llvm-6502/lib/Target/AArch64/AArch64ISelLowering.cpp
Tim Northover 6ff20f205b AArch64: be more careful resorting to inefficient addressing for weak vars.
If an otherwise weak var is actually defined in this unit, it can't be
undefined at runtime so we can use normal global variable sequences (ADRP/ADD)
to access it.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176259 91177308-0d34-0410-b5e6-96231b3b80d8
2013-02-28 14:36:31 +00:00

2973 lines
112 KiB
C++

//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that AArch64 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "aarch64-isel"
#include "AArch64.h"
#include "AArch64ISelLowering.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64TargetMachine.h"
#include "AArch64TargetObjectFile.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/CallingConv.h"
using namespace llvm;
static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) {
const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
if (Subtarget->isTargetLinux())
return new AArch64LinuxTargetObjectFile();
if (Subtarget->isTargetELF())
return new TargetLoweringObjectFileELF();
llvm_unreachable("unknown subtarget type");
}
AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
: TargetLowering(TM, createTLOF(TM)),
Subtarget(&TM.getSubtarget<AArch64Subtarget>()),
RegInfo(TM.getRegisterInfo()),
Itins(TM.getInstrItineraryData()) {
// SIMD compares set the entire lane's bits to 1
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
// Scalar register <-> type mapping
addRegisterClass(MVT::i32, &AArch64::GPR32RegClass);
addRegisterClass(MVT::i64, &AArch64::GPR64RegClass);
addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
computeRegisterProperties();
// Some atomic operations can be folded into load-acquire or store-release
// instructions on AArch64. It's marginally simpler to let LLVM expand
// everything out to a barrier and then recombine the (few) barriers we can.
setInsertFencesForAtomic(true);
setTargetDAGCombine(ISD::ATOMIC_FENCE);
setTargetDAGCombine(ISD::ATOMIC_STORE);
// We combine OR nodes for bitfield and NEON BSL operations.
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::SRA);
// AArch64 does not have i1 loads, or much of anything for i1 really.
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
setStackPointerRegisterToSaveRestore(AArch64::XSP);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
// We'll lower globals to wrappers for selection.
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
// A64 instructions have the comparison predicate attached to the user of the
// result, but having a separate comparison is valuable for matching.
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
setOperationAction(ISD::BR_CC, MVT::i64, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
setOperationAction(ISD::SELECT, MVT::i32, Custom);
setOperationAction(ISD::SELECT, MVT::i64, Custom);
setOperationAction(ISD::SELECT, MVT::f32, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
setOperationAction(ISD::SETCC, MVT::i32, Custom);
setOperationAction(ISD::SETCC, MVT::i64, Custom);
setOperationAction(ISD::SETCC, MVT::f32, Custom);
setOperationAction(ISD::SETCC, MVT::f64, Custom);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VACOPY, MVT::Other, Custom);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
setOperationAction(ISD::ROTL, MVT::i32, Expand);
setOperationAction(ISD::ROTL, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i64, Expand);
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
// Legal floating-point operations.
setOperationAction(ISD::FABS, MVT::f32, Legal);
setOperationAction(ISD::FABS, MVT::f64, Legal);
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
setOperationAction(ISD::FNEG, MVT::f32, Legal);
setOperationAction(ISD::FNEG, MVT::f64, Legal);
setOperationAction(ISD::FRINT, MVT::f32, Legal);
setOperationAction(ISD::FRINT, MVT::f64, Legal);
setOperationAction(ISD::FSQRT, MVT::f32, Legal);
setOperationAction(ISD::FSQRT, MVT::f64, Legal);
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
setOperationAction(ISD::ConstantFP, MVT::f128, Legal);
// Illegal floating-point operations.
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FEXP, MVT::f32, Expand);
setOperationAction(ISD::FEXP, MVT::f64, Expand);
setOperationAction(ISD::FEXP2, MVT::f32, Expand);
setOperationAction(ISD::FEXP2, MVT::f64, Expand);
setOperationAction(ISD::FLOG, MVT::f32, Expand);
setOperationAction(ISD::FLOG, MVT::f64, Expand);
setOperationAction(ISD::FLOG2, MVT::f32, Expand);
setOperationAction(ISD::FLOG2, MVT::f64, Expand);
setOperationAction(ISD::FLOG10, MVT::f32, Expand);
setOperationAction(ISD::FLOG10, MVT::f64, Expand);
setOperationAction(ISD::FPOW, MVT::f32, Expand);
setOperationAction(ISD::FPOW, MVT::f64, Expand);
setOperationAction(ISD::FPOWI, MVT::f32, Expand);
setOperationAction(ISD::FPOWI, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f32, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
setOperationAction(ISD::FSIN, MVT::f32, Expand);
setOperationAction(ISD::FSIN, MVT::f64, Expand);
// Virtually no operation on f128 is legal, but LLVM can't expand them when
// there's a valid register class, so we need custom operations in most cases.
setOperationAction(ISD::FABS, MVT::f128, Expand);
setOperationAction(ISD::FADD, MVT::f128, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
setOperationAction(ISD::FCOS, MVT::f128, Expand);
setOperationAction(ISD::FDIV, MVT::f128, Custom);
setOperationAction(ISD::FMA, MVT::f128, Expand);
setOperationAction(ISD::FMUL, MVT::f128, Custom);
setOperationAction(ISD::FNEG, MVT::f128, Expand);
setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
setOperationAction(ISD::FP_ROUND, MVT::f128, Expand);
setOperationAction(ISD::FPOW, MVT::f128, Expand);
setOperationAction(ISD::FREM, MVT::f128, Expand);
setOperationAction(ISD::FRINT, MVT::f128, Expand);
setOperationAction(ISD::FSIN, MVT::f128, Expand);
setOperationAction(ISD::FSQRT, MVT::f128, Expand);
setOperationAction(ISD::FSUB, MVT::f128, Custom);
setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
setOperationAction(ISD::SETCC, MVT::f128, Custom);
setOperationAction(ISD::BR_CC, MVT::f128, Custom);
setOperationAction(ISD::SELECT, MVT::f128, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
// Lowering for many of the conversions is actually specified by the non-f128
// type. The LowerXXX function will be trivial when f128 isn't involved.
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
// This prevents LLVM trying to compress double constants into a floating
// constant-pool entry and trying to load from there. It's of doubtful benefit
// for A64: we'd need LDR followed by FCVT, I believe.
setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
setTruncStoreAction(MVT::f128, MVT::f64, Expand);
setTruncStoreAction(MVT::f128, MVT::f32, Expand);
setTruncStoreAction(MVT::f128, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
setExceptionPointerRegister(AArch64::X0);
setExceptionSelectorRegister(AArch64::X1);
}
EVT AArch64TargetLowering::getSetCCResultType(EVT VT) const {
// It's reasonably important that this value matches the "natural" legal
// promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself
// in a twist (e.g. inserting an any_extend which then becomes i64 -> i64).
if (!VT.isVector()) return MVT::i32;
return VT.changeVectorElementTypeToInteger();
}
static void getExclusiveOperation(unsigned Size, unsigned &ldrOpc,
unsigned &strOpc) {
switch (Size) {
default: llvm_unreachable("unsupported size for atomic binary op!");
case 1:
ldrOpc = AArch64::LDXR_byte;
strOpc = AArch64::STXR_byte;
break;
case 2:
ldrOpc = AArch64::LDXR_hword;
strOpc = AArch64::STXR_hword;
break;
case 4:
ldrOpc = AArch64::LDXR_word;
strOpc = AArch64::STXR_word;
break;
case 8:
ldrOpc = AArch64::LDXR_dword;
strOpc = AArch64::STXR_dword;
break;
}
}
MachineBasicBlock *
AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
unsigned Size,
unsigned BinOpcode) const {
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction *MF = BB->getParent();
MachineFunction::iterator It = BB;
++It;
unsigned dest = MI->getOperand(0).getReg();
unsigned ptr = MI->getOperand(1).getReg();
unsigned incr = MI->getOperand(2).getReg();
DebugLoc dl = MI->getDebugLoc();
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
unsigned ldrOpc, strOpc;
getExclusiveOperation(Size, ldrOpc, strOpc);
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MF->insert(It, loopMBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
const TargetRegisterClass *TRC
= Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loopMBB);
// loopMBB:
// ldxr dest, ptr
// <binop> scratch, dest, incr
// stxr stxr_status, scratch, ptr
// cbnz stxr_status, loopMBB
// fallthrough --> exitMBB
BB = loopMBB;
BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
if (BinOpcode) {
// All arithmetic operations we'll be creating are designed to take an extra
// shift or extend operand, which we can conveniently set to zero.
