llvm-6502/lib/ExecutionEngine/Interpreter/ExternalFunctions.cpp
Chandler Carruth 426c2bf5cd Revert the majority of the next patch in the address space series:
r165941: Resubmit the changes to llvm core to update the functions to
         support different pointer sizes on a per address space basis.

Despite this commit log, this change primarily changed stuff outside of
VMCore, and those changes do not carry any tests for correctness (or
even plausibility), and we have consistently found questionable or flat
out incorrect cases in these changes. Most of them are probably correct,
but we need to devise a system that makes it more clear when we have
handled the address space concerns correctly, and ideally each pass that
gets updated would receive an accompanying test case that exercises that
pass specificaly w.r.t. alternate address spaces.

However, from this commit, I have retained the new C API entry points.
Those were an orthogonal change that probably should have been split
apart, but they seem entirely good.

In several places the changes were very obvious cleanups with no actual
multiple address space code added; these I have not reverted when
I spotted them.

In a few other places there were merge conflicts due to a cleaner
solution being implemented later, often not using address spaces at all.
In those cases, I've preserved the new code which isn't address space
dependent.

This is part of my ongoing effort to clean out the partial address space
code which carries high risk and low test coverage, and not likely to be
finished before the 3.2 release looms closer. Duncan and I would both
like to see the above issues addressed before we return to these
changes.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167222 91177308-0d34-0410-b5e6-96231b3b80d8
2012-11-01 09:14:31 +00:00

