llvm-6502/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp
Richard Sandiford b594c4c873 [SystemZ] Rework handling of constant PC-relative operands
The GNU assembler treats things like:

        brasl   %r14, 100

in the same way as:

        brasl   %r14, .+100

rather than as a branch to absolute address 100.  We implemented this in
LLVM by creating an immediate operand rather than the usual expr operand,
and by handling immediate operands specially in the code emitter.
This was undesirable for (at least) three reasons:

- the specialness of immediate operands was exposed to the backend MC code,
  rather than being limited to the assembler parser.

- in disassembly, an immediate operand really is an absolute address.
  (Note that this means reassembling printed disassembly can't recreate
  the original code.)

- it would interfere with any assembly manipulation that we might
  try in future.  E.g. operations like branch shortening can change
  the relative position of instructions, but any code that updates
  sym+offset addresses wouldn't update an immediate "100" operand
  in the same way as an explicit ".+100" operand.

This patch changes the implementation so that the assembler creates
a "." label for immediate PC-relative operands, so that the operand
to the MCInst is always the absolute address.  The patch also adds
some error checking of the offset.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181773 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-14 09:47:26 +00:00

703 lines
24 KiB
C++

//===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/SystemZMCTargetDesc.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
// Return true if Expr is in the range [MinValue, MaxValue].
static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) {
int64_t Value = CE->getValue();
return Value >= MinValue && Value <= MaxValue;
}
return false;
}
namespace {
class SystemZOperand : public MCParsedAsmOperand {
public:
enum RegisterKind {
GR32Reg,
GR64Reg,
GR128Reg,
ADDR32Reg,
ADDR64Reg,
FP32Reg,
FP64Reg,
FP128Reg
};
private:
enum OperandKind {
KindToken,
KindReg,
KindAccessReg,
KindImm,
KindMem
};
OperandKind Kind;
SMLoc StartLoc, EndLoc;
// A string of length Length, starting at Data.
struct TokenOp {
const char *Data;
unsigned Length;
};
// LLVM register Num, which has kind Kind.
struct RegOp {
RegisterKind Kind;
unsigned Num;
};
// Base + Disp + Index, where Base and Index are LLVM registers or 0.
// RegKind says what type the registers have (ADDR32Reg or ADDR64Reg).
struct MemOp {
unsigned Base : 8;
unsigned Index : 8;
unsigned RegKind : 8;
unsigned Unused : 8;
const MCExpr *Disp;
};
union {
TokenOp Token;
RegOp Reg;
unsigned AccessReg;
const MCExpr *Imm;
MemOp Mem;
};
SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
: Kind(kind), StartLoc(startLoc), EndLoc(endLoc)
{}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible. Null MCExpr = 0.
if (Expr == 0)
Inst.addOperand(MCOperand::CreateImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
else
Inst.addOperand(MCOperand::CreateExpr(Expr));
}
public:
// Create particular kinds of operand.
static SystemZOperand *createToken(StringRef Str, SMLoc Loc) {
SystemZOperand *Op = new SystemZOperand(KindToken, Loc, Loc);
Op->Token.Data = Str.data();
Op->Token.Length = Str.size();
return Op;
}
static SystemZOperand *createReg(RegisterKind Kind, unsigned Num,
SMLoc StartLoc, SMLoc EndLoc) {
SystemZOperand *Op = new SystemZOperand(KindReg, StartLoc, EndLoc);
Op->Reg.Kind = Kind;
Op->Reg.Num = Num;
return Op;
}
static SystemZOperand *createAccessReg(unsigned Num, SMLoc StartLoc,
SMLoc EndLoc) {
SystemZOperand *Op = new SystemZOperand(KindAccessReg, StartLoc, EndLoc);
Op->AccessReg = Num;
return Op;
}
static SystemZOperand *createImm(const MCExpr *Expr, SMLoc StartLoc,
SMLoc EndLoc) {
SystemZOperand *Op = new SystemZOperand(KindImm, StartLoc, EndLoc);
Op->Imm = Expr;
return Op;
}
static SystemZOperand *createMem(RegisterKind RegKind, unsigned Base,
const MCExpr *Disp, unsigned Index,