// Operand order needs to go the other way for NAND.
if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl)
BuildMI(BB, dl, TII->get(BinOpcode), scratch)
.addReg(incr).addReg(dest).addImm(0);
else
BuildMI(BB, dl, TII->get(BinOpcode), scratch)
.addReg(dest).addReg(incr).addImm(0);
}
// From the stxr, the register is GPR32; from the cmp it's GPR32wsp
unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr);
BuildMI(BB, dl, TII->get(AArch64::CBNZw))
.addReg(stxr_status).addMBB(loopMBB);
BB->addSuccessor(loopMBB);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
MI->eraseFromParent(); // The instruction is gone now.
return BB;
}
MachineBasicBlock *
AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size,
unsigned CmpOp,
A64CC::CondCodes Cond) const {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction *MF = BB->getParent();
MachineFunction::iterator It = BB;
++It;
unsigned dest = MI->getOperand(0).getReg();
unsigned ptr = MI->getOperand(1).getReg();
unsigned incr = MI->getOperand(2).getReg();
unsigned oldval = dest;
DebugLoc dl = MI->getDebugLoc();
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
const TargetRegisterClass *TRC, *TRCsp;
if (Size == 8) {
TRC = &AArch64::GPR64RegClass;
TRCsp = &AArch64::GPR64xspRegClass;
} else {
TRC = &AArch64::GPR32RegClass;
TRCsp = &AArch64::GPR32wspRegClass;
}
unsigned ldrOpc, strOpc;
getExclusiveOperation(Size, ldrOpc, strOpc);
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MF->insert(It, loopMBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
unsigned scratch = MRI.createVirtualRegister(TRC);
MRI.constrainRegClass(scratch, TRCsp);
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loopMBB);
// loopMBB:
// ldxr dest, ptr
// cmp incr, dest (, sign extend if necessary)
// csel scratch, dest, incr, cond
// stxr stxr_status, scratch, ptr
// cbnz stxr_status, loopMBB
// fallthrough --> exitMBB
BB = loopMBB;
BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
// Build compare and cmov instructions.
MRI.constrainRegClass(incr, TRCsp);
BuildMI(BB, dl, TII->get(CmpOp))
.addReg(incr).addReg(oldval).addImm(0);
BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc),
scratch)
.addReg(oldval).addReg(incr).addImm(Cond);
unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
BuildMI(BB, dl, TII->get(strOpc), stxr_status)
.addReg(scratch).addReg(ptr);
BuildMI(BB, dl, TII->get(AArch64::CBNZw))
.addReg(stxr_status).addMBB(loopMBB);
BB->addSuccessor(loopMBB);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
MI->eraseFromParent(); // The instruction is gone now.
return BB;
}
MachineBasicBlock *
AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size) const {
unsigned dest = MI->getOperand(0).getReg();
unsigned ptr = MI->getOperand(1).getReg();
unsigned oldval = MI->getOperand(2).getReg();
unsigned newval = MI->getOperand(3).getReg();
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
const TargetRegisterClass *TRCsp;
TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass;
unsigned ldrOpc, strOpc;
getExclusiveOperation(Size, ldrOpc, strOpc);
MachineFunction *MF = BB->getParent();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It; // insert the new blocks after the current block
MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MF->insert(It, loop1MBB);
MF->insert(It, loop2MBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
// thisMBB:
// ...
// fallthrough --> loop1MBB
BB->addSuccessor(loop1MBB);
// loop1MBB:
// ldxr dest, [ptr]
// cmp dest, oldval
// b.ne exitMBB
BB = loop1MBB;
BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl;
MRI.constrainRegClass(dest, TRCsp);
BuildMI(BB, dl, TII->get(CmpOp))
.addReg(dest).addReg(oldval).addImm(0);
BuildMI(BB, dl, TII->get(AArch64::Bcc))
.addImm(A64CC::NE).addMBB(exitMBB);
BB->addSuccessor(loop2MBB);
BB->addSuccessor(exitMBB);
// loop2MBB:
// strex stxr_status, newval, [ptr]
// cbnz stxr_status, loop1MBB
BB = loop2MBB;
unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr);
BuildMI(BB, dl, TII->get(AArch64::CBNZw))
.addReg(stxr_status).addMBB(loop1MBB);
BB->addSuccessor(loop1MBB);
BB->addSuccessor(exitMBB);
// exitMBB:
// ...
BB = exitMBB;
MI->eraseFromParent(); // The instruction is gone now.
return BB;
}
MachineBasicBlock *
AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
MachineBasicBlock *MBB) const {
// We materialise the F128CSEL pseudo-instruction using conditional branches
// and loads, giving an instruciton sequence like:
// str q0, [sp]
// b.ne IfTrue
// b Finish
// IfTrue:
// str q1, [sp]
// Finish:
// ldr q0, [sp]
//
// Using virtual registers would probably not be beneficial since COPY
// instructions are expensive for f128 (there's no actual instruction to
// implement them).
//
// An alternative would be to do an integer-CSEL on some address. E.g.:
// mov x0, sp
// add x1, sp, #16
// str q0, [x0]
// str q1, [x1]
// csel x0, x0, x1, ne
// ldr q0, [x0]
//
// It's unclear which approach is actually optimal.
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
MachineFunction *MF = MBB->getParent();
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
DebugLoc DL = MI->getDebugLoc();
MachineFunction::iterator It = MBB;
++It;
unsigned DestReg = MI->getOperand(0).getReg();
unsigned IfTrueReg = MI->getOperand(1).getReg();
unsigned IfFalseReg = MI->getOperand(2).getReg();
unsigned CondCode = MI->getOperand(3).getImm();
bool NZCVKilled = MI->getOperand(4).isKill();
MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
MF->insert(It, TrueBB);
MF->insert(It, EndBB);
// Transfer rest of current basic-block to EndBB
EndBB->splice(EndBB->begin(), MBB,
llvm::next(MachineBasicBlock::iterator(MI)),
MBB->end());
EndBB->transferSuccessorsAndUpdatePHIs(MBB);
// We need somewhere to store the f128 value needed.
int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16);
// [... start of incoming MBB ...]
// str qIFFALSE, [sp]
// b.cc IfTrue
// b Done
BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR))
.addReg(IfFalseReg)
.addFrameIndex(ScratchFI)
.addImm(0);
BuildMI(MBB, DL, TII->get(AArch64::Bcc))
.addImm(CondCode)
.addMBB(TrueBB);
BuildMI(MBB, DL, TII->get(AArch64::Bimm))
.addMBB(EndBB);
MBB->addSuccessor(TrueBB);
MBB->addSuccessor(EndBB);
// IfTrue:
// str qIFTRUE, [sp]
BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR))
.addReg(IfTrueReg)
.addFrameIndex(ScratchFI)
.addImm(0);
// Note: fallthrough. We can rely on LLVM adding a branch if it reorders the
// blocks.
TrueBB->addSuccessor(EndBB);
// Done:
// ldr qDEST, [sp]
// [... rest of incoming MBB ...]
if (!NZCVKilled)
EndBB->addLiveIn(AArch64::NZCV);
MachineInstr *StartOfEnd = EndBB->begin();
BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg)
.addFrameIndex(ScratchFI)
.addImm(0);
MI->eraseFromParent();
return EndBB;
}
MachineBasicBlock *
AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *MBB) const {
switch (MI->getOpcode()) {
default: llvm_unreachable("Unhandled instruction with custom inserter");
case AArch64::F128CSEL:
return EmitF128CSEL(MI, MBB);
case AArch64::ATOMIC_LOAD_ADD_I8:
return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl);
case AArch64::ATOMIC_LOAD_ADD_I16:
return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl);
case AArch64::ATOMIC_LOAD_ADD_I32:
return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl);
case AArch64::ATOMIC_LOAD_ADD_I64:
return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl);
case AArch64::ATOMIC_LOAD_SUB_I8:
return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl);
case AArch64::ATOMIC_LOAD_SUB_I16:
return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl);
case AArch64::ATOMIC_LOAD_SUB_I32:
return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl);
case AArch64::ATOMIC_LOAD_SUB_I64:
return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl);
case AArch64::ATOMIC_LOAD_AND_I8:
return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl);
case AArch64::ATOMIC_LOAD_AND_I16:
return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl);
case AArch64::ATOMIC_LOAD_AND_I32:
return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl);
case AArch64::ATOMIC_LOAD_AND_I64:
return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl);
case AArch64::ATOMIC_LOAD_OR_I8:
return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl);
case AArch64::ATOMIC_LOAD_OR_I16:
return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl);
case AArch64::ATOMIC_LOAD_OR_I32:
return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl);
case AArch64::ATOMIC_LOAD_OR_I64:
return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl);
case AArch64::ATOMIC_LOAD_XOR_I8:
return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl);
case AArch64::ATOMIC_LOAD_XOR_I16:
return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl);
case AArch64::ATOMIC_LOAD_XOR_I32:
return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl);
case AArch64::ATOMIC_LOAD_XOR_I64:
return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl);
case AArch64::ATOMIC_LOAD_NAND_I8:
return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl);
case AArch64::ATOMIC_LOAD_NAND_I16:
return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl);
case AArch64::ATOMIC_LOAD_NAND_I32:
return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl);
case AArch64::ATOMIC_LOAD_NAND_I64:
return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl);
case AArch64::ATOMIC_LOAD_MIN_I8:
return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT);
case AArch64::ATOMIC_LOAD_MIN_I16:
return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT);
case AArch64::ATOMIC_LOAD_MIN_I32:
return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT);
case AArch64::ATOMIC_LOAD_MIN_I64:
return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT);
case AArch64::ATOMIC_LOAD_MAX_I8:
return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT);
case AArch64::ATOMIC_LOAD_MAX_I16:
return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT);
case AArch64::ATOMIC_LOAD_MAX_I32:
return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT);
case AArch64::ATOMIC_LOAD_MAX_I64:
return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT);
case AArch64::ATOMIC_LOAD_UMIN_I8:
return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI);
case AArch64::ATOMIC_LOAD_UMIN_I16:
return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI);
case AArch64::ATOMIC_LOAD_UMIN_I32:
return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI);
