructValType - Define a class to hold the key that goes into the TypeMap
//
class StructValType : public ValTypeBase<StructValType, StructType> {
vector<PATypeHandle<Type> > ElTypes;
public:
StructValType(const vector<const Type*> &args,
TypeMap<StructValType, StructType> &Tab)
: ValTypeBase<StructValType, StructType>(Tab) {
for (unsigned i = 0; i < args.size(); ++i)
ElTypes.push_back(PATypeHandle<Type>(args[i], this));
}
// We *MUST* have an explicit copy ctor so that the TypeHandles think that
// this StructValType owns them, not the old one!
//
StructValType(const StructValType &SVT)
: ValTypeBase<StructValType, StructType>(SVT){
ElTypes.reserve(SVT.ElTypes.size());
for (unsigned i = 0; i < SVT.ElTypes.size(); ++i)
ElTypes.push_back(PATypeHandle<Type>(SVT.ElTypes[i], this));
}
// Subclass should override this... to update self as usual
virtual void doRefinement(const DerivedType *OldType, const Type *NewType) {
for (unsigned i = 0; i < ElTypes.size(); ++i)
if (ElTypes[i] == OldType) ElTypes[i] = NewType;
}
inline bool operator<(const StructValType &STV) const {
return ElTypes < STV.ElTypes;
}
};
static TypeMap<StructValType, StructType> StructTypes;
StructType *StructType::get(const vector<const Type*> &ETypes) {
StructValType STV(ETypes, StructTypes);
StructType *ST = StructTypes.get(STV);
if (ST) return ST;
// Value not found. Derive a new type!
StructTypes.add(STV, ST = new StructType(ETypes));
#ifdef DEBUG_MERGE_TYPES
cerr << "Derived new type: " << ST->getDescription() << endl;
#endif
return ST;
}
//===----------------------------------------------------------------------===//
// Pointer Type Factory...
//
// PointerValType - Define a class to hold the key that goes into the TypeMap
//
class PointerValType : public ValTypeBase<PointerValType, PointerType> {
PATypeHandle<Type> ValTy;
public:
PointerValType(const Type *val, TypeMap<PointerValType, PointerType> &Tab)
: ValTypeBase<PointerValType, PointerType>(Tab), ValTy(val, this) {}
// We *MUST* have an explicit copy ctor so that the ValTy thinks that this
// PointerValType owns it, not the old one!
//
PointerValType(const PointerValType &PVT)
: ValTypeBase<PointerValType, PointerType>(PVT), ValTy(PVT.ValTy, this) {}
// Subclass should override this... to update self as usual
virtual void doRefinement(const DerivedType *OldType, const Type *NewType) {
if (ValTy == OldType) ValTy = NewType;
}
inline bool operator<(const PointerValType &MTV) const {
return ValTy.get() < MTV.ValTy.get();
}
};
static TypeMap<PointerValType, PointerType> PointerTypes;
PointerType *PointerType::get(const Type *ValueType) {
assert(ValueType && "Can't get a pointer to <null> type!");
PointerValType PVT(ValueType, PointerTypes);
PointerType *PT = PointerTypes.get(PVT);
if (PT) return PT;
// Value not found. Derive a new type!
PointerTypes.add(PVT, PT = new PointerType(ValueType));
#ifdef DEBUG_MERGE_TYPES
cerr << "Derived new type: " << PT->getDescription() << endl;
#endif
return PT;
}
//===----------------------------------------------------------------------===//
// Derived Type Refinement Functions
//===----------------------------------------------------------------------===//
// removeAbstractTypeUser - Notify an abstract type that a user of the class
// no longer has a handle to the type. This function is called primarily by
// the PATypeHandle class. When there are no users of the abstract type, it
// is anihilated, because there is no way to get a reference to it ever again.
//
void DerivedType::removeAbstractTypeUser(AbstractTypeUser *U) const {
// Search from back to front because we will notify users from back to
// front. Also, it is likely that there will be a stack like behavior to
// users that register and unregister users.
//
for (unsigned i = AbstractTypeUsers.size(); i > 0; --i) {
if (AbstractTypeUsers[i-1] == U) {
AbstractTypeUsers.erase(AbstractTypeUsers.begin()+i-1);
#ifdef DEBUG_MERGE_TYPES
cerr << " removeAbstractTypeUser[" << (void*)this << ", "
<< getDescription() << "][" << AbstractTypeUsers.size()
<< "] User = " << U << endl;
#endif
if (AbstractTypeUsers.empty()) {
#ifdef DEBUG_MERGE_TYPES
cerr << "DELETEing unused abstract type: " << getDescription()
<< " " << (void*)this << endl;
#endif
delete this; // No users of this abstract type!
