mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-23 02:32:11 +00:00
6035518e3b
shorter/easier and have the DAG use that to do the same lookup. This can be used in the future for TargetMachine based caching lookups from the MachineFunction easily. Update the MIPS subtarget switching machinery to update this pointer at the same time it runs. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214838 91177308-0d34-0410-b5e6-96231b3b80d8
738 lines
26 KiB
C++
738 lines
26 KiB
C++
//==-- AArch64ExpandPseudoInsts.cpp - Expand pseudo instructions --*- C++ -*-=//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a pass that expands pseudo instructions into target
|
|
// instructions to allow proper scheduling and other late optimizations. This
|
|
// pass should be run after register allocation but before the post-regalloc
|
|
// scheduling pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MCTargetDesc/AArch64AddressingModes.h"
|
|
#include "AArch64InstrInfo.h"
|
|
#include "AArch64Subtarget.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
class AArch64ExpandPseudo : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
AArch64ExpandPseudo() : MachineFunctionPass(ID) {}
|
|
|
|
const AArch64InstrInfo *TII;
|
|
|
|
bool runOnMachineFunction(MachineFunction &Fn) override;
|
|
|
|
const char *getPassName() const override {
|
|
return "AArch64 pseudo instruction expansion pass";
|
|
}
|
|
|
|
private:
|
|
bool expandMBB(MachineBasicBlock &MBB);
|
|
bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
|
|
bool expandMOVImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
|
|
unsigned BitSize);
|
|
};
|
|
char AArch64ExpandPseudo::ID = 0;
|
|
}
|
|
|
|
/// \brief Transfer implicit operands on the pseudo instruction to the
|
|
/// instructions created from the expansion.
|
|
static void transferImpOps(MachineInstr &OldMI, MachineInstrBuilder &UseMI,
|
|
MachineInstrBuilder &DefMI) {
|
|
const MCInstrDesc &Desc = OldMI.getDesc();
|
|
for (unsigned i = Desc.getNumOperands(), e = OldMI.getNumOperands(); i != e;
|
|
++i) {
|
|
const MachineOperand &MO = OldMI.getOperand(i);
|
|
assert(MO.isReg() && MO.getReg());
|
|
if (MO.isUse())
|
|
UseMI.addOperand(MO);
|
|
else
|
|
DefMI.addOperand(MO);
|
|
}
|
|
}
|
|
|
|
/// \brief Helper function which extracts the specified 16-bit chunk from a
|
|
/// 64-bit value.
|
|
static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
|
|
assert(ChunkIdx < 4 && "Out of range chunk index specified!");
|
|
|
|
return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
|
|
}
|
|
|
|
/// \brief Helper function which replicates a 16-bit chunk within a 64-bit
|
|
/// value. Indices correspond to element numbers in a v4i16.
|
|
static uint64_t replicateChunk(uint64_t Imm, unsigned FromIdx, unsigned ToIdx) {
|
|
assert((FromIdx < 4) && (ToIdx < 4) && "Out of range chunk index specified!");
|
|
const unsigned ShiftAmt = ToIdx * 16;
|
|
|
|
// Replicate the source chunk to the destination position.
|
|
const uint64_t Chunk = getChunk(Imm, FromIdx) << ShiftAmt;
|
|
// Clear the destination chunk.
|
|
Imm &= ~(0xFFFFLL << ShiftAmt);
|
|
// Insert the replicated chunk.
|
|
return Imm | Chunk;
|
|
}
|
|
|
|
/// \brief Helper function which tries to materialize a 64-bit value with an
|
|
/// ORR + MOVK instruction sequence.
|
|
static bool tryOrrMovk(uint64_t UImm, uint64_t OrrImm, MachineInstr &MI,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
const AArch64InstrInfo *TII, unsigned ChunkIdx) {
|
|
assert(ChunkIdx < 4 && "Out of range chunk index specified!");
|
|
const unsigned ShiftAmt = ChunkIdx * 16;
|
|
|
|
uint64_t Encoding;
|
|
if (AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding)) {
|
|
// Create the ORR-immediate instruction.