case AArch64::ATOMIC_LOAD_UMIN_I64:
return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI);
case AArch64::ATOMIC_LOAD_UMAX_I8:
return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO);
case AArch64::ATOMIC_LOAD_UMAX_I16:
return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO);
case AArch64::ATOMIC_LOAD_UMAX_I32:
return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO);
case AArch64::ATOMIC_LOAD_UMAX_I64:
return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO);
case AArch64::ATOMIC_SWAP_I8:
return emitAtomicBinary(MI, MBB, 1, 0);
case AArch64::ATOMIC_SWAP_I16:
return emitAtomicBinary(MI, MBB, 2, 0);
case AArch64::ATOMIC_SWAP_I32:
return emitAtomicBinary(MI, MBB, 4, 0);
case AArch64::ATOMIC_SWAP_I64:
return emitAtomicBinary(MI, MBB, 8, 0);
case AArch64::ATOMIC_CMP_SWAP_I8:
return emitAtomicCmpSwap(MI, MBB, 1);
case AArch64::ATOMIC_CMP_SWAP_I16:
return emitAtomicCmpSwap(MI, MBB, 2);
case AArch64::ATOMIC_CMP_SWAP_I32:
return emitAtomicCmpSwap(MI, MBB, 4);
case AArch64::ATOMIC_CMP_SWAP_I64:
return emitAtomicCmpSwap(MI, MBB, 8);
}
}
const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
case AArch64ISD::BR_CC: return "AArch64ISD::BR_CC";
case AArch64ISD::Call: return "AArch64ISD::Call";
case AArch64ISD::FPMOV: return "AArch64ISD::FPMOV";
case AArch64ISD::GOTLoad: return "AArch64ISD::GOTLoad";
case AArch64ISD::BFI: return "AArch64ISD::BFI";
case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
case AArch64ISD::Ret: return "AArch64ISD::Ret";
case AArch64ISD::SBFX: return "AArch64ISD::SBFX";
case AArch64ISD::SELECT_CC: return "AArch64ISD::SELECT_CC";
case AArch64ISD::SETCC: return "AArch64ISD::SETCC";
case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
case AArch64ISD::TLSDESCCALL: return "AArch64ISD::TLSDESCCALL";
case AArch64ISD::WrapperSmall: return "AArch64ISD::WrapperSmall";
default: return NULL;
}
}
static const uint16_t AArch64FPRArgRegs[] = {
AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7
};
static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs);
static const uint16_t AArch64ArgRegs[] = {
AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3,
AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7
};
static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs);
static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
// Mark all remaining general purpose registers as allocated. We don't
// backtrack: if (for example) an i128 gets put on the stack, no subsequent
// i64 will go in registers (C.11).
for (unsigned i = 0; i < NumArgRegs; ++i)
State.AllocateReg(AArch64ArgRegs[i]);
return false;
}
#include "AArch64GenCallingConv.inc"
CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
switch(CC) {
default: llvm_unreachable("Unsupported calling convention");
case CallingConv::Fast:
case CallingConv::C:
return CC_A64_APCS;
}
}
void
AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
DebugLoc DL, SDValue &Chain) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
AArch64MachineFunctionInfo *FuncInfo
= MF.getInfo<AArch64MachineFunctionInfo>();
SmallVector<SDValue, 8> MemOps;
unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs,
NumArgRegs);
unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs,
NumFPRArgRegs);
unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR);
int GPRIdx = 0;
if (GPRSaveSize != 0) {
GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) {
unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass);
SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
MachinePointerInfo::getStack(i * 8),
false, false, 0);
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
DAG.getConstant(8, getPointerTy()));
}
}
unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
int FPRIdx = 0;
if (FPRSaveSize != 0) {
FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i],
&AArch64::FPR128RegClass);
SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
MachinePointerInfo::getStack(i * 16),
false, false, 0);
MemOps.push_back(Store);
FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
DAG.getConstant(16, getPointerTy()));
}
}
int StackIdx = MFI->CreateFixedObject(8, CCInfo.getNextStackOffset(), true);
FuncInfo->setVariadicStackIdx(StackIdx);
FuncInfo->setVariadicGPRIdx(GPRIdx);
FuncInfo->setVariadicGPRSize(GPRSaveSize);
FuncInfo->setVariadicFPRIdx(FPRIdx);
FuncInfo->setVariadicFPRSize(FPRSaveSize);
if (!MemOps.empty()) {
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
MemOps.size());
}
}
SDValue
AArch64TargetLowering::LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
AArch64MachineFunctionInfo *FuncInfo
= MF.getInfo<AArch64MachineFunctionInfo>();
MachineFrameInfo *MFI = MF.getFrameInfo();
bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
SmallVector<SDValue, 16> ArgValues;
SDValue ArgValue;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
ISD::ArgFlagsTy Flags = Ins[i].Flags;
if (Flags.isByVal()) {
// Byval is used for small structs and HFAs in the PCS, but the system
// should work in a non-compliant manner for larger structs.
EVT PtrTy = getPointerTy();
int Size = Flags.getByValSize();
unsigned NumRegs = (Size + 7) / 8;
unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs,
VA.getLocMemOffset(),
false);
SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
InVals.push_back(FrameIdxN);
continue;
} else if (VA.isRegLoc()) {
MVT RegVT = VA.getLocVT();
const TargetRegisterClass *RC = getRegClassFor(RegVT);
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
} else { // VA.isRegLoc()
assert(VA.isMemLoc());
int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
VA.getLocMemOffset(), true);
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
MachinePointerInfo::getFixedStack(FI),
false, false, false, 0);
}
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue);
break;
case CCValAssign::SExt:
case CCValAssign::ZExt:
case CCValAssign::AExt: {
unsigned DestSize = VA.getValVT().getSizeInBits();
unsigned DestSubReg;
switch (DestSize) {
case 8: DestSubReg = AArch64::sub_8; break;
case 16: DestSubReg = AArch64::sub_16; break;
case 32: DestSubReg = AArch64::sub_32; break;
case 64: DestSubReg = AArch64::sub_64; break;
default: llvm_unreachable("Unexpected argument promotion");
}
ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
VA.getValVT(), ArgValue,
DAG.getTargetConstant(DestSubReg, MVT::i32)),
0);
break;
}
}
InVals.push_back(ArgValue);
}
if (isVarArg)
SaveVarArgRegisters(CCInfo, DAG, dl, Chain);
unsigned StackArgSize = CCInfo.getNextStackOffset();
if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
// This is a non-standard ABI so by fiat I say we're allowed to make full
// use of the stack area to be popped, which must be aligned to 16 bytes in
// any case:
StackArgSize = RoundUpToAlignment(StackArgSize, 16);
// If we're expected to restore the stack (e.g. fastcc) then we'll be adding
// a multiple of 16.
FuncInfo->setArgumentStackToRestore(StackArgSize);
// This realignment carries over to the available bytes below. Our own
// callers will guarantee the space is free by giving an aligned value to
// CALLSEQ_START.
}
// Even if we're not expected to free up the space, it's useful to know how
// much is there while considering tail calls (because we can reuse it).
FuncInfo->setBytesInStackArgArea(StackArgSize);
return Chain;
}
SDValue
AArch64TargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
DebugLoc dl, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of the return value to a location.
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slots.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), RVLocs, *DAG.getContext());
// Analyze outgoing return values.
CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv));
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
// PCS: "If the type, T, of the result of a function is such that
// void func(T arg) would require that arg be passed as a value in a
// register (or set of registers) according to the rules in 5.4, then the
// result is returned in the same registers as would be used for such an
// argument.
//
// Otherwise, the caller shall reserve a block of memory of sufficient
// size and alignment to hold the result. The address of the memory block
// shall be passed as an additional argument to the function in x8."
//
// This is implemented in two places. The register-return values are dealt
// with here, more complex returns are passed as an sret parameter, which
// means we don't have to worry about it during actual return.
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Only register-returns should be created by PCS");
SDValue Arg = OutVals[i];
// There's no convenient note in the ABI about this as there is for normal
// arguments, but it says return values are passed in the same registers as
// an argument would be. I believe that includes the comments about
// unspecified higher bits, putting the burden of widening on the *caller*
// for return values.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info");
case CCValAssign::Full: break;
case CCValAssign::SExt:
case CCValAssign::ZExt:
case CCValAssign::AExt:
// Floating-point values should only be extended when they're going into
// memory, which can't happen here so an integer extend is acceptable.
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
break;
}
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other,
&RetOps[0], RetOps.size());
}
SDValue
AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
DebugLoc &dl = CLI.DL;
SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &IsTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
AArch64MachineFunctionInfo *FuncInfo
= MF.getInfo<AArch64MachineFunctionInfo>();
bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet();
bool IsSibCall = false;
if (IsTailCall) {
IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
Outs, OutVals, Ins, DAG);
// A sibling call is one where we're under the usual C ABI and not planning
// to change that but can still do a tail call:
if (!TailCallOpt && IsTailCall)
IsSibCall = true;
}
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
// On AArch64 (and all other architectures I'm aware of) the most this has to
// do is adjust the stack pointer.
unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16);
if (IsSibCall) {
// Since we're not changing the ABI to make this a tail call, the memory
// operands are already available in the caller's incoming argument space.