485 lines
16 KiB
C++

//===-- ExternalFunctions.cpp - Implement External Functions --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains both code to deal with invoking "external" functions, but
// also contains code that implements "exported" external functions.
//
// There are currently two mechanisms for handling external functions in the
// Interpreter. The first is to implement lle_* wrapper functions that are
// specific to well-known library functions which manually translate the
// arguments from GenericValues and make the call. If such a wrapper does
// not exist, and libffi is available, then the Interpreter will attempt to
// invoke the function using libffi, after finding its address.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Config/config.h" // Detect libffi
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/DataLayout.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Mutex.h"
#include <csignal>
#include <cstdio>
#include <map>
#include <cmath>
#include <cstring>
#ifdef HAVE_FFI_CALL
#ifdef HAVE_FFI_H
#include <ffi.h>
#define USE_LIBFFI
#elif HAVE_FFI_FFI_H
#include <ffi/ffi.h>
#define USE_LIBFFI
#endif
#endif
using namespace llvm;
static ManagedStatic<sys::Mutex> FunctionsLock;
typedef GenericValue (*ExFunc)(FunctionType *,
const std::vector<GenericValue> &);
static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
static std::map<std::string, ExFunc> FuncNames;
#ifdef USE_LIBFFI
typedef void (*RawFunc)();
static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
#endif
static Interpreter *TheInterpreter;
static char getTypeID(Type *Ty) {
switch (Ty->getTypeID()) {
case Type::VoidTyID: return 'V';
case Type::IntegerTyID:
switch (cast<IntegerType>(Ty)->getBitWidth()) {
case 1: return 'o';
case 8: return 'B';
case 16: return 'S';
case 32: return 'I';
case 64: return 'L';
default: return 'N';
}
case Type::FloatTyID: return 'F';
case Type::DoubleTyID: return 'D';
case Type::PointerTyID: return 'P';
case Type::FunctionTyID:return 'M';
case Type::StructTyID: return 'T';
case Type::ArrayTyID: return 'A';
default: return 'U';
}
}
// Try to find address of external function given a Function object.
// Please note, that interpreter doesn't know how to assemble a
// real call in general case (this is JIT job), that's why it assumes,
// that all external functions has the same (and pretty "general") signature.
// The typical example of such functions are "lle_X_" ones.
static ExFunc lookupFunction(const Function *F) {
// Function not found, look it up... start by figuring out what the
// composite function name should be.
std::string ExtName = "lle_";
FunctionType *FT = F->getFunctionType();
for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
ExtName += getTypeID(FT->getContainedType(i));
ExtName += "_" + F->getName().str();
sys::ScopedLock Writer(*FunctionsLock);
ExFunc FnPtr = FuncNames[ExtName];
if (FnPtr == 0)
FnPtr = FuncNames["lle_X_" + F->getName().str()];
if (FnPtr == 0) // Try calling a generic function... if it exists...
FnPtr = (ExFunc)(intptr_t)
sys::DynamicLibrary::SearchForAddressOfSymbol("lle_X_" +
F->getName().str());
if (FnPtr != 0)
ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later
return FnPtr;
}
#ifdef USE_LIBFFI
static ffi_type *ffiTypeFor(Type *Ty) {
switch (Ty->getTypeID()) {
case Type::VoidTyID: return &ffi_type_void;
case Type::IntegerTyID:
switch (cast<IntegerType>(Ty)->getBitWidth()) {
case 8: return &ffi_type_sint8;
case 16: return &ffi_type_sint16;
case 32: return &ffi_type_sint32;
case 64: return &ffi_type_sint64;
}
case Type::FloatTyID: return &ffi_type_float;
case Type::DoubleTyID: return &ffi_type_double;
case Type::PointerTyID: return &ffi_type_pointer;
default: break;
}
// TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
report_fatal_error("Type could not be mapped for use with libffi.");
return NULL;
}
static void *ffiValueFor(Type *Ty, const GenericValue &AV,
void *ArgDataPtr) {
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
switch (cast<IntegerType>(Ty)->getBitWidth()) {
case 8: {
int8_t *I8Ptr = (int8_t *) ArgDataPtr;
*I8Ptr = (int8_t) AV.IntVal.getZExtValue();
return ArgDataPtr;
}
case 16: {
int16_t *I16Ptr = (int16_t *) ArgDataPtr;
*I16Ptr = (int16_t) AV.IntVal.getZExtValue();
return ArgDataPtr;
}
case 32: {
int32_t *I32Ptr = (int32_t *) ArgDataPtr;
*I32Ptr = (int32_t) AV.IntVal.getZExtValue();
return ArgDataPtr;
}
case 64: {
int64_t *I64Ptr = (int64_t *) ArgDataPtr;