SMLoc StartLoc, SMLoc EndLoc) {
SystemZOperand *Op = new SystemZOperand(KindMem, StartLoc, EndLoc);
Op->Mem.RegKind = RegKind;
Op->Mem.Base = Base;
Op->Mem.Index = Index;
Op->Mem.Disp = Disp;
return Op;
}
// Token operands
virtual bool isToken() const LLVM_OVERRIDE {
return Kind == KindToken;
}
StringRef getToken() const {
assert(Kind == KindToken && "Not a token");
return StringRef(Token.Data, Token.Length);
}
// Register operands.
virtual bool isReg() const LLVM_OVERRIDE {
return Kind == KindReg;
}
bool isReg(RegisterKind RegKind) const {
return Kind == KindReg && Reg.Kind == RegKind;
}
virtual unsigned getReg() const LLVM_OVERRIDE {
assert(Kind == KindReg && "Not a register");
return Reg.Num;
}
// Access register operands. Access registers aren't exposed to LLVM
// as registers.
bool isAccessReg() const {
return Kind == KindAccessReg;
}
// Immediate operands.
virtual bool isImm() const LLVM_OVERRIDE {
return Kind == KindImm;
}
bool isImm(int64_t MinValue, int64_t MaxValue) const {
return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
}
const MCExpr *getImm() const {
assert(Kind == KindImm && "Not an immediate");
return Imm;
}
// Memory operands.
virtual bool isMem() const LLVM_OVERRIDE {
return Kind == KindMem;
}
bool isMem(RegisterKind RegKind, bool HasIndex) const {
return (Kind == KindMem &&
Mem.RegKind == RegKind &&
(HasIndex || !Mem.Index));
}
bool isMemDisp12(RegisterKind RegKind, bool HasIndex) const {
return isMem(RegKind, HasIndex) && inRange(Mem.Disp, 0, 0xfff);
}
bool isMemDisp20(RegisterKind RegKind, bool HasIndex) const {
return isMem(RegKind, HasIndex) && inRange(Mem.Disp, -524288, 524287);
}
// Override MCParsedAsmOperand.
virtual SMLoc getStartLoc() const LLVM_OVERRIDE { return StartLoc; }
virtual SMLoc getEndLoc() const LLVM_OVERRIDE { return EndLoc; }
virtual void print(raw_ostream &OS) const LLVM_OVERRIDE;
// Used by the TableGen code to add particular types of operand
// to an instruction.
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addAccessRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands");
assert(Kind == KindAccessReg && "Invalid operand type");
Inst.addOperand(MCOperand::CreateImm(AccessReg));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands");
addExpr(Inst, getImm());
}
void addBDAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands");
assert(Kind == KindMem && Mem.Index == 0 && "Invalid operand type");
Inst.addOperand(MCOperand::CreateReg(Mem.Base));
addExpr(Inst, Mem.Disp);
}
void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands");
assert(Kind == KindMem && "Invalid operand type");
Inst.addOperand(MCOperand::CreateReg(Mem.Base));
addExpr(Inst, Mem.Disp);
Inst.addOperand(MCOperand::CreateReg(Mem.Index));
}
// Used by the TableGen code to check for particular operand types.
bool isGR32() const { return isReg(GR32Reg); }
bool isGR64() const { return isReg(GR64Reg); }
bool isGR128() const { return isReg(GR128Reg); }
bool isADDR32() const { return isReg(ADDR32Reg); }
bool isADDR64() const { return isReg(ADDR64Reg); }
bool isADDR128() const { return false; }
bool isFP32() const { return isReg(FP32Reg); }
bool isFP64() const { return isReg(FP64Reg); }
bool isFP128() const { return isReg(FP128Reg); }
bool isBDAddr32Disp12() const { return isMemDisp12(ADDR32Reg, false); }
bool isBDAddr32Disp20() const { return isMemDisp20(ADDR32Reg, false); }
bool isBDAddr64Disp12() const { return isMemDisp12(ADDR64Reg, false); }
bool isBDAddr64Disp20() const { return isMemDisp20(ADDR64Reg, false); }
bool isBDXAddr64Disp12() const { return isMemDisp12(ADDR64Reg, true); }
bool isBDXAddr64Disp20() const { return isMemDisp20(ADDR64Reg, true); }
bool isU4Imm() const { return isImm(0, 15); }
bool isU6Imm() const { return isImm(0, 63); }
bool isU8Imm() const { return isImm(0, 255); }
bool isS8Imm() const { return isImm(-128, 127); }
bool isU16Imm() const { return isImm(0, 65535); }
bool isS16Imm() const { return isImm(-32768, 32767); }
bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
};
class SystemZAsmParser : public MCTargetAsmParser {