NumBytes = 0;
}
// FPDiff is the byte offset of the call's argument area from the callee's.
// Stores to callee stack arguments will be placed in FixedStackSlots offset
// by this amount for a tail call. In a sibling call it must be 0 because the
// caller will deallocate the entire stack and the callee still expects its
// arguments to begin at SP+0. Completely unused for non-tail calls.
int FPDiff = 0;
if (IsTailCall && !IsSibCall) {
unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
// FPDiff will be negative if this tail call requires more space than we
// would automatically have in our incoming argument space. Positive if we
// can actually shrink the stack.
FPDiff = NumReusableBytes - NumBytes;
// The stack pointer must be 16-byte aligned at all times it's used for a
// memory operation, which in practice means at *all* times and in
// particular across call boundaries. Therefore our own arguments started at
// a 16-byte aligned SP and the delta applied for the tail call should
// satisfy the same constraint.
assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
}
if (!IsSibCall)
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP,
getPointerTy());
SmallVector<SDValue, 8> MemOpChains;
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
SDValue Arg = OutVals[i];
// Callee does the actual widening, so all extensions just use an implicit
// definition of the rest of the Loc. Aesthetically, this would be nicer as
// an ANY_EXTEND, but that isn't valid for floating-point types and this
// alternative works on integer types too.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
case CCValAssign::ZExt:
case CCValAssign::AExt: {
unsigned SrcSize = VA.getValVT().getSizeInBits();
unsigned SrcSubReg;
switch (SrcSize) {
case 8: SrcSubReg = AArch64::sub_8; break;
case 16: SrcSubReg = AArch64::sub_16; break;
case 32: SrcSubReg = AArch64::sub_32; break;
case 64: SrcSubReg = AArch64::sub_64; break;
default: llvm_unreachable("Unexpected argument promotion");
}
Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
VA.getLocVT(),
DAG.getUNDEF(VA.getLocVT()),
Arg,
DAG.getTargetConstant(SrcSubReg, MVT::i32)),
0);
break;
}
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
break;
}
if (VA.isRegLoc()) {
// A normal register (sub-) argument. For now we just note it down because
// we want to copy things into registers as late as possible to avoid
// register-pressure (and possibly worse).
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
continue;
}
assert(VA.isMemLoc() && "unexpected argument location");
SDValue DstAddr;
MachinePointerInfo DstInfo;
if (IsTailCall) {
uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() :
VA.getLocVT().getSizeInBits();
OpSize = (OpSize + 7) / 8;
int32_t Offset = VA.getLocMemOffset() + FPDiff;
int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
DstAddr = DAG.getFrameIndex(FI, getPointerTy());
DstInfo = MachinePointerInfo::getFixedStack(FI);
// Make sure any stack arguments overlapping with where we're storing are
// loaded before this eventual operation. Otherwise they'll be clobbered.
Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
} else {
SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset());
DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset());
}
if (Flags.isByVal()) {
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64);
SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode,
Flags.getByValAlign(),
/*isVolatile = */ false,
/*alwaysInline = */ false,
DstInfo, MachinePointerInfo(0));
MemOpChains.push_back(Cpy);
} else {
// Normal stack argument, put it where it's needed.
SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo,
false, false, 0);
MemOpChains.push_back(Store);
}
}
// The loads and stores generated above shouldn't clash with each
// other. Combining them with this TokenFactor notes that fact for the rest of
// the backend.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Most of the rest of the instructions need to be glued together; we don't
// want assignments to actual registers used by a call to be rearranged by a
// well-meaning scheduler.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// The linker is responsible for inserting veneers when necessary to put a
// function call destination in range, so we don't need to bother with a
// wrapper here.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
const GlobalValue *GV = G->getGlobal();
Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
const char *Sym = S->getSymbol();
Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
}
// We don't usually want to end the call-sequence here because we would tidy
// the frame up *after* the call, however in the ABI-changing tail-call case
// we've carefully laid out the parameters so that when sp is reset they'll be
// in the correct location.
if (IsTailCall && !IsSibCall) {
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
DAG.getIntPtrConstant(0, true), InFlag);
InFlag = Chain.getValue(1);
}
// We produce the following DAG scheme for the actual call instruction:
// (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag?
//
// Most arguments aren't going to be used and just keep the values live as
// far as LLVM is concerned. It's expected to be selected as simply "bl
// callee" (for a direct, non-tail call).
std::vector<SDValue> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
if (IsTailCall) {
// Each tail call may have to adjust the stack by a different amount, so
// this information must travel along with the operation for eventual
// consumption by emitEpilogue.
Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
}
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers. This
// is used later in codegen to constrain register-allocation.
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
// If we needed glue, put it in as the last argument.
if (InFlag.getNode())
Ops.push_back(InFlag);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
if (IsTailCall) {
return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
}
Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
// Now we can reclaim the stack, just as well do it before working out where
// our return value is.
if (!IsSibCall) {
uint64_t CalleePopBytes
= DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0;
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
DAG.getIntPtrConstant(CalleePopBytes, true),
InFlag);
InFlag = Chain.getValue(1);
}
return LowerCallResult(Chain, InFlag, CallConv,
IsVarArg, Ins, dl, DAG, InVals);
}
SDValue
AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
getTargetMachine(), RVLocs, *DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv));
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign VA = RVLocs[i];
// Return values that are too big to fit into registers should use an sret
// pointer, so this can be a lot simpler than the main argument code.
assert(VA.isRegLoc() && "Memory locations not expected for call return");
SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
InFlag);
Chain = Val.getValue(1);
InFlag = Val.getValue(2);
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::BCvt:
Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
break;
case CCValAssign::ZExt:
case CCValAssign::SExt:
case CCValAssign::AExt:
// Floating-point arguments only get extended/truncated if they're going
// in memory, so using the integer operation is acceptable here.
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
break;
}
InVals.push_back(Val);
}
return Chain;
}
bool
AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
CallingConv::ID CalleeCC,
bool IsVarArg,
bool IsCalleeStructRet,
bool IsCallerStructRet,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
SelectionDAG& DAG) const {
// For CallingConv::C this function knows whether the ABI needs
// changing. That's not true for other conventions so they will have to opt in
// manually.
if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
return false;
const MachineFunction &MF = DAG.getMachineFunction();
const Function *CallerF = MF.getFunction();
CallingConv::ID CallerCC = CallerF->getCallingConv();
bool CCMatch = CallerCC == CalleeCC;
// Byval parameters hand the function a pointer directly into the stack area
// we want to reuse during a tail call. Working around this *is* possible (see
// X86) but less efficient and uglier in LowerCall.
for (Function::const_arg_iterator i = CallerF->arg_begin(),
e = CallerF->arg_end(); i != e; ++i)
if (i->hasByValAttr())
return false;
if (getTargetMachine().Options.GuaranteedTailCallOpt) {
if (IsTailCallConvention(CalleeCC) && CCMatch)
return true;
return false;
}
// Now we search for cases where we can use a tail call without changing the
// ABI. Sibcall is used in some places (particularly gcc) to refer to this
// concept.
// I want anyone implementing a new calling convention to think long and hard
// about this assert.
assert((!IsVarArg || CalleeCC == CallingConv::C)
&& "Unexpected variadic calling convention");
if (IsVarArg && !Outs.empty()) {
// At least two cases here: if caller is fastcc then we can't have any
// memory arguments (we'd be expected to clean up the stack afterwards). If
// caller is C then we could potentially use its argument area.
// FIXME: for now we take the most conservative of these in both cases:
// disallow all variadic memory operands.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
if (!ArgLocs[i].isRegLoc())
return false;
}
// If the calling conventions do not match, then we'd better make sure the
// results are returned in the same way as what the caller expects.
if (!CCMatch) {
SmallVector<CCValAssign, 16> RVLocs1;
CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
getTargetMachine(), RVLocs1, *DAG.getContext());
CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC));
SmallVector<CCValAssign, 16> RVLocs2;
CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
getTargetMachine(), RVLocs2, *DAG.getContext());
CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC));
if (RVLocs1.size() != RVLocs2.size())
return false;
for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
return false;
if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
return false;
if (RVLocs1[i].isRegLoc()) {
if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
return false;
} else {
if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
return false;
}
}
}
// Nothing more to check if the callee is taking no arguments
if (Outs.empty())
return true;
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
const AArch64MachineFunctionInfo *FuncInfo
= MF.getInfo<AArch64MachineFunctionInfo>();
// If the stack arguments for this call would fit into our own save area then
// the call can be made tail.
return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
}
bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
bool TailCallOpt) const {
return CallCC == CallingConv::Fast && TailCallOpt;
}
bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
return CallCC == CallingConv::Fast;
}
SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
SelectionDAG &DAG,
MachineFrameInfo *MFI,
int ClobberedFI) const {
SmallVector<SDValue, 8> ArgChains;
int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
// Include the original chain at the beginning of the list. When this is
// used by target LowerCall hooks, this helps legalize find the
// CALLSEQ_BEGIN node.