*I64Ptr = (int64_t) AV.IntVal.getZExtValue();
return ArgDataPtr;
}
}
case Type::FloatTyID: {
float *FloatPtr = (float *) ArgDataPtr;
*FloatPtr = AV.FloatVal;
return ArgDataPtr;
}
case Type::DoubleTyID: {
double *DoublePtr = (double *) ArgDataPtr;
*DoublePtr = AV.DoubleVal;
return ArgDataPtr;
}
case Type::PointerTyID: {
void **PtrPtr = (void **) ArgDataPtr;
*PtrPtr = GVTOP(AV);
return ArgDataPtr;
}
default: break;
}
// TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
report_fatal_error("Type value could not be mapped for use with libffi.");
return NULL;
}
static bool ffiInvoke(RawFunc Fn, Function *F,
const std::vector<GenericValue> &ArgVals,
const DataLayout *TD, GenericValue &Result) {
ffi_cif cif;
FunctionType *FTy = F->getFunctionType();
const unsigned NumArgs = F->arg_size();
// TODO: We don't have type information about the remaining arguments, because
// this information is never passed into ExecutionEngine::runFunction().
if (ArgVals.size() > NumArgs && F->isVarArg()) {
report_fatal_error("Calling external var arg function '" + F->getName()
+ "' is not supported by the Interpreter.");
}
unsigned ArgBytes = 0;
std::vector<ffi_type*> args(NumArgs);
for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
A != E; ++A) {
const unsigned ArgNo = A->getArgNo();
Type *ArgTy = FTy->getParamType(ArgNo);
args[ArgNo] = ffiTypeFor(ArgTy);
ArgBytes += TD->getTypeStoreSize(ArgTy);
}
SmallVector<uint8_t, 128> ArgData;
ArgData.resize(ArgBytes);
uint8_t *ArgDataPtr = ArgData.data();
SmallVector<void*, 16> values(NumArgs);
for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
A != E; ++A) {
const unsigned ArgNo = A->getArgNo();
Type *ArgTy = FTy->getParamType(ArgNo);
values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
ArgDataPtr += TD->getTypeStoreSize(ArgTy);
}
Type *RetTy = FTy->getReturnType();
ffi_type *rtype = ffiTypeFor(RetTy);
if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
SmallVector<uint8_t, 128> ret;
if (RetTy->getTypeID() != Type::VoidTyID)
ret.resize(TD->getTypeStoreSize(RetTy));
ffi_call(&cif, Fn, ret.data(), values.data());
switch (RetTy->getTypeID()) {
case Type::IntegerTyID:
switch (cast<IntegerType>(RetTy)->getBitWidth()) {
case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
}
break;
case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break;
case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break;
case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
default: break;
}
return true;
}
return false;
}
#endif // USE_LIBFFI
GenericValue Interpreter::callExternalFunction(Function *F,
const std::vector<GenericValue> &ArgVals) {
TheInterpreter = this;
FunctionsLock->acquire();
// Do a lookup to see if the function is in our cache... this should just be a
// deferred annotation!
std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
: FI->second) {
FunctionsLock->release();
return Fn(F->getFunctionType(), ArgVals);
}
#ifdef USE_LIBFFI
std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
RawFunc RawFn;
if (RF == RawFunctions->end()) {
RawFn = (RawFunc)(intptr_t)
sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
if (!RawFn)
RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
if (RawFn != 0)
RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later
} else {
RawFn = RF->second;
}
FunctionsLock->release();
GenericValue Result;
if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
return Result;
#endif // USE_LIBFFI
if (F->getName() == "__main")
errs() << "Tried to execute an unknown external function: "
<< *F->getType() << " __main\n";
else
report_fatal_error("Tried to execute an unknown external function: " +
F->getName());
#ifndef USE_LIBFFI
errs() << "Recompiling LLVM with --enable-libffi might help.\n";
#endif
return GenericValue();
}
//===----------------------------------------------------------------------===//
// Functions "exported" to the running application...
//
// void atexit(Function*)
static
GenericValue lle_X_atexit(FunctionType *FT,
const std::vector<GenericValue> &Args) {
assert(Args.size() == 1);
TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
GenericValue GV;
GV.IntVal = 0;
return GV;
}
// void exit(int)
static
GenericValue lle_X_exit(FunctionType *FT,
const std::vector<GenericValue> &Args) {
TheInterpreter->exitCalled(Args[0]);
return GenericValue();
}
// void abort(void)
static
GenericValue lle_X_abort(FunctionType *FT,
const std::vector<GenericValue> &Args) {
//FIXME: should we report or raise here?