}
return;
}
}
assert(isAbstract() && "removeAbstractTypeUser: Type not abstract!");
assert(0 && "AbstractTypeUser not in user list!");
}
// refineAbstractTypeTo - This function is used to when it is discovered that
// the 'this' abstract type is actually equivalent to the NewType specified.
// This causes all users of 'this' to switch to reference the more concrete
// type NewType and for 'this' to be deleted.
//
void DerivedType::refineAbstractTypeTo(const Type *NewType) {
assert(isAbstract() && "refineAbstractTypeTo: Current type is not abstract!");
assert(this != NewType && "Can't refine to myself!");
#ifdef DEBUG_MERGE_TYPES
cerr << "REFINING abstract type [" << (void*)this << " " << getDescription()
<< "] to [" << (void*)NewType << " " << NewType->getDescription()
<< "]!\n";
#endif
// Make sure to put the type to be refined to into a holder so that if IT gets
// refined, that we will not continue using a dead reference...
//
PATypeHolder<Type> NewTy(NewType);
// Add a self use of the current type so that we don't delete ourself until
// after this while loop. We are careful to never invoke refine on ourself,
// so this extra reference shouldn't be a problem. Note that we must only
// remove a single reference at the end, but we must tolerate multiple self
// references because we could be refineAbstractTypeTo'ing recursively on the
// same type.
//
addAbstractTypeUser(this);
// Count the number of self uses. Stop looping when sizeof(list) == NSU.
unsigned NumSelfUses = 0;
// Iterate over all of the uses of this type, invoking callback. Each user
// should remove itself from our use list automatically.
//
while (AbstractTypeUsers.size() > NumSelfUses) {
AbstractTypeUser *User = AbstractTypeUsers.back();
if (User == this) {
// Move self use to the start of the list. Increment NSU.
swap(AbstractTypeUsers.back(), AbstractTypeUsers[NumSelfUses++]);
} else {
unsigned OldSize = AbstractTypeUsers.size();
#ifdef DEBUG_MERGE_TYPES
cerr << " REFINING user " << OldSize-1 << " of abstract type ["
<< (void*)this << " " << getDescription() << "] to ["
<< (void*)NewTy.get() << " " << NewTy->getDescription() << "]!\n";
#endif
AbstractTypeUsers.back()->refineAbstractType(this, NewTy);
assert(AbstractTypeUsers.size() != OldSize &&
"AbsTyUser did not remove self from user list!");
}
}
// Remove a single self use, even though there may be several here. This will
// probably 'delete this', so no instance variables may be used after this
// occurs...
assert(AbstractTypeUsers.back() == this && "Only self uses should be left!");
removeAbstractTypeUser(this);
}
// typeIsRefined - Notify AbstractTypeUsers of this type that the current type
// has been refined a bit. The pointer is still valid and still should be
// used, but the subtypes have changed.
//
void DerivedType::typeIsRefined() {
assert(isRefining >= 0 && isRefining <= 2 && "isRefining out of bounds!");
if (isRefining == 2) return; // Kill recursion here...
++isRefining;
#ifdef DEBUG_MERGE_TYPES
cerr << "typeIsREFINED type: " << (void*)this <<" "<<getDescription() << endl;
#endif
for (unsigned i = 0; i < AbstractTypeUsers.size(); ) {
AbstractTypeUser *ATU = AbstractTypeUsers[i];
#ifdef DEBUG_MERGE_TYPES
cerr << " typeIsREFINED user " << i << " of abstract type ["
<< (void*)this << " " << getDescription() << "]\n";
#endif
ATU->refineAbstractType(this, this);
// If the user didn't remove itself from the list, continue...
if (AbstractTypeUsers.size() > i && AbstractTypeUsers[i] == ATU)
++i;
}
--isRefining;
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void MethodType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
#ifdef DEBUG_MERGE_TYPES
cerr << "MethodTy::refineAbstractTy(" << (void*)OldType << "["
<< OldType->getDescription() << "], " << (void*)NewType << " ["
<< NewType->getDescription() << "])\n";
#endif
if (OldType == ResultType) {
ResultType = NewType;
} else {
unsigned i;
for (i = 0; i < ParamTys.size(); ++i)
if (OldType == ParamTys[i]) {
ParamTys[i] = NewType;
break;
}
assert(i != ParamTys.size() && "Did not contain oldtype!");
}
// Notify everyone that I have changed!
