mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-23 15:29:51 +00:00
6f2c64d70a
we care about are capable of supporting it. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73993 91177308-0d34-0410-b5e6-96231b3b80d8
468 lines
18 KiB
C++
468 lines
18 KiB
C++
//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
#ifndef LLVM_TYPE_H
|
|
#define LLVM_TYPE_H
|
|
|
|
#include "llvm/AbstractTypeUser.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include "llvm/System/Atomic.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/iterator.h"
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
class DerivedType;
|
|
class PointerType;
|
|
class IntegerType;
|
|
class TypeMapBase;
|
|
class raw_ostream;
|
|
class Module;
|
|
|
|
/// This file contains the declaration of the Type class. For more "Type" type
|
|
/// stuff, look in DerivedTypes.h.
|
|
///
|
|
/// The instances of the Type class are immutable: once they are created,
|
|
/// they are never changed. Also note that only one instance of a particular
|
|
/// type is ever created. Thus seeing if two types are equal is a matter of
|
|
/// doing a trivial pointer comparison. To enforce that no two equal instances
|
|
/// are created, Type instances can only be created via static factory methods
|
|
/// in class Type and in derived classes.
|
|
///
|
|
/// Once allocated, Types are never free'd, unless they are an abstract type
|
|
/// that is resolved to a more concrete type.
|
|
///
|
|
/// Types themself don't have a name, and can be named either by:
|
|
/// - using SymbolTable instance, typically from some Module,
|
|
/// - using convenience methods in the Module class (which uses module's
|
|
/// SymbolTable too).
|
|
///
|
|
/// Opaque types are simple derived types with no state. There may be many
|
|
/// different Opaque type objects floating around, but two are only considered
|
|
/// identical if they are pointer equals of each other. This allows us to have
|
|
/// two opaque types that end up resolving to different concrete types later.
|
|
///
|
|
/// Opaque types are also kinda weird and scary and different because they have
|
|
/// to keep a list of uses of the type. When, through linking, parsing, or
|
|
/// bitcode reading, they become resolved, they need to find and update all
|
|
/// users of the unknown type, causing them to reference a new, more concrete
|
|
/// type. Opaque types are deleted when their use list dwindles to zero users.
|
|
///
|
|
/// @brief Root of type hierarchy
|
|
class Type : public AbstractTypeUser {
|
|
public:
|
|
//===-------------------------------------------------------------------===//
|
|
/// Definitions of all of the base types for the Type system. Based on this
|
|
/// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h)
|
|
/// Note: If you add an element to this, you need to add an element to the
|
|
/// Type::getPrimitiveType function, or else things will break!
|
|
///
|
|
enum TypeID {
|
|
// PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date
|
|
VoidTyID = 0, ///< 0: type with no size
|
|
FloatTyID, ///< 1: 32 bit floating point type
|
|
DoubleTyID, ///< 2: 64 bit floating point type
|
|
X86_FP80TyID, ///< 3: 80 bit floating point type (X87)
|
|
FP128TyID, ///< 4: 128 bit floating point type (112-bit mantissa)
|
|
PPC_FP128TyID, ///< 5: 128 bit floating point type (two 64-bits)
|
|
LabelTyID, ///< 6: Labels
|
|
MetadataTyID, ///< 7: Metadata
|
|
|
|
// Derived types... see DerivedTypes.h file...
|
|
// Make sure FirstDerivedTyID stays up to date!!!
|
|
IntegerTyID, ///< 8: Arbitrary bit width integers
|
|
FunctionTyID, ///< 9: Functions
|
|
StructTyID, ///< 10: Structures
|
|
ArrayTyID, ///< 11: Arrays
|
|
PointerTyID, ///< 12: Pointers
|
|
OpaqueTyID, ///< 13: Opaque: type with unknown structure
|
|
VectorTyID, ///< 14: SIMD 'packed' format, or other vector type
|
|
|
|
NumTypeIDs, // Must remain as last defined ID
|
|
LastPrimitiveTyID = LabelTyID,
|
|
FirstDerivedTyID = IntegerTyID
|
|
};
|
|
|
|
private:
|
|
TypeID ID : 8; // The current base type of this type.