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
|
|
.addOperand(MI.getOperand(0))
|
|
.addReg(AArch64::XZR)
|
|
.addImm(Encoding);
|
|
|
|
// Create the MOVK instruction.
|
|
const unsigned Imm16 = getChunk(UImm, ChunkIdx);
|
|
const unsigned DstReg = MI.getOperand(0).getReg();
|
|
const bool DstIsDead = MI.getOperand(0).isDead();
|
|
MachineInstrBuilder MIB1 =
|
|
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
|
|
.addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
|
|
.addReg(DstReg)
|
|
.addImm(Imm16)
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
|
|
|
|
transferImpOps(MI, MIB, MIB1);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Check whether the given 16-bit chunk replicated to full 64-bit width
|
|
/// can be materialized with an ORR instruction.
|
|
static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
|
|
Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
|
|
|
|
return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
|
|
}
|
|
|
|
/// \brief Check for identical 16-bit chunks within the constant and if so
|
|
/// materialize them with a single ORR instruction. The remaining one or two
|
|
/// 16-bit chunks will be materialized with MOVK instructions.
|
|
///
|
|
/// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
|
|
/// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
|
|
/// an ORR instruction.
|
|
///
|
|
static bool tryToreplicateChunks(uint64_t UImm, MachineInstr &MI,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
const AArch64InstrInfo *TII) {
|
|
typedef DenseMap<uint64_t, unsigned> CountMap;
|
|
CountMap Counts;
|
|
|
|
// Scan the constant and count how often every chunk occurs.
|
|
for (unsigned Idx = 0; Idx < 4; ++Idx)
|
|
++Counts[getChunk(UImm, Idx)];
|
|
|
|
// Traverse the chunks to find one which occurs more than once.
|
|
for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
|
|
Chunk != End; ++Chunk) {
|
|
const uint64_t ChunkVal = Chunk->first;
|
|
const unsigned Count = Chunk->second;
|
|
|
|
uint64_t Encoding = 0;
|
|
|
|
// We are looking for chunks which have two or three instances and can be
|
|
// materialized with an ORR instruction.
|
|
if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
|
|
continue;
|
|
|
|
const bool CountThree = Count == 3;
|
|
// Create the ORR-immediate instruction.
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
|
|
.addOperand(MI.getOperand(0))
|
|
.addReg(AArch64::XZR)
|
|
.addImm(Encoding);
|
|
|
|
const unsigned DstReg = MI.getOperand(0).getReg();
|
|
const bool DstIsDead = MI.getOperand(0).isDead();
|
|
|
|
unsigned ShiftAmt = 0;
|
|
uint64_t Imm16 = 0;
|
|
// Find the first chunk not materialized with the ORR instruction.
|
|
for (; ShiftAmt < 64; ShiftAmt += 16) {
|
|
Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
|
|
|
|
if (Imm16 != ChunkVal)
|
|
break;
|
|
}
|
|
|
|
// Create the first MOVK instruction.
|
|
MachineInstrBuilder MIB1 =
|
|
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
|
|
.addReg(DstReg,
|
|
RegState::Define | getDeadRegState(DstIsDead && CountThree))
|
|
.addReg(DstReg)
|
|
.addImm(Imm16)
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
|
|
|
|
// In case we have three instances the whole constant is now materialized
|
|
// and we can exit.
|
|
if (CountThree) {
|
|
transferImpOps(MI, MIB, MIB1);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
// Find the remaining chunk which needs to be materialized.
|
|
for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
|
|
Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
|
|
|
|
if (Imm16 != ChunkVal)
|
|
break;
|
|
}
|
|
|
|
// Create the second MOVK instruction.
|
|
MachineInstrBuilder MIB2 =
|
|
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
|
|
.addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
|
|
.addReg(DstReg)
|
|
.addImm(Imm16)
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
|
|
|
|
transferImpOps(MI, MIB, MIB2);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Check whether this chunk matches the pattern '1...0...'. This pattern
|
|
/// starts a contiguous sequence of ones if we look at the bits from the LSB
|
|
/// towards the MSB.
|
|
static bool isStartChunk(uint64_t Chunk) {
|
|
if (Chunk == 0 || Chunk == UINT64_MAX)
|
|
return false;
|
|
|
|
return (CountLeadingOnes_64(Chunk) + countTrailingZeros(Chunk)) == 64;
|
|
}
|
|
|
|
/// \brief Check whether this chunk matches the pattern '0...1...' This pattern
|
|
/// ends a contiguous sequence of ones if we look at the bits from the LSB
|
|
/// towards the MSB.