ArgChains.push_back(Chain);
// Add a chain value for each stack argument corresponding
for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U)
if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
if (FI->getIndex() < 0) {
int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
int64_t InLastByte = InFirstByte;
InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
(FirstByte <= InFirstByte && InFirstByte <= LastByte))
ArgChains.push_back(SDValue(L, 1));
}
// Build a tokenfactor for all the chains.
return DAG.getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
&ArgChains[0], ArgChains.size());
}
static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) {
switch (CC) {
case ISD::SETEQ: return A64CC::EQ;
case ISD::SETGT: return A64CC::GT;
case ISD::SETGE: return A64CC::GE;
case ISD::SETLT: return A64CC::LT;
case ISD::SETLE: return A64CC::LE;
case ISD::SETNE: return A64CC::NE;
case ISD::SETUGT: return A64CC::HI;
case ISD::SETUGE: return A64CC::HS;
case ISD::SETULT: return A64CC::LO;
case ISD::SETULE: return A64CC::LS;
default: llvm_unreachable("Unexpected condition code");
}
}
bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const {
// icmp is implemented using adds/subs immediate, which take an unsigned
// 12-bit immediate, optionally shifted left by 12 bits.
// Symmetric by using adds/subs
if (Val < 0)
Val = -Val;
return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0;
}
SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS,
ISD::CondCode CC, SDValue &A64cc,
SelectionDAG &DAG, DebugLoc &dl) const {
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
int64_t C = 0;
EVT VT = RHSC->getValueType(0);
bool knownInvalid = false;
// I'm not convinced the rest of LLVM handles these edge cases properly, but
// we can at least get it right.
if (isSignedIntSetCC(CC)) {
C = RHSC->getSExtValue();
} else if (RHSC->getZExtValue() > INT64_MAX) {
// A 64-bit constant not representable by a signed 64-bit integer is far
// too big to fit into a SUBS immediate anyway.
knownInvalid = true;
} else {
C = RHSC->getZExtValue();
}
if (!knownInvalid && !isLegalICmpImmediate(C)) {
// Constant does not fit, try adjusting it by one?
switch (CC) {
default: break;
case ISD::SETLT:
case ISD::SETGE:
if (isLegalICmpImmediate(C-1)) {
CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
RHS = DAG.getConstant(C-1, VT);
}
break;
case ISD::SETULT:
case ISD::SETUGE:
if (isLegalICmpImmediate(C-1)) {
CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
RHS = DAG.getConstant(C-1, VT);
}
break;
case ISD::SETLE:
case ISD::SETGT:
if (isLegalICmpImmediate(C+1)) {
CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
RHS = DAG.getConstant(C+1, VT);
}
break;
case ISD::SETULE:
case ISD::SETUGT:
if (isLegalICmpImmediate(C+1)) {
CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
RHS = DAG.getConstant(C+1, VT);
}
break;
}
}
}
A64CC::CondCodes CondCode = IntCCToA64CC(CC);
A64cc = DAG.getConstant(CondCode, MVT::i32);
return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
DAG.getCondCode(CC));
}
static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC,
A64CC::CondCodes &Alternative) {
A64CC::CondCodes CondCode = A64CC::Invalid;
Alternative = A64CC::Invalid;
switch (CC) {
default: llvm_unreachable("Unknown FP condition!");
case ISD::SETEQ:
case ISD::SETOEQ: CondCode = A64CC::EQ; break;
case ISD::SETGT:
case ISD::SETOGT: CondCode = A64CC::GT; break;
case ISD::SETGE:
case ISD::SETOGE: CondCode = A64CC::GE; break;
case ISD::SETOLT: CondCode = A64CC::MI; break;
case ISD::SETOLE: CondCode = A64CC::LS; break;
case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break;
case ISD::SETO: CondCode = A64CC::VC; break;
case ISD::SETUO: CondCode = A64CC::VS; break;
case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break;
case ISD::SETUGT: CondCode = A64CC::HI; break;
case ISD::SETUGE: CondCode = A64CC::PL; break;
case ISD::SETLT:
case ISD::SETULT: CondCode = A64CC::LT; break;
case ISD::SETLE:
case ISD::SETULE: CondCode = A64CC::LE; break;
case ISD::SETNE:
case ISD::SETUNE: CondCode = A64CC::NE; break;
}
return CondCode;
}
SDValue
AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
DebugLoc DL = Op.getDebugLoc();
EVT PtrVT = getPointerTy();
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
assert(getTargetMachine().getCodeModel() == CodeModel::Small
&& "Only small code model supported at the moment");
// The most efficient code is PC-relative anyway for the small memory model,
// so we don't need to worry about relocation model.
return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
DAG.getTargetBlockAddress(BA, PtrVT, 0,
AArch64II::MO_NO_FLAG),
DAG.getTargetBlockAddress(BA, PtrVT, 0,
AArch64II::MO_LO12),
DAG.getConstant(/*Alignment=*/ 4, MVT::i32));
}
// (BRCOND chain, val, dest)
SDValue
AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
DebugLoc dl = Op.getDebugLoc();
SDValue Chain = Op.getOperand(0);
SDValue TheBit = Op.getOperand(1);
SDValue DestBB = Op.getOperand(2);
// AArch64 BooleanContents is the default UndefinedBooleanContent, which means
// that as the consumer we are responsible for ignoring rubbish in higher
// bits.
TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
DAG.getConstant(1, MVT::i32));
SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
DAG.getConstant(0, TheBit.getValueType()),
DAG.getCondCode(ISD::SETNE));
return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain,
A64CMP, DAG.getConstant(A64CC::NE, MVT::i32),
DestBB);
}
// (BR_CC chain, condcode, lhs, rhs, dest)
SDValue
AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
DebugLoc dl = Op.getDebugLoc();
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue DestBB = Op.getOperand(4);
if (LHS.getValueType() == MVT::f128) {
// f128 comparisons are lowered to runtime calls by a routine which sets
// LHS, RHS and CC appropriately for the rest of this function to continue.
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
// If softenSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (RHS.getNode() == 0) {
RHS = DAG.getConstant(0, LHS.getValueType());
CC = ISD::SETNE;
}
}
if (LHS.getValueType().isInteger()) {
SDValue A64cc;
// Integers are handled in a separate function because the combinations of
// immediates and tests can get hairy and we may want to fiddle things.
SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
Chain, CmpOp, A64cc, DestBB);
}
// Note that some LLVM floating-point CondCodes can't be lowered to a single
// conditional branch, hence FPCCToA64CC can set a second test, where either
// passing is sufficient.
A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
CondCode = FPCCToA64CC(CC, Alternative);
SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
DAG.getCondCode(CC));
SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
Chain, SetCC, A64cc, DestBB);
if (Alternative != A64CC::Invalid) {
A64cc = DAG.getConstant(Alternative, MVT::i32);
A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
A64BR_CC, SetCC, A64cc, DestBB);
}
return A64BR_CC;
}
SDValue
AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG,
RTLIB::Libcall Call) const {
ArgListTy Args;
ArgListEntry Entry;
for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
EVT ArgVT = Op.getOperand(i).getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy;
Entry.isSExt = false;
Entry.isZExt = false;
Args.push_back(Entry);
}
SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy());
Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
// By default, the input chain to this libcall is the entry node of the
// function. If the libcall is going to be emitted as a tail call then
// isUsedByReturnOnly will change it to the right chain if the return
// node which is being folded has a non-entry input chain.
SDValue InChain = DAG.getEntryNode();
// isTailCall may be true since the callee does not reference caller stack
// frame. Check if it's in the right position.
SDValue TCChain = InChain;
bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain);
if (isTailCall)
InChain = TCChain;
TargetLowering::
CallLoweringInfo CLI(InChain, RetTy, false, false, false, false,
0, getLibcallCallingConv(Call), isTailCall,
/*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
Callee, Args, DAG, Op->getDebugLoc());
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
if (!CallInfo.second.getNode())
// It's a tailcall, return the chain (which is the DAG root).
return DAG.getRoot();
return CallInfo.first;
}
SDValue
AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
if (Op.getOperand(0).getValueType() != MVT::f128) {
// It's legal except when f128 is involved
return Op;
}
RTLIB::Libcall LC;
LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
SDValue SrcVal = Op.getOperand(0);
return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
/*isSigned*/ false, Op.getDebugLoc());
}
SDValue
AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
RTLIB::Libcall LC;
LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
return LowerF128ToCall(Op, DAG, LC);
}
SDValue
AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
bool IsSigned) const {
if (Op.getOperand(0).getValueType() != MVT::f128) {
// It's legal except when f128 is involved
return Op;
}
RTLIB::Libcall LC;
if (IsSigned)
LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
else
LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
return LowerF128ToCall(Op, DAG, LC);
}
SDValue
AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op,
SelectionDAG &DAG) const {
// TableGen doesn't have easy access to the CodeModel or RelocationModel, so
// we make that distinction here.