#define GET_ASSEMBLER_HEADER
#include "SystemZGenAsmMatcher.inc"
private:
MCSubtargetInfo &STI;
MCAsmParser &Parser;
struct Register {
char Prefix;
unsigned Number;
SMLoc StartLoc, EndLoc;
};
bool parseRegister(Register &Reg);
OperandMatchResultTy
parseRegister(Register &Reg, char Prefix, const unsigned *Regs,
bool IsAddress = false);
OperandMatchResultTy
parseRegister(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
char Prefix, const unsigned *Regs,
SystemZOperand::RegisterKind Kind,
bool IsAddress = false);
OperandMatchResultTy
parseAddress(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
const unsigned *Regs, SystemZOperand::RegisterKind RegKind,
bool HasIndex);
bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
StringRef Mnemonic);
public:
SystemZAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser)
: MCTargetAsmParser(), STI(sti), Parser(parser) {
MCAsmParserExtension::Initialize(Parser);
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
// Override MCTargetAsmParser.
virtual bool ParseDirective(AsmToken DirectiveID) LLVM_OVERRIDE;
virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) LLVM_OVERRIDE;
virtual bool ParseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands)
LLVM_OVERRIDE;
virtual bool
MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out, unsigned &ErrorInfo,
bool MatchingInlineAsm) LLVM_OVERRIDE;
// Used by the TableGen code to parse particular operand types.
OperandMatchResultTy
parseGR32(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
return parseRegister(Operands, 'r', SystemZMC::GR32Regs,
SystemZOperand::GR32Reg);
}
OperandMatchResultTy
parseGR64(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
return parseRegister(Operands, 'r', SystemZMC::GR64Regs,
SystemZOperand::GR64Reg);
}
OperandMatchResultTy
parseGR128(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
return parseRegister(Operands, 'r', SystemZMC::GR128Regs,
SystemZOperand::GR128Reg);
}
OperandMatchResultTy
parseADDR32(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
return parseRegister(Operands, 'r', SystemZMC::GR32Regs,
SystemZOperand::ADDR32Reg, true);
}
OperandMatchResultTy
parseADDR64(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
return parseRegister(Operands, 'r', SystemZMC::GR64Regs,
SystemZOperand::ADDR64Reg, true);
}
OperandMatchResultTy
parseADDR128(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
llvm_unreachable("Shouldn't be used as an operand");
}
OperandMatchResultTy
parseFP32(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
return parseRegister(Operands, 'f', SystemZMC::FP32Regs,
SystemZOperand::FP32Reg);
}
OperandMatchResultTy
parseFP64(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
return parseRegister(Operands, 'f', SystemZMC::FP64Regs,
SystemZOperand::FP64Reg);
}
OperandMatchResultTy
parseFP128(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
return parseRegister(Operands, 'f', SystemZMC::FP128Regs,
SystemZOperand::FP128Reg);
}
OperandMatchResultTy
parseBDAddr32(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
return parseAddress(Operands, SystemZMC::GR32Regs,
SystemZOperand::ADDR32Reg, false);
}
OperandMatchResultTy
parseBDAddr64(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
return parseAddress(Operands, SystemZMC::GR64Regs,
SystemZOperand::ADDR64Reg, false);
}
OperandMatchResultTy
parseBDXAddr64(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
return parseAddress(Operands, SystemZMC::GR64Regs,
SystemZOperand::ADDR64Reg, true);
}
OperandMatchResultTy
parseAccessReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands);
OperandMatchResultTy
parsePCRel(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
int64_t MinVal, int64_t MaxVal);
OperandMatchResultTy
parsePCRel16(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1);
}
OperandMatchResultTy
parsePCRel32(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1);
}
};
}
#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#include "SystemZGenAsmMatcher.inc"
void SystemZOperand::print(raw_ostream &OS) const {