|
|
static bool isEndChunk(uint64_t Chunk) {
|
|
if (Chunk == 0 || Chunk == UINT64_MAX)
|
|
return false;
|
|
|
|
return (countLeadingZeros(Chunk) + CountTrailingOnes_64(Chunk)) == 64;
|
|
}
|
|
|
|
/// \brief Clear or set all bits in the chunk at the given index.
|
|
static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
|
|
const uint64_t Mask = 0xFFFF;
|
|
|
|
if (Clear)
|
|
// Clear chunk in the immediate.
|
|
Imm &= ~(Mask << (Idx * 16));
|
|
else
|
|
// Set all bits in the immediate for the particular chunk.
|
|
Imm |= Mask << (Idx * 16);
|
|
|
|
return Imm;
|
|
}
|
|
|
|
/// \brief Check whether the constant contains a sequence of contiguous ones,
|
|
/// which might be interrupted by one or two chunks. If so, materialize the
|
|
/// sequence of contiguous ones with an ORR instruction.
|
|
/// Materialize the chunks which are either interrupting the sequence or outside
|
|
/// of the sequence with a MOVK instruction.
|
|
///
|
|
/// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
|
|
/// which ends the sequence (0...1...). Then we are looking for constants which
|
|
/// contain at least one S and E chunk.
|
|
/// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
|
|
///
|
|
/// We are also looking for constants like |S|A|B|E| where the contiguous
|
|
/// sequence of ones wraps around the MSB into the LSB.
|
|
///
|
|
static bool trySequenceOfOnes(uint64_t UImm, MachineInstr &MI,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
const AArch64InstrInfo *TII) {
|
|
const int NotSet = -1;
|
|
const uint64_t Mask = 0xFFFF;
|
|
|
|
int StartIdx = NotSet;
|
|
int EndIdx = NotSet;
|
|
// Try to find the chunks which start/end a contiguous sequence of ones.
|
|
for (int Idx = 0; Idx < 4; ++Idx) {
|
|
int64_t Chunk = getChunk(UImm, Idx);
|
|
// Sign extend the 16-bit chunk to 64-bit.
|
|
Chunk = (Chunk << 48) >> 48;
|
|
|
|
if (isStartChunk(Chunk))
|
|
StartIdx = Idx;
|
|
else if (isEndChunk(Chunk))
|
|
EndIdx = Idx;
|
|
}
|
|
|
|
// Early exit in case we can't find a start/end chunk.
|
|
if (StartIdx == NotSet || EndIdx == NotSet)
|
|
return false;
|
|
|
|
// Outside of the contiguous sequence of ones everything needs to be zero.
|
|
uint64_t Outside = 0;
|
|
// Chunks between the start and end chunk need to have all their bits set.
|
|
uint64_t Inside = Mask;
|
|
|
|
// If our contiguous sequence of ones wraps around from the MSB into the LSB,
|
|
// just swap indices and pretend we are materializing a contiguous sequence
|
|
// of zeros surrounded by a contiguous sequence of ones.
|
|
if (StartIdx > EndIdx) {
|
|
std::swap(StartIdx, EndIdx);
|
|
std::swap(Outside, Inside);
|
|
}
|
|
|
|
uint64_t OrrImm = UImm;
|
|
int FirstMovkIdx = NotSet;
|
|
int SecondMovkIdx = NotSet;
|
|
|
|
// Find out which chunks we need to patch up to obtain a contiguous sequence
|
|
// of ones.
|
|
for (int Idx = 0; Idx < 4; ++Idx) {
|
|
const uint64_t Chunk = getChunk(UImm, Idx);
|
|
|
|
// Check whether we are looking at a chunk which is not part of the
|
|
// contiguous sequence of ones.
|
|
if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
|
|
OrrImm = updateImm(OrrImm, Idx, Outside == 0);
|
|
|
|
// Remember the index we need to patch.
|
|
if (FirstMovkIdx == NotSet)
|
|
FirstMovkIdx = Idx;
|
|
else
|
|
SecondMovkIdx = Idx;
|
|
|
|
// Check whether we are looking a chunk which is part of the contiguous
|
|
// sequence of ones.