// We support the small memory model for now.
assert(getTargetMachine().getCodeModel() == CodeModel::Small);
EVT PtrVT = getPointerTy();
DebugLoc dl = Op.getDebugLoc();
const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = GN->getGlobal();
unsigned Alignment = GV->getAlignment();
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
if (GV->isWeakForLinker() && GV->isDeclaration() && RelocM == Reloc::Static) {
// Weak undefined symbols can't use ADRP/ADD pair since they should evaluate
// to zero when they remain undefined. In PIC mode the GOT can take care of
// this, but in absolute mode we use a constant pool load.
SDValue PoolAddr;
PoolAddr = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
AArch64II::MO_NO_FLAG),
DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
AArch64II::MO_LO12),
DAG.getConstant(8, MVT::i32));
SDValue GlobalAddr = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), PoolAddr,
MachinePointerInfo::getConstantPool(),
/*isVolatile=*/ false,
/*isNonTemporal=*/ true,
/*isInvariant=*/ true, 8);
if (GN->getOffset() != 0)
return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
DAG.getConstant(GN->getOffset(), PtrVT));
return GlobalAddr;
}
if (Alignment == 0) {
const PointerType *GVPtrTy = cast<PointerType>(GV->getType());
if (GVPtrTy->getElementType()->isSized()) {
Alignment
= getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType());
} else {
// Be conservative if we can't guess, not that it really matters:
// functions and labels aren't valid for loads, and the methods used to
// actually calculate an address work with any alignment.
Alignment = 1;
}
}
unsigned char HiFixup, LoFixup;
bool UseGOT = Subtarget->GVIsIndirectSymbol(GV, RelocM);
if (UseGOT) {
HiFixup = AArch64II::MO_GOT;
LoFixup = AArch64II::MO_GOT_LO12;
Alignment = 8;
} else {
HiFixup = AArch64II::MO_NO_FLAG;
LoFixup = AArch64II::MO_LO12;
}
// AArch64's small model demands the following sequence:
// ADRP x0, somewhere
// ADD x0, x0, #:lo12:somewhere ; (or LDR directly).
SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
HiFixup),
DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
LoFixup),
DAG.getConstant(Alignment, MVT::i32));
if (UseGOT) {
GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(),
GlobalRef);
}
if (GN->getOffset() != 0)
return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef,
DAG.getConstant(GN->getOffset(), PtrVT));
return GlobalRef;
}
SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr,
SDValue DescAddr,
DebugLoc DL,
SelectionDAG &DAG) const {
EVT PtrVT = getPointerTy();
// The function we need to call is simply the first entry in the GOT for this
// descriptor, load it in preparation.
SDValue Func, Chain;
Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
DescAddr);
// The function takes only one argument: the address of the descriptor itself
// in X0.
SDValue Glue;
Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
Glue = Chain.getValue(1);
// Finally, there's a special calling-convention which means that the lookup
// must preserve all registers (except X0, obviously).
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
const AArch64RegisterInfo *A64RI
= static_cast<const AArch64RegisterInfo *>(TRI);
const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask();
// We're now ready to populate the argument list, as with a normal call:
std::vector<SDValue> Ops;
Ops.push_back(Chain);
Ops.push_back(Func);
Ops.push_back(SymAddr);
Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
Ops.push_back(DAG.getRegisterMask(Mask));
Ops.push_back(Glue);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, &Ops[0],
Ops.size());
Glue = Chain.getValue(1);
// After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it
// back to the generic handling code.
return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
}
SDValue
AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->isTargetELF() &&
"TLS not implemented for non-ELF targets");
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
SDValue TPOff;
EVT PtrVT = getPointerTy();
DebugLoc DL = Op.getDebugLoc();
const GlobalValue *GV = GA->getGlobal();
SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
if (Model == TLSModel::InitialExec) {
TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
AArch64II::MO_GOTTPREL),
DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
AArch64II::MO_GOTTPREL_LO12),
DAG.getConstant(8, MVT::i32));
TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
TPOff);
} else if (Model == TLSModel::LocalExec) {
SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
AArch64II::MO_TPREL_G1);
SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
AArch64II::MO_TPREL_G0_NC);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
DAG.getTargetConstant(0, MVT::i32)), 0);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
TPOff, LoVar,
DAG.getTargetConstant(0, MVT::i32)), 0);
} else if (Model == TLSModel::GeneralDynamic) {
// Accesses used in this sequence go via the TLS descriptor which lives in
// the GOT. Prepare an address we can use to handle this.
SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
AArch64II::MO_TLSDESC);
SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
AArch64II::MO_TLSDESC_LO12);
SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
HiDesc, LoDesc,
DAG.getConstant(8, MVT::i32));
SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0);
TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
} else if (Model == TLSModel::LocalDynamic) {
// Local-dynamic accesses proceed in two phases. A general-dynamic TLS
// descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
// the beginning of the module's TLS region, followed by a DTPREL offset
// calculation.
// These accesses will need deduplicating if there's more than one.
AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction()
.getInfo<AArch64MachineFunctionInfo>();
MFI->incNumLocalDynamicTLSAccesses();
// Get the location of _TLS_MODULE_BASE_:
SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
AArch64II::MO_TLSDESC);
SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
AArch64II::MO_TLSDESC_LO12);
SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
HiDesc, LoDesc,
DAG.getConstant(8, MVT::i32));
SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT);
ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
// Get the variable's offset from _TLS_MODULE_BASE_
SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
AArch64II::MO_DTPREL_G1);
SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
AArch64II::MO_DTPREL_G0_NC);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
DAG.getTargetConstant(0, MVT::i32)), 0);
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
TPOff, LoVar,
DAG.getTargetConstant(0, MVT::i32)), 0);
} else
llvm_unreachable("Unsupported TLS access model");
return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
}
SDValue
AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
bool IsSigned) const {
if (Op.getValueType() != MVT::f128) {
// Legal for everything except f128.
return Op;
}
RTLIB::Libcall LC;
if (IsSigned)
LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
else
LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
return LowerF128ToCall(Op, DAG, LC);
}
SDValue
AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
DebugLoc dl = JT->getDebugLoc();
// When compiling PIC, jump tables get put in the code section so a static
// relocation-style is acceptable for both cases.
return DAG.getNode(AArch64ISD::WrapperSmall, dl, getPointerTy(),
DAG.getTargetJumpTable(JT->getIndex(), getPointerTy()),
DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
AArch64II::MO_LO12),
DAG.getConstant(1, MVT::i32));
}
// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode)
SDValue
AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
DebugLoc dl = Op.getDebugLoc();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue IfTrue = Op.getOperand(2);
SDValue IfFalse = Op.getOperand(3);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
if (LHS.getValueType() == MVT::f128) {
// f128 comparisons are lowered to libcalls, but slot in nicely here
// afterwards.
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
// If softenSetCCOperands returned a scalar, we need to compare the result
// against zero to select between true and false values.
if (RHS.getNode() == 0) {
RHS = DAG.getConstant(0, LHS.getValueType());
CC = ISD::SETNE;
}
}
if (LHS.getValueType().isInteger()) {
SDValue A64cc;
// Integers are handled in a separate function because the combinations of
// immediates and tests can get hairy and we may want to fiddle things.
SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
CmpOp, IfTrue, IfFalse, A64cc);
}
// Note that some LLVM floating-point CondCodes can't be lowered to a single
// conditional branch, hence FPCCToA64CC can set a second test, where either
// passing is sufficient.
A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
CondCode = FPCCToA64CC(CC, Alternative);
SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
DAG.getCondCode(CC));
SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl,
Op.getValueType(),
SetCC, IfTrue, IfFalse, A64cc);
if (Alternative != A64CC::Invalid) {
A64cc = DAG.getConstant(Alternative, MVT::i32);
A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
SetCC, IfTrue, A64SELECT_CC, A64cc);
}
return A64SELECT_CC;
}
// (SELECT testbit, iftrue, iffalse)
SDValue
AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
DebugLoc dl = Op.getDebugLoc();
SDValue TheBit = Op.getOperand(0);
SDValue IfTrue = Op.getOperand(1);
SDValue IfFalse = Op.getOperand(2);
// AArch64 BooleanContents is the default UndefinedBooleanContent, which means
// that as the consumer we are responsible for ignoring rubbish in higher
// bits.
TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
DAG.getConstant(1, MVT::i32));
SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
DAG.getConstant(0, TheBit.getValueType()),
DAG.getCondCode(ISD::SETNE));
return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
A64CMP, IfTrue, IfFalse,
DAG.getConstant(A64CC::NE, MVT::i32));
}
// (SETCC lhs, rhs, condcode)
SDValue
AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
DebugLoc dl = Op.getDebugLoc();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
EVT VT = Op.getValueType();
if (LHS.getValueType() == MVT::f128) {
// f128 comparisons will be lowered to libcalls giving a valid LHS and RHS
// for the rest of the function (some i32 or i64 values).
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
// If softenSetCCOperands returned a scalar, use it.
if (RHS.getNode() == 0) {
assert(LHS.getValueType() == Op.getValueType() &&
"Unexpected setcc expansion!");
return LHS;
}
}
if (LHS.getValueType().isInteger()) {
SDValue A64cc;
// Integers are handled in a separate function because the combinations of
// immediates and tests can get hairy and we may want to fiddle things.
SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT),
A64cc);
}
// Note that some LLVM floating-point CondCodes can't be lowered to a single
// conditional branch, hence FPCCToA64CC can set a second test, where either
// passing is sufficient.