llvm_unreachable("Not implemented");
}
// Parse one register of the form %<prefix><number>.
bool SystemZAsmParser::parseRegister(Register &Reg) {
Reg.StartLoc = Parser.getTok().getLoc();
// Eat the % prefix.
if (Parser.getTok().isNot(AsmToken::Percent))
return true;
Parser.Lex();
// Expect a register name.
if (Parser.getTok().isNot(AsmToken::Identifier))
return true;
// Check the prefix.
StringRef Name = Parser.getTok().getString();
if (Name.size() < 2)
return true;
Reg.Prefix = Name[0];
// Treat the rest of the register name as a register number.
if (Name.substr(1).getAsInteger(10, Reg.Number))
return true;
Reg.EndLoc = Parser.getTok().getLoc();
Parser.Lex();
return false;
}
// Parse a register with prefix Prefix and convert it to LLVM numbering.
// Regs maps asm register numbers to LLVM register numbers, with zero
// entries indicating an invalid register. IsAddress says whether the
// register appears in an address context.
SystemZAsmParser::OperandMatchResultTy
SystemZAsmParser::parseRegister(Register &Reg, char Prefix,
const unsigned *Regs, bool IsAddress) {
if (parseRegister(Reg))
return MatchOperand_NoMatch;
if (Reg.Prefix != Prefix || Reg.Number > 15 || Regs[Reg.Number] == 0) {
Error(Reg.StartLoc, "invalid register");
return MatchOperand_ParseFail;
}
if (Reg.Number == 0 && IsAddress) {
Error(Reg.StartLoc, "%r0 used in an address");
return MatchOperand_ParseFail;
}
Reg.Number = Regs[Reg.Number];
return MatchOperand_Success;
}
// Parse a register and add it to Operands. Prefix is 'r' for GPRs,
// 'f' for FPRs, etc. Regs maps asm register numbers to LLVM register numbers,
// with zero entries indicating an invalid register. Kind is the type of
// register represented by Regs and IsAddress says whether the register is
// being parsed in an address context, meaning that %r0 evaluates as 0.
SystemZAsmParser::OperandMatchResultTy
SystemZAsmParser::parseRegister(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
char Prefix, const unsigned *Regs,
SystemZOperand::RegisterKind Kind,
bool IsAddress) {
Register Reg;
OperandMatchResultTy Result = parseRegister(Reg, Prefix, Regs, IsAddress);
if (Result == MatchOperand_Success)
Operands.push_back(SystemZOperand::createReg(Kind, Reg.Number,
Reg.StartLoc, Reg.EndLoc));
return Result;
}
// Parse a memory operand and add it to Operands. Regs maps asm register
// numbers to LLVM address registers and RegKind says what kind of address
// register we're using (ADDR32Reg or ADDR64Reg). HasIndex says whether
// the address allows index registers.
SystemZAsmParser::OperandMatchResultTy
SystemZAsmParser::parseAddress(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
const unsigned *Regs,
SystemZOperand::RegisterKind RegKind,
bool HasIndex) {
SMLoc StartLoc = Parser.getTok().getLoc();
// Parse the displacement, which must always be present.
const MCExpr *Disp;
if (getParser().parseExpression(Disp))
return MatchOperand_NoMatch;
// Parse the optional base and index.
unsigned Index = 0;
unsigned Base = 0;
if (getLexer().is(AsmToken::LParen)) {
Parser.Lex();
// Parse the first register.
Register Reg;
OperandMatchResultTy Result = parseRegister(Reg, 'r', SystemZMC::GR64Regs,
true);
if (Result != MatchOperand_Success)
return Result;
// Check whether there's a second register. If so, the one that we
// just parsed was the index.
if (getLexer().is(AsmToken::Comma)) {
Parser.Lex();
if (!HasIndex) {
Error(Reg.StartLoc, "invalid use of indexed addressing");
return MatchOperand_ParseFail;
}
Index = Reg.Number;
Result = parseRegister(Reg, 'r', SystemZMC::GR64Regs, true);
if (Result != MatchOperand_Success)
return Result;
}
Base = Reg.Number;
// Consume the closing bracket.
if (getLexer().isNot(AsmToken::RParen))
return MatchOperand_NoMatch;
Parser.Lex();
}
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(SystemZOperand::createMem(RegKind, Base, Disp, Index,
StartLoc, EndLoc));
return MatchOperand_Success;
}
bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
return true;
}
bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