|
|
} else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
|
|
OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
|
|
|
|
// Remember the index we need to patch.
|
|
if (FirstMovkIdx == NotSet)
|
|
FirstMovkIdx = Idx;
|
|
else
|
|
SecondMovkIdx = Idx;
|
|
}
|
|
}
|
|
assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
|
|
|
|
// Create the ORR-immediate instruction.
|
|
uint64_t Encoding = 0;
|
|
AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
|
|
.addOperand(MI.getOperand(0))
|
|
.addReg(AArch64::XZR)
|
|
.addImm(Encoding);
|
|
|
|
const unsigned DstReg = MI.getOperand(0).getReg();
|
|
const bool DstIsDead = MI.getOperand(0).isDead();
|
|
|
|
const bool SingleMovk = SecondMovkIdx == NotSet;
|
|
// Create the first MOVK instruction.
|
|
MachineInstrBuilder MIB1 =
|
|
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
|
|
.addReg(DstReg,
|
|
RegState::Define | getDeadRegState(DstIsDead && SingleMovk))
|
|
.addReg(DstReg)
|
|
.addImm(getChunk(UImm, FirstMovkIdx))
|
|
.addImm(
|
|
AArch64_AM::getShifterImm(AArch64_AM::LSL, FirstMovkIdx * 16));
|
|
|
|
// Early exit in case we only need to emit a single MOVK instruction.
|
|
if (SingleMovk) {
|
|
transferImpOps(MI, MIB, MIB1);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
// Create the second MOVK instruction.
|
|
MachineInstrBuilder MIB2 =
|
|
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
|
|
.addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
|
|
.addReg(DstReg)
|
|
.addImm(getChunk(UImm, SecondMovkIdx))
|
|
.addImm(
|
|
AArch64_AM::getShifterImm(AArch64_AM::LSL, SecondMovkIdx * 16));
|
|
|
|
transferImpOps(MI, MIB, MIB2);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
|
|
/// real move-immediate instructions to synthesize the immediate.
|
|
bool AArch64ExpandPseudo::expandMOVImm(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
unsigned BitSize) {
|
|
MachineInstr &MI = *MBBI;
|
|
uint64_t Imm = MI.getOperand(1).getImm();
|
|
const unsigned Mask = 0xFFFF;
|
|
|
|
// Try a MOVI instruction (aka ORR-immediate with the zero register).
|
|
uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
|
|
uint64_t Encoding;
|
|
if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
|
|
unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
|
|
.addOperand(MI.getOperand(0))
|
|
.addReg(BitSize == 32 ? AArch64::WZR : AArch64::XZR)
|
|
.addImm(Encoding);
|
|
transferImpOps(MI, MIB, MIB);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
// Scan the immediate and count the number of 16-bit chunks which are either
|
|
// all ones or all zeros.
|
|
unsigned OneChunks = 0;
|
|
unsigned ZeroChunks = 0;
|
|
for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
|
|
const unsigned Chunk = (Imm >> Shift) & Mask;
|
|
if (Chunk == Mask)
|
|
OneChunks++;
|
|
else if (Chunk == 0)
|
|
ZeroChunks++;
|
|
}
|
|
|
|
// Since we can't materialize the constant with a single ORR instruction,
|
|
// let's see whether we can materialize 3/4 of the constant with an ORR
|
|
// instruction and use an additional MOVK instruction to materialize the
|
|
// remaining 1/4.
|
|
//
|
|
// We are looking for constants with a pattern like: |A|X|B|X| or |X|A|X|B|.
|
|
//
|
|
// E.g. assuming |A|X|A|X| is a pattern which can be materialized with ORR,
|
|
// we would create the following instruction sequence:
|
|
//
|
|
// ORR x0, xzr, |A|X|A|X|
|
|
// MOVK x0, |B|, LSL #16
|
|
//
|
|
// Only look at 64-bit constants which can't be materialized with a single
|
|
// instruction e.g. which have less than either three all zero or all one
|
|
// chunks.
|
|
//
|
|
// Ignore 32-bit constants here, they always can be materialized with a
|
|
// MOVZ/MOVN + MOVK pair. Since the 32-bit constant can't be materialized
|
|
// with a single ORR, the best sequence we can achieve is a ORR + MOVK pair.