|
|
bool Abstract : 1; // True if type contains an OpaqueType
|
|
unsigned SubclassData : 23; //Space for subclasses to store data
|
|
|
|
/// RefCount - This counts the number of PATypeHolders that are pointing to
|
|
/// this type. When this number falls to zero, if the type is abstract and
|
|
/// has no AbstractTypeUsers, the type is deleted. This is only sensical for
|
|
/// derived types.
|
|
///
|
|
mutable sys::cas_flag RefCount;
|
|
|
|
const Type *getForwardedTypeInternal() const;
|
|
|
|
// Some Type instances are allocated as arrays, some aren't. So we provide
|
|
// this method to get the right kind of destruction for the type of Type.
|
|
void destroy() const; // const is a lie, this does "delete this"!
|
|
|
|
protected:
|
|
explicit Type(TypeID id) : ID(id), Abstract(false), SubclassData(0),
|
|
RefCount(0), ForwardType(0), NumContainedTys(0),
|
|
ContainedTys(0) {}
|
|
virtual ~Type() {
|
|
assert(AbstractTypeUsers.empty() && "Abstract types remain");
|
|
}
|
|
|
|
/// Types can become nonabstract later, if they are refined.
|
|
///
|
|
inline void setAbstract(bool Val) { Abstract = Val; }
|
|
|
|
unsigned getRefCount() const { return RefCount; }
|
|
|
|
unsigned getSubclassData() const { return SubclassData; }
|
|
void setSubclassData(unsigned val) { SubclassData = val; }
|
|
|
|
/// ForwardType - This field is used to implement the union find scheme for
|
|
/// abstract types. When types are refined to other types, this field is set
|
|
/// to the more refined type. Only abstract types can be forwarded.
|
|
mutable const Type *ForwardType;
|
|
|
|
|
|
/// AbstractTypeUsers - Implement a list of the users that need to be notified
|
|
/// if I am a type, and I get resolved into a more concrete type.
|
|
///
|
|
mutable std::vector<AbstractTypeUser *> AbstractTypeUsers;
|
|
|
|
/// NumContainedTys - Keeps track of how many PATypeHandle instances there
|
|
/// are at the end of this type instance for the list of contained types. It
|
|
/// is the subclasses responsibility to set this up. Set to 0 if there are no
|
|
/// contained types in this type.
|
|
unsigned NumContainedTys;
|
|
|
|
/// ContainedTys - A pointer to the array of Types (PATypeHandle) contained
|
|
/// by this Type. For example, this includes the arguments of a function
|
|
/// type, the elements of a structure, the pointee of a pointer, the element
|
|
/// type of an array, etc. This pointer may be 0 for types that don't
|
|
/// contain other types (Integer, Double, Float). In general, the subclass
|
|
/// should arrange for space for the PATypeHandles to be included in the
|
|
/// allocation of the type object and set this pointer to the address of the
|
|
/// first element. This allows the Type class to manipulate the ContainedTys
|
|
/// without understanding the subclass's placement for this array. keeping
|
|
/// it here also allows the subtype_* members to be implemented MUCH more
|
|
/// efficiently, and dynamically very few types do not contain any elements.
|
|
PATypeHandle *ContainedTys;
|
|
|
|
public:
|
|
void print(raw_ostream &O) const;
|
|
void print(std::ostream &O) const;
|
|
|
|
/// @brief Debugging support: print to stderr
|
|
void dump() const;
|
|
|
|
/// @brief Debugging support: print to stderr (use type names from context
|
|
/// module).
|
|
void dump(const Module *Context) const;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Property accessors for dealing with types... Some of these virtual methods
|
|
// are defined in private classes defined in Type.cpp for primitive types.
|
|
//
|
|
|
|
/// getTypeID - Return the type id for the type. This will return one
|
|
/// of the TypeID enum elements defined above.