if (const MethodType *MTy = MethodTypes.containsEquivalent(this)) {
#ifndef _NDEBUG
// Calculate accurate name for debugging purposes
vector<const Type *> TypeStack;
bool isAbstract = false, isRecursive = false;
setDescription(getTypeProps(this, TypeStack, isAbstract, isRecursive));
#endif
#ifdef DEBUG_MERGE_TYPES
cerr << "Type " << (void*)this << " equilivant to existing " << (void*)MTy
<< " - destroying!\n";
#endif
refineAbstractTypeTo(MTy); // Different type altogether...
return;
}
setDerivedTypeProperties(); // Update the name and isAbstract
typeIsRefined();
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void ArrayType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
#ifdef DEBUG_MERGE_TYPES
cerr << "ArrayTy::refineAbstractTy(" << (void*)OldType << "["
<< OldType->getDescription() << "], " << (void*)NewType << " ["
<< NewType->getDescription() << "])\n";
#endif
assert(OldType == ElementType && "Cannot refine from OldType!");
ElementType = NewType;
// Notify everyone that I have changed!
if (const ArrayType *ATy = ArrayTypes.containsEquivalent(this)) {
#ifndef _NDEBUG
// Calculate accurate name for debugging purposes
vector<const Type *> TypeStack;
bool isAbstract = false, isRecursive = false;
setDescription(getTypeProps(this, TypeStack, isAbstract, isRecursive));
#endif
#ifdef DEBUG_MERGE_TYPES
cerr << "Type " << (void*)this << " equilivant to existing " << (void*)ATy
<< " - destroying!\n";
#endif
refineAbstractTypeTo(ATy); // Different type altogether...
return;
}
setDerivedTypeProperties(); // Update the name and isAbstract
typeIsRefined(); // Same type, different contents...
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void StructType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
#ifdef DEBUG_MERGE_TYPES
cerr << "StructTy::refineAbstractTy(" << (void*)OldType << "["
<< OldType->getDescription() << "], " << (void*)NewType << " ["
<< NewType->getDescription() << "])\n";
#endif
if (OldType != NewType) {
unsigned i;
for (i = 0; i < ETypes.size(); ++i)
if (OldType == ETypes[i]) {
ETypes[i] = NewType;
break;
}
assert(i != ETypes.size() && "Did not contain oldtype!");
}
vector<const Type *> ElTypes(
map_iterator(ETypes.begin(), mem_fun_ref(&PATypeHandle<Type>::get)),
map_iterator(ETypes.end() , mem_fun_ref(&PATypeHandle<Type>::get)));
// Notify everyone that I have changed!
if (const StructType *STy = StructTypes.containsEquivalent(this)) {
#ifndef _NDEBUG
// Calculate accurate name for debugging purposes
vector<const Type *> TypeStack;
bool isAbstract = false, isRecursive = false;
setDescription(getTypeProps(this, TypeStack, isAbstract, isRecursive));
#endif
#ifdef DEBUG_MERGE_TYPES
cerr << "Type " << (void*)this << " equilivant to existing " << (void*)STy
<< " - destroying!\n";
#endif
refineAbstractTypeTo(STy); // Different type altogether...
return;
}
setDerivedTypeProperties(); // Update the name and isAbstract
typeIsRefined(); // Same type, different contents...
}
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
void PointerType::refineAbstractType(const DerivedType *OldType,
const Type *NewType) {
#ifdef DEBUG_MERGE_TYPES
cerr << "PointerTy::refineAbstractTy(" << (void*)OldType << "["
<< OldType->getDescription() << "], " << (void*)NewType << " ["
<< NewType->getDescription() << "])\n";
#endif
assert(OldType == ValueType && "Cannot refine from OldType!");
ValueType = NewType;
// Notify everyone that I have changed!
if (const PointerType *PTy = PointerTypes.containsEquivalent(this)) {
#ifndef _NDEBUG
// Calculate accurate name for debugging purposes
vector<const Type *> TypeStack;
bool isAbstract = false, isRecursive = false;
setDescription(getTypeProps(this, TypeStack, isAbstract, isRecursive));
#endif
#ifdef DEBUG_MERGE_TYPES
cerr << "Type " << (void*)this << " equilivant to existing " << (void*)PTy
<< " - destroying!\n";
#endif
refineAbstractTypeTo(PTy); // Different type altogether...
return;
}
setDerivedTypeProperties(); // Update the name and isAbstract
typeIsRefined(); // Same type, different contents...
}