A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
CondCode = FPCCToA64CC(CC, Alternative);
SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
DAG.getCondCode(CC));
SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
CmpOp, DAG.getConstant(1, VT),
DAG.getConstant(0, VT), A64cc);
if (Alternative != A64CC::Invalid) {
A64cc = DAG.getConstant(Alternative, MVT::i32);
A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
DAG.getConstant(1, VT), A64SELECT_CC, A64cc);
}
return A64SELECT_CC;
}
SDValue
AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
// We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes
// rather than just 8.
return DAG.getMemcpy(Op.getOperand(0), Op.getDebugLoc(),
Op.getOperand(1), Op.getOperand(2),
DAG.getConstant(32, MVT::i32), 8, false, false,
MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
}
SDValue
AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
// The layout of the va_list struct is specified in the AArch64 Procedure Call
// Standard, section B.3.
MachineFunction &MF = DAG.getMachineFunction();
AArch64MachineFunctionInfo *FuncInfo
= MF.getInfo<AArch64MachineFunctionInfo>();
DebugLoc DL = Op.getDebugLoc();
SDValue Chain = Op.getOperand(0);
SDValue VAList = Op.getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
SmallVector<SDValue, 4> MemOps;
// void *__stack at offset 0
SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(),
getPointerTy());
MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
MachinePointerInfo(SV), false, false, 0));
// void *__gr_top at offset 8
int GPRSize = FuncInfo->getVariadicGPRSize();
if (GPRSize > 0) {
SDValue GRTop, GRTopAddr;
GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
DAG.getConstant(8, getPointerTy()));
GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy());
GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
DAG.getConstant(GPRSize, getPointerTy()));
MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
MachinePointerInfo(SV, 8),
false, false, 0));
}
// void *__vr_top at offset 16
int FPRSize = FuncInfo->getVariadicFPRSize();
if (FPRSize > 0) {
SDValue VRTop, VRTopAddr;
VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
DAG.getConstant(16, getPointerTy()));
VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy());
VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
DAG.getConstant(FPRSize, getPointerTy()));
MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
MachinePointerInfo(SV, 16),
false, false, 0));
}
// int __gr_offs at offset 24
SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
DAG.getConstant(24, getPointerTy()));
MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
GROffsAddr, MachinePointerInfo(SV, 24),
false, false, 0));
// int __vr_offs at offset 28
SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
DAG.getConstant(28, getPointerTy()));
MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
VROffsAddr, MachinePointerInfo(SV, 28),
false, false, 0));
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
MemOps.size());
}
SDValue
AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: llvm_unreachable("Don't know how to custom lower this!");
case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128);
case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128);
case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128);
case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128);
case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true);
case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false);
case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true);
case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false);
case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG);
case ISD::VACOPY: return LowerVACOPY(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
}
return SDValue();
}
static SDValue PerformANDCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
DebugLoc DL = N->getDebugLoc();
EVT VT = N->getValueType(0);
// We're looking for an SRA/SHL pair which form an SBFX.
if (VT != MVT::i32 && VT != MVT::i64)
return SDValue();
if (!isa<ConstantSDNode>(N->getOperand(1)))
return SDValue();
uint64_t TruncMask = N->getConstantOperandVal(1);
if (!isMask_64(TruncMask))
return SDValue();
uint64_t Width = CountPopulation_64(TruncMask);
SDValue Shift = N->getOperand(0);
if (Shift.getOpcode() != ISD::SRL)
return SDValue();
if (!isa<ConstantSDNode>(Shift->getOperand(1)))
return SDValue();
uint64_t LSB = Shift->getConstantOperandVal(1);
if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
return SDValue();
return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0),
DAG.getConstant(LSB, MVT::i64),
DAG.getConstant(LSB + Width - 1, MVT::i64));
}
static SDValue PerformATOMIC_FENCECombine(SDNode *FenceNode,
TargetLowering::DAGCombinerInfo &DCI) {
// An atomic operation followed by an acquiring atomic fence can be reduced to
// an acquiring load. The atomic operation provides a convenient pointer to
// load from. If the original operation was a load anyway we can actually
// combine the two operations into an acquiring load.
SelectionDAG &DAG = DCI.DAG;
SDValue AtomicOp = FenceNode->getOperand(0);
AtomicSDNode *AtomicNode = dyn_cast<AtomicSDNode>(AtomicOp);
// A fence on its own can't be optimised
if (!AtomicNode)
return SDValue();
AtomicOrdering FenceOrder
= static_cast<AtomicOrdering>(FenceNode->getConstantOperandVal(1));
SynchronizationScope FenceScope
= static_cast<SynchronizationScope>(FenceNode->getConstantOperandVal(2));
if (FenceOrder != Acquire || FenceScope != AtomicNode->getSynchScope())
return SDValue();
// If the original operation was an ATOMIC_LOAD then we'll be replacing it, so
// the chain we use should be its input, otherwise we'll put our store after
// it so we use its output chain.
SDValue Chain = AtomicNode->getOpcode() == ISD::ATOMIC_LOAD ?
AtomicNode->getChain() : AtomicOp;
// We have an acquire fence with a handy atomic operation nearby, we can
// convert the fence into a load-acquire, discarding the result.
DebugLoc DL = FenceNode->getDebugLoc();
SDValue Op = DAG.getAtomic(ISD::ATOMIC_LOAD, DL, AtomicNode->getMemoryVT(),
AtomicNode->getValueType(0),
Chain, // Chain
AtomicOp.getOperand(1), // Pointer
AtomicNode->getMemOperand(), Acquire,
FenceScope);
if (AtomicNode->getOpcode() == ISD::ATOMIC_LOAD)
DAG.ReplaceAllUsesWith(AtomicNode, Op.getNode());
return Op.getValue(1);
}
static SDValue PerformATOMIC_STORECombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
// A releasing atomic fence followed by an atomic store can be combined into a
// single store operation.
SelectionDAG &DAG = DCI.DAG;
AtomicSDNode *AtomicNode = cast<AtomicSDNode>(N);
SDValue FenceOp = AtomicNode->getOperand(0);
if (FenceOp.getOpcode() != ISD::ATOMIC_FENCE)
return SDValue();
AtomicOrdering FenceOrder
= static_cast<AtomicOrdering>(FenceOp->getConstantOperandVal(1));
SynchronizationScope FenceScope
= static_cast<SynchronizationScope>(FenceOp->getConstantOperandVal(2));
if (FenceOrder != Release || FenceScope != AtomicNode->getSynchScope())
return SDValue();
DebugLoc DL = AtomicNode->getDebugLoc();
return DAG.getAtomic(ISD::ATOMIC_STORE, DL, AtomicNode->getMemoryVT(),
FenceOp.getOperand(0), // Chain
AtomicNode->getOperand(1), // Pointer
AtomicNode->getOperand(2), // Value
AtomicNode->getMemOperand(), Release,
FenceScope);
}
/// For a true bitfield insert, the bits getting into that contiguous mask
/// should come from the low part of an existing value: they must be formed from
/// a compatible SHL operation (unless they're already low). This function
/// checks that condition and returns the least-significant bit that's
/// intended. If the operation not a field preparation, -1 is returned.
static int32_t getLSBForBFI(SelectionDAG &DAG, DebugLoc DL, EVT VT,
SDValue &MaskedVal, uint64_t Mask) {
if (!isShiftedMask_64(Mask))
return -1;
// Now we need to alter MaskedVal so that it is an appropriate input for a BFI
// instruction. BFI will do a left-shift by LSB before applying the mask we've
// spotted, so in general we should pre-emptively "undo" that by making sure
// the incoming bits have had a right-shift applied to them.
//
// This right shift, however, will combine with existing left/right shifts. In
// the simplest case of a completely straight bitfield operation, it will be
// expected to completely cancel out with an existing SHL. More complicated
// cases (e.g. bitfield to bitfield copy) may still need a real shift before
// the BFI.
uint64_t LSB = CountTrailingZeros_64(Mask);
int64_t ShiftRightRequired = LSB;
if (MaskedVal.getOpcode() == ISD::SHL &&
isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
ShiftRightRequired -= MaskedVal.getConstantOperandVal(1);
MaskedVal = MaskedVal.getOperand(0);
} else if (MaskedVal.getOpcode() == ISD::SRL &&
isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
ShiftRightRequired += MaskedVal.getConstantOperandVal(1);
MaskedVal = MaskedVal.getOperand(0);
}
if (ShiftRightRequired > 0)
MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal,
DAG.getConstant(ShiftRightRequired, MVT::i64));
else if (ShiftRightRequired < 0) {
// We could actually end up with a residual left shift, for example with
// "struc.bitfield = val << 1".
MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal,
DAG.getConstant(-ShiftRightRequired, MVT::i64));
}
return LSB;
}
/// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by
/// a mask and an extension. Returns true if a BFI was found and provides
/// information on its surroundings.
static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask,
bool &Extended) {
Extended = false;
if (N.getOpcode() == ISD::ZERO_EXTEND) {
Extended = true;
N = N.getOperand(0);
}
if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) {
Mask = N->getConstantOperandVal(1);
N = N.getOperand(0);
} else {
// Mask is the whole width.