|
|
///
|
|
inline TypeID getTypeID() const { return ID; }
|
|
|
|
/// getDescription - Return the string representation of the type.
|
|
std::string getDescription() const;
|
|
|
|
/// isInteger - True if this is an instance of IntegerType.
|
|
///
|
|
bool isInteger() const { return ID == IntegerTyID; }
|
|
|
|
/// isIntOrIntVector - Return true if this is an integer type or a vector of
|
|
/// integer types.
|
|
///
|
|
bool isIntOrIntVector() const;
|
|
|
|
/// isFloatingPoint - Return true if this is one of the two floating point
|
|
/// types
|
|
bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID ||
|
|
ID == X86_FP80TyID || ID == FP128TyID || ID == PPC_FP128TyID; }
|
|
|
|
/// isFPOrFPVector - Return true if this is a FP type or a vector of FP types.
|
|
///
|
|
bool isFPOrFPVector() const;
|
|
|
|
/// isAbstract - True if the type is either an Opaque type, or is a derived
|
|
/// type that includes an opaque type somewhere in it.
|
|
///
|
|
inline bool isAbstract() const { return Abstract; }
|
|
|
|
/// canLosslesslyBitCastTo - Return true if this type could be converted
|
|
/// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts
|
|
/// are valid for types of the same size only where no re-interpretation of
|
|
/// the bits is done.
|
|
/// @brief Determine if this type could be losslessly bitcast to Ty
|
|
bool canLosslesslyBitCastTo(const Type *Ty) const;
|
|
|
|
|
|
/// Here are some useful little methods to query what type derived types are
|
|
/// Note that all other types can just compare to see if this == Type::xxxTy;
|
|
///
|
|
inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; }
|
|
inline bool isDerivedType() const { return ID >= FirstDerivedTyID; }
|
|
|
|
/// isFirstClassType - Return true if the type is "first class", meaning it
|
|
/// is a valid type for a Value.
|
|
///
|
|
inline bool isFirstClassType() const {
|
|
// There are more first-class kinds than non-first-class kinds, so a
|
|
// negative test is simpler than a positive one.
|
|
return ID != FunctionTyID && ID != VoidTyID && ID != OpaqueTyID;
|
|
}
|
|
|
|
/// isSingleValueType - Return true if the type is a valid type for a
|
|
/// virtual register in codegen. This includes all first-class types
|
|
/// except struct and array types.
|
|
///
|
|
inline bool isSingleValueType() const {
|
|
return (ID != VoidTyID && ID <= LastPrimitiveTyID) ||
|
|
ID == IntegerTyID || ID == PointerTyID || ID == VectorTyID;
|
|
}
|
|
|
|
/// isAggregateType - Return true if the type is an aggregate type. This
|
|
/// means it is valid as the first operand of an insertvalue or
|
|
/// extractvalue instruction. This includes struct and array types, but
|
|
/// does not include vector types.
|
|
///
|
|
inline bool isAggregateType() const {
|
|
return ID == StructTyID || ID == ArrayTyID;
|
|
}
|
|
|
|
/// isSized - Return true if it makes sense to take the size of this type. To
|
|
/// get the actual size for a particular target, it is reasonable to use the
|
|
/// TargetData subsystem to do this.
|
|
///
|
|
bool isSized() const {
|
|
// If it's a primitive, it is always sized.
|
|
if (ID == IntegerTyID || isFloatingPoint() || ID == PointerTyID)
|
|
return true;
|
|
// If it is not something that can have a size (e.g. a function or label),
|
|
// it doesn't have a size.
|
|
if (ID != StructTyID && ID != ArrayTyID && ID != VectorTyID)
|
|
return false;
|
|
// If it is something that can have a size and it's concrete, it definitely
|
|
// has a size, otherwise we have to try harder to decide.
|
|
return !isAbstract() || isSizedDerivedType();
|
|
}
|
|
|
|
/// getPrimitiveSizeInBits - Return the basic size of this type if it is a
|
|
/// primitive type. These are fixed by LLVM and are not target dependent.