Register Reg;
if (parseRegister(Reg))
return Error(Reg.StartLoc, "register expected");
if (Reg.Prefix == 'r' && Reg.Number < 16)
RegNo = SystemZMC::GR64Regs[Reg.Number];
else if (Reg.Prefix == 'f' && Reg.Number < 16)
RegNo = SystemZMC::FP64Regs[Reg.Number];
else
return Error(Reg.StartLoc, "invalid register");
StartLoc = Reg.StartLoc;
EndLoc = Reg.EndLoc;
return false;
}
bool SystemZAsmParser::
ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc,
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (parseOperand(Operands, Name)) {
Parser.eatToEndOfStatement();
return true;
}
// Read any subsequent operands.
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex();
if (parseOperand(Operands, Name)) {
Parser.eatToEndOfStatement();
return true;
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
}
// Consume the EndOfStatement.
Parser.Lex();
return false;
}
bool SystemZAsmParser::
parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
StringRef Mnemonic) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
if (ResTy == MatchOperand_Success)
return false;
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (ResTy == MatchOperand_ParseFail)
return true;
// The only other type of operand is an immediate.
const MCExpr *Expr;
SMLoc StartLoc = Parser.getTok().getLoc();
if (getParser().parseExpression(Expr))
return true;
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
return false;
}
bool SystemZAsmParser::
MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
MCStreamer &Out, unsigned &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
unsigned MatchResult;
MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
MatchingInlineAsm);
switch (MatchResult) {
default: break;
case Match_Success:
Inst.setLoc(IDLoc);
Out.EmitInstruction(Inst);
return false;
case Match_MissingFeature: {
assert(ErrorInfo && "Unknown missing feature!");
// Special case the error message for the very common case where only
// a single subtarget feature is missing
std::string Msg = "instruction requires:";
unsigned Mask = 1;
for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) {
if (ErrorInfo & Mask) {
Msg += " ";
Msg += getSubtargetFeatureName(ErrorInfo & Mask);
}
Mask <<= 1;
}
return Error(IDLoc, Msg);
}
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((SystemZOperand*)Operands[ErrorInfo])->getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_MnemonicFail:
return Error(IDLoc, "invalid instruction");
}
llvm_unreachable("Unexpected match type");
}
SystemZAsmParser::OperandMatchResultTy SystemZAsmParser::
parseAccessReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
Register Reg;
if (parseRegister(Reg))
return MatchOperand_NoMatch;
if (Reg.Prefix != 'a' || Reg.Number > 15) {
Error(Reg.StartLoc, "invalid register");
return MatchOperand_ParseFail;
}
Operands.push_back(SystemZOperand::createAccessReg(Reg.Number,
Reg.StartLoc, Reg.EndLoc));
return MatchOperand_Success;
}
SystemZAsmParser::OperandMatchResultTy SystemZAsmParser::
parsePCRel(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
int64_t MinVal, int64_t MaxVal) {
MCContext &Ctx = getContext();
MCStreamer &Out = getStreamer();
const MCExpr *Expr;
SMLoc StartLoc = Parser.getTok().getLoc();
if (getParser().parseExpression(Expr))
return MatchOperand_NoMatch;
// For consistency with the GNU assembler, treat immediates as offsets
// from ".".
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) {
int64_t Value = CE->getValue();
if ((Value & 1) || Value < MinVal || Value > MaxVal) {
Error(StartLoc, "offset out of range");
return MatchOperand_ParseFail;
}
MCSymbol *Sym = Ctx.CreateTempSymbol();
Out.EmitLabel(Sym);
const MCExpr *Base = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_None,
Ctx);
Expr = Value == 0 ? Base : MCBinaryExpr::CreateAdd(Base, Expr, Ctx);
}
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
return MatchOperand_Success;
}
// Force static initialization.
extern "C" void LLVMInitializeSystemZAsmParser() {
RegisterMCAsmParser<SystemZAsmParser> X(TheSystemZTarget);
}