|
|
// Thus we fall back to the default code below which in the best case creates
|
|
// a single MOVZ/MOVN instruction (in case one chunk is all zero or all one).
|
|
//
|
|
if (BitSize == 64 && OneChunks < 3 && ZeroChunks < 3) {
|
|
// If we interpret the 64-bit constant as a v4i16, are elements 0 and 2
|
|
// identical?
|
|
if (getChunk(UImm, 0) == getChunk(UImm, 2)) {
|
|
// See if we can come up with a constant which can be materialized with
|
|
// ORR-immediate by replicating element 3 into element 1.
|
|
uint64_t OrrImm = replicateChunk(UImm, 3, 1);
|
|
if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 1))
|
|
return true;
|
|
|
|
// See if we can come up with a constant which can be materialized with
|
|
// ORR-immediate by replicating element 1 into element 3.
|
|
OrrImm = replicateChunk(UImm, 1, 3);
|
|
if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 3))
|
|
return true;
|
|
|
|
// If we interpret the 64-bit constant as a v4i16, are elements 1 and 3
|
|
// identical?
|
|
} else if (getChunk(UImm, 1) == getChunk(UImm, 3)) {
|
|
// See if we can come up with a constant which can be materialized with
|
|
// ORR-immediate by replicating element 2 into element 0.
|
|
uint64_t OrrImm = replicateChunk(UImm, 2, 0);
|
|
if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 0))
|
|
return true;
|
|
|
|
// See if we can come up with a constant which can be materialized with
|
|
// ORR-immediate by replicating element 1 into element 3.
|
|
OrrImm = replicateChunk(UImm, 0, 2);
|
|
if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 2))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Check for identical 16-bit chunks within the constant and if so materialize
|
|
// them with a single ORR instruction. The remaining one or two 16-bit chunks
|
|
// will be materialized with MOVK instructions.
|
|
if (BitSize == 64 && tryToreplicateChunks(UImm, MI, MBB, MBBI, TII))
|
|
return true;
|
|
|
|
// Check whether the constant contains a sequence of contiguous ones, which
|
|
// might be interrupted by one or two chunks. If so, materialize the sequence
|
|
// of contiguous ones with an ORR instruction. Materialize the chunks which
|
|
// are either interrupting the sequence or outside of the sequence with a
|
|
// MOVK instruction.
|
|
if (BitSize == 64 && trySequenceOfOnes(UImm, MI, MBB, MBBI, TII))
|
|
return true;
|
|
|
|
// Use a MOVZ or MOVN instruction to set the high bits, followed by one or
|
|
// more MOVK instructions to insert additional 16-bit portions into the
|
|
// lower bits.
|
|
bool isNeg = false;
|
|
|
|
// Use MOVN to materialize the high bits if we have more all one chunks
|
|
// than all zero chunks.
|
|
if (OneChunks > ZeroChunks) {
|
|
isNeg = true;
|
|
Imm = ~Imm;
|
|
}
|
|
|
|
unsigned FirstOpc;
|
|
if (BitSize == 32) {
|
|
Imm &= (1LL << 32) - 1;
|
|
FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
|
|
} else {
|
|
FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
|
|
}
|
|
unsigned Shift = 0; // LSL amount for high bits with MOVZ/MOVN
|
|
unsigned LastShift = 0; // LSL amount for last MOVK
|
|
if (Imm != 0) {
|
|
unsigned LZ = countLeadingZeros(Imm);
|
|
unsigned TZ = countTrailingZeros(Imm);
|
|
Shift = ((63 - LZ) / 16) * 16;
|
|
LastShift = (TZ / 16) * 16;
|
|
}
|
|
unsigned Imm16 = (Imm >> Shift) & Mask;
|
|
unsigned DstReg = MI.getOperand(0).getReg();
|
|
bool DstIsDead = MI.getOperand(0).isDead();
|
|
MachineInstrBuilder MIB1 =
|
|
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(FirstOpc))
|
|
.addReg(DstReg, RegState::Define |
|
|
getDeadRegState(DstIsDead && Shift == LastShift))
|
|
.addImm(Imm16)
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
|
|
|
|
// If a MOVN was used for the high bits of a negative value, flip the rest
|
|
// of the bits back for use with MOVK.