|
|
/// This will return zero if the type does not have a size or is not a
|
|
/// primitive type.
|
|
///
|
|
unsigned getPrimitiveSizeInBits() const;
|
|
|
|
/// getScalarSizeInBits - If this is a vector type, return the
|
|
/// getPrimitiveSizeInBits value for the element type. Otherwise return the
|
|
/// getPrimitiveSizeInBits value for this type.
|
|
unsigned getScalarSizeInBits() const;
|
|
|
|
/// getFPMantissaWidth - Return the width of the mantissa of this type. This
|
|
/// is only valid on floating point types. If the FP type does not
|
|
/// have a stable mantissa (e.g. ppc long double), this method returns -1.
|
|
int getFPMantissaWidth() const;
|
|
|
|
/// getForwardedType - Return the type that this type has been resolved to if
|
|
/// it has been resolved to anything. This is used to implement the
|
|
/// union-find algorithm for type resolution, and shouldn't be used by general
|
|
/// purpose clients.
|
|
const Type *getForwardedType() const {
|
|
if (!ForwardType) return 0;
|
|
return getForwardedTypeInternal();
|
|
}
|
|
|
|
/// getVAArgsPromotedType - Return the type an argument of this type
|
|
/// will be promoted to if passed through a variable argument
|
|
/// function.
|
|
const Type *getVAArgsPromotedType() const;
|
|
|
|
/// getScalarType - If this is a vector type, return the element type,
|
|
/// otherwise return this.
|
|
const Type *getScalarType() const;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type Iteration support
|
|
//
|
|
typedef PATypeHandle *subtype_iterator;
|
|
subtype_iterator subtype_begin() const { return ContainedTys; }
|
|
subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
|
|
|
|
/// getContainedType - This method is used to implement the type iterator
|
|
/// (defined a the end of the file). For derived types, this returns the
|
|
/// types 'contained' in the derived type.
|
|
///
|
|
const Type *getContainedType(unsigned i) const {
|
|
assert(i < NumContainedTys && "Index out of range!");
|
|
return ContainedTys[i].get();
|
|
}
|
|
|
|
/// getNumContainedTypes - Return the number of types in the derived type.
|
|
///
|
|
unsigned getNumContainedTypes() const { return NumContainedTys; }
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Static members exported by the Type class itself. Useful for getting
|
|
// instances of Type.
|
|
//
|
|
|
|
/// getPrimitiveType - Return a type based on an identifier.
|
|
static const Type *getPrimitiveType(TypeID IDNumber);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// These are the builtin types that are always available...
|
|
//
|
|
static const Type *VoidTy, *LabelTy, *FloatTy, *DoubleTy, *MetadataTy;
|
|
static const Type *X86_FP80Ty, *FP128Ty, *PPC_FP128Ty;
|
|
static const IntegerType *Int1Ty, *Int8Ty, *Int16Ty, *Int32Ty, *Int64Ty;
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const Type *) { return true; }
|
|
|
|
void addRef() const {
|
|
assert(isAbstract() && "Cannot add a reference to a non-abstract type!");
|
|
sys::AtomicIncrement(&RefCount);
|
|
}
|
|
|
|
void dropRef() const {
|
|
assert(isAbstract() && "Cannot drop a reference to a non-abstract type!");
|
|
assert(RefCount && "No objects are currently referencing this object!");
|
|
|
|
// If this is the last PATypeHolder using this object, and there are no
|
|
// PATypeHandles using it, the type is dead, delete it now.
|
|
sys::cas_flag OldCount = sys::AtomicDecrement(&RefCount);
|
|
if (OldCount == 0 && AbstractTypeUsers.empty())
|
|
this->destroy();
|
|
}
|
|
|
|
/// addAbstractTypeUser - Notify an abstract type that there is a new user of
|
|
/// it. This function is called primarily by the PATypeHandle class.