//report_fatal_error("Interpreted program raised SIGABRT");
raise (SIGABRT);
return GenericValue();
}
// int sprintf(char *, const char *, ...) - a very rough implementation to make
// output useful.
static
GenericValue lle_X_sprintf(FunctionType *FT,
const std::vector<GenericValue> &Args) {
char *OutputBuffer = (char *)GVTOP(Args[0]);
const char *FmtStr = (const char *)GVTOP(Args[1]);
unsigned ArgNo = 2;
// printf should return # chars printed. This is completely incorrect, but
// close enough for now.
GenericValue GV;
GV.IntVal = APInt(32, strlen(FmtStr));
while (1) {
switch (*FmtStr) {
case 0: return GV; // Null terminator...
default: // Normal nonspecial character
sprintf(OutputBuffer++, "%c", *FmtStr++);
break;
case '\\': { // Handle escape codes
sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
FmtStr += 2; OutputBuffer += 2;
break;
}
case '%': { // Handle format specifiers
char FmtBuf[100] = "", Buffer[1000] = "";
char *FB = FmtBuf;
*FB++ = *FmtStr++;
char Last = *FB++ = *FmtStr++;
unsigned HowLong = 0;
while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
Last != 'p' && Last != 's' && Last != '%') {
if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
Last = *FB++ = *FmtStr++;
}
*FB = 0;
switch (Last) {
case '%':
memcpy(Buffer, "%", 2); break;
case 'c':
sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
break;
case 'd': case 'i':
case 'u': case 'o':
case 'x': case 'X':
if (HowLong >= 1) {
if (HowLong == 1 &&
TheInterpreter->getDataLayout()->getPointerSizeInBits() == 64 &&
sizeof(long) < sizeof(int64_t)) {
// Make sure we use %lld with a 64 bit argument because we might be
// compiling LLI on a 32 bit compiler.
unsigned Size = strlen(FmtBuf);
FmtBuf[Size] = FmtBuf[Size-1];
FmtBuf[Size+1] = 0;
FmtBuf[Size-1] = 'l';
}
sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
} else
sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
break;
case 'e': case 'E': case 'g': case 'G': case 'f':
sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
case 'p':
sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
case 's':
sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
default:
errs() << "<unknown printf code '" << *FmtStr << "'!>";
ArgNo++; break;
}
size_t Len = strlen(Buffer);
memcpy(OutputBuffer, Buffer, Len + 1);
OutputBuffer += Len;
}
break;
}
}
}
// int printf(const char *, ...) - a very rough implementation to make output
// useful.
static
GenericValue lle_X_printf(FunctionType *FT,
const std::vector<GenericValue> &Args) {
char Buffer[10000];
std::vector<GenericValue> NewArgs;
NewArgs.push_back(PTOGV((void*)&Buffer[0]));
NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
GenericValue GV = lle_X_sprintf(FT, NewArgs);
outs() << Buffer;
return GV;
}
// int sscanf(const char *format, ...);
static
GenericValue lle_X_sscanf(FunctionType *FT,
const std::vector<GenericValue> &args) {
assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
char *Args[10];
for (unsigned i = 0; i < args.size(); ++i)
Args[i] = (char*)GVTOP(args[i]);
GenericValue GV;
GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
Args[5], Args[6], Args[7], Args[8], Args[9]));
return GV;
}
// int scanf(const char *format, ...);
static
GenericValue lle_X_scanf(FunctionType *FT,
const std::vector<GenericValue> &args) {
assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
char *Args[10];
for (unsigned i = 0; i < args.size(); ++i)
Args[i] = (char*)GVTOP(args[i]);
GenericValue GV;
GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
Args[5], Args[6], Args[7], Args[8], Args[9]));
return GV;
}
// int fprintf(FILE *, const char *, ...) - a very rough implementation to make
// output useful.
static
GenericValue lle_X_fprintf(FunctionType *FT,
const std::vector<GenericValue> &Args) {
assert(Args.size() >= 2);
char Buffer[10000];
std::vector<GenericValue> NewArgs;
NewArgs.push_back(PTOGV(Buffer));
NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
GenericValue GV = lle_X_sprintf(FT, NewArgs);
fputs(Buffer, (FILE *) GVTOP(Args[0]));
return GV;
}
void Interpreter::initializeExternalFunctions() {
sys::ScopedLock Writer(*FunctionsLock);
FuncNames["lle_X_atexit"] = lle_X_atexit;
FuncNames["lle_X_exit"] = lle_X_exit;
FuncNames["lle_X_abort"] = lle_X_abort;
FuncNames["lle_X_printf"] = lle_X_printf;
FuncNames["lle_X_sprintf"] = lle_X_sprintf;
FuncNames["lle_X_sscanf"] = lle_X_sscanf;
FuncNames["lle_X_scanf"] = lle_X_scanf;
FuncNames["lle_X_fprintf"] = lle_X_fprintf;
}