|
|
if (isNeg)
|
|
Imm = ~Imm;
|
|
|
|
if (Shift == LastShift) {
|
|
transferImpOps(MI, MIB1, MIB1);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
MachineInstrBuilder MIB2;
|
|
unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
|
|
while (Shift != LastShift) {
|
|
Shift -= 16;
|
|
Imm16 = (Imm >> Shift) & Mask;
|
|
if (Imm16 == (isNeg ? Mask : 0))
|
|
continue; // This 16-bit portion is already set correctly.
|
|
MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
|
|
.addReg(DstReg,
|
|
RegState::Define |
|
|
getDeadRegState(DstIsDead && Shift == LastShift))
|
|
.addReg(DstReg)
|
|
.addImm(Imm16)
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
|
|
}
|
|
|
|
transferImpOps(MI, MIB1, MIB2);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// \brief If MBBI references a pseudo instruction that should be expanded here,
|
|
/// do the expansion and return true. Otherwise return false.
|
|
bool AArch64ExpandPseudo::expandMI(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI) {
|
|
MachineInstr &MI = *MBBI;
|
|
unsigned Opcode = MI.getOpcode();
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
|
|
case AArch64::ADDWrr:
|
|
case AArch64::SUBWrr:
|
|
case AArch64::ADDXrr:
|
|
case AArch64::SUBXrr:
|
|
case AArch64::ADDSWrr:
|
|
case AArch64::SUBSWrr:
|
|
case AArch64::ADDSXrr:
|
|
case AArch64::SUBSXrr:
|
|
case AArch64::ANDWrr:
|
|
case AArch64::ANDXrr:
|
|
case AArch64::BICWrr:
|
|
case AArch64::BICXrr:
|
|
case AArch64::ANDSWrr:
|
|
case AArch64::ANDSXrr:
|
|
case AArch64::BICSWrr:
|
|
case AArch64::BICSXrr:
|
|
case AArch64::EONWrr:
|
|
case AArch64::EONXrr:
|
|
case AArch64::EORWrr:
|
|
case AArch64::EORXrr:
|
|
case AArch64::ORNWrr:
|
|
case AArch64::ORNXrr:
|
|
case AArch64::ORRWrr:
|
|
case AArch64::ORRXrr: {
|
|
unsigned Opcode;
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
case AArch64::ADDWrr: Opcode = AArch64::ADDWrs; break;
|
|
case AArch64::SUBWrr: Opcode = AArch64::SUBWrs; break;
|
|
case AArch64::ADDXrr: Opcode = AArch64::ADDXrs; break;
|
|
case AArch64::SUBXrr: Opcode = AArch64::SUBXrs; break;
|
|
case AArch64::ADDSWrr: Opcode = AArch64::ADDSWrs; break;
|
|
case AArch64::SUBSWrr: Opcode = AArch64::SUBSWrs; break;
|
|
case AArch64::ADDSXrr: Opcode = AArch64::ADDSXrs; break;
|
|
case AArch64::SUBSXrr: Opcode = AArch64::SUBSXrs; break;
|
|
case AArch64::ANDWrr: Opcode = AArch64::ANDWrs; break;
|
|
case AArch64::ANDXrr: Opcode = AArch64::ANDXrs; break;
|
|
case AArch64::BICWrr: Opcode = AArch64::BICWrs; break;
|
|
case AArch64::BICXrr: Opcode = AArch64::BICXrs; break;
|
|
case AArch64::ANDSWrr: Opcode = AArch64::ANDSWrs; break;
|
|
case AArch64::ANDSXrr: Opcode = AArch64::ANDSXrs; break;
|
|
case AArch64::BICSWrr: Opcode = AArch64::BICSWrs; break;
|
|
case AArch64::BICSXrr: Opcode = AArch64::BICSXrs; break;
|
|
case AArch64::EONWrr: Opcode = AArch64::EONWrs; break;
|
|
case AArch64::EONXrr: Opcode = AArch64::EONXrs; break;
|
|
case AArch64::EORWrr: Opcode = AArch64::EORWrs; break;
|
|
case AArch64::EORXrr: Opcode = AArch64::EORXrs; break;
|
|
case AArch64::ORNWrr: Opcode = AArch64::ORNWrs; break;
|
|
case AArch64::ORNXrr: Opcode = AArch64::ORNXrs; break;
|
|
case AArch64::ORRWrr: Opcode = AArch64::ORRWrs; break;
|
|
case AArch64::ORRXrr: Opcode = AArch64::ORRXrs; break;
|
|
}
|
|
MachineInstrBuilder MIB1 =
|
|
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opcode),
|
|
MI.getOperand(0).getReg())
|
|
.addOperand(MI.getOperand(1))
|
|
.addOperand(MI.getOperand(2))
|
|
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
|
|
transferImpOps(MI, MIB1, MIB1);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
case AArch64::LOADgot: {
|
|
// Expand into ADRP + LDR.