|
|
///
|
|
void addAbstractTypeUser(AbstractTypeUser *U) const;
|
|
|
|
/// removeAbstractTypeUser - Notify an abstract type that a user of the class
|
|
/// no longer has a handle to the type. This function is called primarily by
|
|
/// the PATypeHandle class. When there are no users of the abstract type, it
|
|
/// is annihilated, because there is no way to get a reference to it ever
|
|
/// again.
|
|
///
|
|
void removeAbstractTypeUser(AbstractTypeUser *U) const;
|
|
|
|
/// getPointerTo - Return a pointer to the current type. This is equivalent
|
|
/// to PointerType::get(Foo, AddrSpace).
|
|
PointerType *getPointerTo(unsigned AddrSpace = 0) const;
|
|
|
|
private:
|
|
/// isSizedDerivedType - Derived types like structures and arrays are sized
|
|
/// iff all of the members of the type are sized as well. Since asking for
|
|
/// their size is relatively uncommon, move this operation out of line.
|
|
bool isSizedDerivedType() const;
|
|
|
|
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
|
|
virtual void typeBecameConcrete(const DerivedType *AbsTy);
|
|
|
|
protected:
|
|
// PromoteAbstractToConcrete - This is an internal method used to calculate
|
|
// change "Abstract" from true to false when types are refined.
|
|
void PromoteAbstractToConcrete();
|
|
friend class TypeMapBase;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
|
|
// These are defined here because they MUST be inlined, yet are dependent on
|
|
// the definition of the Type class.
|
|
//
|
|
inline void PATypeHandle::addUser() {
|
|
assert(Ty && "Type Handle has a null type!");
|
|
if (Ty->isAbstract())
|
|
Ty->addAbstractTypeUser(User);
|
|
}
|
|
inline void PATypeHandle::removeUser() {
|
|
if (Ty->isAbstract())
|
|
Ty->removeAbstractTypeUser(User);
|
|
}
|
|
|
|
// Define inline methods for PATypeHolder.
|
|
|
|
/// get - This implements the forwarding part of the union-find algorithm for
|
|
/// abstract types. Before every access to the Type*, we check to see if the
|
|
/// type we are pointing to is forwarding to a new type. If so, we drop our
|
|
/// reference to the type.
|
|
///
|
|
inline Type* PATypeHolder::get() const {
|
|
const Type *NewTy = Ty->getForwardedType();
|
|
if (!NewTy) return const_cast<Type*>(Ty);
|
|
return *const_cast<PATypeHolder*>(this) = NewTy;
|
|
}
|
|
|
|
inline void PATypeHolder::addRef() {
|
|
assert(Ty && "Type Holder has a null type!");
|
|
if (Ty->isAbstract())
|
|
Ty->addRef();
|
|
}
|
|
|
|
inline void PATypeHolder::dropRef() {
|
|
if (Ty->isAbstract())
|
|
Ty->dropRef();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Provide specializations of GraphTraits to be able to treat a type as a
|
|
// graph of sub types...
|
|
|
|
template <> struct GraphTraits<Type*> {
|
|
typedef Type NodeType;
|
|
typedef Type::subtype_iterator ChildIteratorType;
|
|
|
|
static inline NodeType *getEntryNode(Type *T) { return T; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return N->subtype_begin();
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return N->subtype_end();
|
|
}
|
|
};
|
|
|
|
template <> struct GraphTraits<const Type*> {
|
|
typedef const Type NodeType;
|
|
typedef Type::subtype_iterator ChildIteratorType;
|
|
|
|
static inline NodeType *getEntryNode(const Type *T) { return T; }
|
|
static inline ChildIteratorType child_begin(NodeType *N) {
|
|
return N->subtype_begin();
|
|
}
|
|
static inline ChildIteratorType child_end(NodeType *N) {
|
|
return N->subtype_end();
|
|
}
|
|
};
|
|
|
|
template <> inline bool isa_impl<PointerType, Type>(const Type &Ty) {
|
|
return Ty.getTypeID() == Type::PointerTyID;
|
|
}
|
|
|
|
std::ostream &operator<<(std::ostream &OS, const Type &T);
|
|
raw_ostream &operator<<(raw_ostream &OS, const Type &T);
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|