|
|
unsigned DstReg = MI.getOperand(0).getReg();
|
|
const MachineOperand &MO1 = MI.getOperand(1);
|
|
unsigned Flags = MO1.getTargetFlags();
|
|
MachineInstrBuilder MIB1 =
|
|
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg);
|
|
MachineInstrBuilder MIB2 =
|
|
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::LDRXui))
|
|
.addOperand(MI.getOperand(0))
|
|
.addReg(DstReg);
|
|
|
|
if (MO1.isGlobal()) {
|
|
MIB1.addGlobalAddress(MO1.getGlobal(), 0, Flags | AArch64II::MO_PAGE);
|
|
MIB2.addGlobalAddress(MO1.getGlobal(), 0,
|
|
Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
|
|
} else if (MO1.isSymbol()) {
|
|
MIB1.addExternalSymbol(MO1.getSymbolName(), Flags | AArch64II::MO_PAGE);
|
|
MIB2.addExternalSymbol(MO1.getSymbolName(),
|
|
Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
|
|
} else {
|
|
assert(MO1.isCPI() &&
|
|
"Only expect globals, externalsymbols, or constant pools");
|
|
MIB1.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
|
|
Flags | AArch64II::MO_PAGE);
|
|
MIB2.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
|
|
Flags | AArch64II::MO_PAGEOFF |
|
|
AArch64II::MO_NC);
|
|
}
|
|
|
|
transferImpOps(MI, MIB1, MIB2);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
case AArch64::MOVaddr:
|
|
case AArch64::MOVaddrJT:
|
|
case AArch64::MOVaddrCP:
|
|
case AArch64::MOVaddrBA:
|
|
case AArch64::MOVaddrTLS:
|
|
case AArch64::MOVaddrEXT: {
|
|
// Expand into ADRP + ADD.
|
|
unsigned DstReg = MI.getOperand(0).getReg();
|
|
MachineInstrBuilder MIB1 =
|
|
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg)
|
|
.addOperand(MI.getOperand(1));
|
|
|
|
MachineInstrBuilder MIB2 =
|
|
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADDXri))
|
|
.addOperand(MI.getOperand(0))
|
|
.addReg(DstReg)
|
|
.addOperand(MI.getOperand(2))
|
|
.addImm(0);
|
|
|
|
transferImpOps(MI, MIB1, MIB2);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
case AArch64::MOVi32imm:
|
|
return expandMOVImm(MBB, MBBI, 32);
|
|
case AArch64::MOVi64imm:
|
|
return expandMOVImm(MBB, MBBI, 64);
|
|
case AArch64::RET_ReallyLR:
|
|
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::RET))
|
|
.addReg(AArch64::LR);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// \brief Iterate over the instructions in basic block MBB and expand any
|
|
/// pseudo instructions. Return true if anything was modified.
|
|
bool AArch64ExpandPseudo::expandMBB(MachineBasicBlock &MBB) {
|
|
bool Modified = false;
|
|
|
|
MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
|
|
while (MBBI != E) {
|
|
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
|
|
Modified |= expandMI(MBB, MBBI);
|
|
MBBI = NMBBI;
|
|
}
|
|
|
|
return Modified;
|
|
}
|
|
|
|
bool AArch64ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
|
|
TII = static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
|
|
|
|
bool Modified = false;
|
|
for (auto &MBB : MF)
|
|
Modified |= expandMBB(MBB);
|
|
return Modified;
|
|
}
|
|
|
|
/// \brief Returns an instance of the pseudo instruction expansion pass.
|
|
FunctionPass *llvm::createAArch64ExpandPseudoPass() {
|
|
return new AArch64ExpandPseudo();
|
|
}
|