Mask = -1ULL >> (64 - N.getValueType().getSizeInBits());
}
if (N.getOpcode() == AArch64ISD::BFI) {
BFI = N;
return true;
}
return false;
}
/// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which
/// is roughly equivalent to (and (BFI ...), mask). This form is used because it
/// can often be further combined with a larger mask. Ultimately, we want mask
/// to be 2^32-1 or 2^64-1 so the AND can be skipped.
static SDValue tryCombineToBFI(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
SelectionDAG &DAG = DCI.DAG;
DebugLoc DL = N->getDebugLoc();
EVT VT = N->getValueType(0);
assert(N->getOpcode() == ISD::OR && "Unexpected root");
// We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or
// abandon the effort.
SDValue LHS = N->getOperand(0);
if (LHS.getOpcode() != ISD::AND)
return SDValue();
uint64_t LHSMask;
if (isa<ConstantSDNode>(LHS.getOperand(1)))
LHSMask = LHS->getConstantOperandVal(1);
else
return SDValue();
// We also need the RHS to be (and SOMETHING, MASK). Find out what that mask
// is or abandon the effort.
SDValue RHS = N->getOperand(1);
if (RHS.getOpcode() != ISD::AND)
return SDValue();
uint64_t RHSMask;
if (isa<ConstantSDNode>(RHS.getOperand(1)))
RHSMask = RHS->getConstantOperandVal(1);
else
return SDValue();
// Can't do anything if the masks are incompatible.
if (LHSMask & RHSMask)
return SDValue();
// Now we need one of the masks to be a contiguous field. Without loss of
// generality that should be the RHS one.
SDValue Bitfield = LHS.getOperand(0);
if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) {
// We know that LHS is a candidate new value, and RHS isn't already a better
// one.
std::swap(LHS, RHS);
std::swap(LHSMask, RHSMask);
}
// We've done our best to put the right operands in the right places, all we
// can do now is check whether a BFI exists.
Bitfield = RHS.getOperand(0);
int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask);
if (LSB == -1)
return SDValue();
uint32_t Width = CountPopulation_64(RHSMask);
assert(Width && "Expected non-zero bitfield width");
SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
LHS.getOperand(0), Bitfield,
DAG.getConstant(LSB, MVT::i64),
DAG.getConstant(Width, MVT::i64));
// Mask is trivial
if ((LHSMask | RHSMask) == (-1ULL >> (64 - VT.getSizeInBits())))
return BFI;
return DAG.getNode(ISD::AND, DL, VT, BFI,
DAG.getConstant(LHSMask | RHSMask, VT));
}
/// Search for the bitwise combining (with careful masks) of a MaskedBFI and its
/// original input. This is surprisingly common because SROA splits things up
/// into i8 chunks, so the originally detected MaskedBFI may actually only act
/// on the low (say) byte of a word. This is then orred into the rest of the
/// word afterwards.
///
/// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)).
///
/// If MASK1 and MASK2 are compatible, we can fold the whole thing into the
/// MaskedBFI. We can also deal with a certain amount of extend/truncate being
/// involved.
static SDValue tryCombineToLargerBFI(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
SelectionDAG &DAG = DCI.DAG;
DebugLoc DL = N->getDebugLoc();
EVT VT = N->getValueType(0);
// First job is to hunt for a MaskedBFI on either the left or right. Swap
// operands if it's actually on the right.
SDValue BFI;
SDValue PossExtraMask;
uint64_t ExistingMask = 0;
bool Extended = false;
if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended))
PossExtraMask = N->getOperand(1);
else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended))
PossExtraMask = N->getOperand(0);
else
return SDValue();
// We can only combine a BFI with another compatible mask.
if (PossExtraMask.getOpcode() != ISD::AND ||
!isa<ConstantSDNode>(PossExtraMask.getOperand(1)))
return SDValue();
uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1);
// Masks must be compatible.
if (ExtraMask & ExistingMask)
return SDValue();
SDValue OldBFIVal = BFI.getOperand(0);
SDValue NewBFIVal = BFI.getOperand(1);
if (Extended) {
// We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be
// 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments
// need to be made compatible.
assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32
&& "Invalid types for BFI");
OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal);
NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal);
}
// We need the MaskedBFI to be combined with a mask of the *same* value.
if (PossExtraMask.getOperand(0) != OldBFIVal)
return SDValue();
BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
OldBFIVal, NewBFIVal,
BFI.getOperand(2), BFI.getOperand(3));
// If the masking is trivial, we don't need to create it.
if ((ExtraMask | ExistingMask) == (-1ULL >> (64 - VT.getSizeInBits())))
return BFI;
return DAG.getNode(ISD::AND, DL, VT, BFI,
DAG.getConstant(ExtraMask | ExistingMask, VT));
}
/// An EXTR instruction is made up of two shifts, ORed together. This helper
/// searches for and classifies those shifts.
static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
bool &FromHi) {
if (N.getOpcode() == ISD::SHL)
FromHi = false;
else if (N.getOpcode() == ISD::SRL)
FromHi = true;
else
return false;
if (!isa<ConstantSDNode>(N.getOperand(1)))
return false;
ShiftAmount = N->getConstantOperandVal(1);
Src = N->getOperand(0);
return true;
}
/// EXTR instruction extracts a contiguous chunk of bits from two existing
/// registers viewed as a high/low pair. This function looks for the pattern:
/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
/// EXTR. Can't quite be done in TableGen because the two immediates aren't
/// independent.
static SDValue tryCombineToEXTR(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
DebugLoc DL = N->getDebugLoc();
EVT VT = N->getValueType(0);
assert(N->getOpcode() == ISD::OR && "Unexpected root");
if (VT != MVT::i32 && VT != MVT::i64)
return SDValue();
SDValue LHS;
uint32_t ShiftLHS = 0;
bool LHSFromHi = 0;
if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
return SDValue();
SDValue RHS;
uint32_t ShiftRHS = 0;
bool RHSFromHi = 0;
if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
return SDValue();
// If they're both trying to come from the high part of the register, they're
// not really an EXTR.
if (LHSFromHi == RHSFromHi)
return SDValue();
if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
return SDValue();
if (LHSFromHi) {
std::swap(LHS, RHS);
std::swap(ShiftLHS, ShiftRHS);
}
return DAG.getNode(AArch64ISD::EXTR, DL, VT,
LHS, RHS,
DAG.getConstant(ShiftRHS, MVT::i64));
}
/// Target-specific dag combine xforms for ISD::OR
static SDValue PerformORCombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI,
const AArch64Subtarget *Subtarget) {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
// Attempt to recognise bitfield-insert operations.
SDValue Res = tryCombineToBFI(N, DCI, Subtarget);
if (Res.getNode())
return Res;
// Attempt to combine an existing MaskedBFI operation into one with a larger
// mask.
Res = tryCombineToLargerBFI(N, DCI, Subtarget);
if (Res.getNode())
return Res;
Res = tryCombineToEXTR(N, DCI);
if (Res.getNode())
return Res;
return SDValue();
}
/// Target-specific dag combine xforms for ISD::SRA
static SDValue PerformSRACombine(SDNode *N,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
DebugLoc DL = N->getDebugLoc();
EVT VT = N->getValueType(0);
// We're looking for an SRA/SHL pair which form an SBFX.
if (VT != MVT::i32 && VT != MVT::i64)
return SDValue();
if (!isa<ConstantSDNode>(N->getOperand(1)))
return SDValue();
uint64_t ExtraSignBits = N->getConstantOperandVal(1);
SDValue Shift = N->getOperand(0);
if (Shift.getOpcode() != ISD::SHL)
return SDValue();
if (!isa<ConstantSDNode>(Shift->getOperand(1)))
return SDValue();
uint64_t BitsOnLeft = Shift->getConstantOperandVal(1);
uint64_t Width = VT.getSizeInBits() - ExtraSignBits;
uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft;
if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
return SDValue();
return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0),
DAG.getConstant(LSB, MVT::i64),
DAG.getConstant(LSB + Width - 1, MVT::i64));
}
SDValue
AArch64TargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
switch (N->getOpcode()) {
default: break;
case ISD::AND: return PerformANDCombine(N, DCI);
case ISD::ATOMIC_FENCE: return PerformATOMIC_FENCECombine(N, DCI);
case ISD::ATOMIC_STORE: return PerformATOMIC_STORECombine(N, DCI);
case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
case ISD::SRA: return PerformSRACombine(N, DCI);
}
return SDValue();
}
AArch64TargetLowering::ConstraintType
AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default: break;
case 'w': // An FP/SIMD vector register
return C_RegisterClass;
case 'I': // Constant that can be used with an ADD instruction
case 'J': // Constant that can be used with a SUB instruction
case 'K': // Constant that can be used with a 32-bit logical instruction
case 'L': // Constant that can be used with a 64-bit logical instruction
case 'M': // Constant that can be used as a 32-bit MOV immediate
case 'N': // Constant that can be used as a 64-bit MOV immediate
case 'Y': // Floating point constant zero
case 'Z': // Integer constant zero
return C_Other;
case 'Q': // A memory reference with base register and no offset
return C_Memory;
case 'S': // A symbolic address
return C_Other;
}
}
// FIXME: Ump, Utf, Usa, Ush
// Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes,
// whatever they may be
// Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be
// Usa: An absolute symbolic address
// Ush: The high part (bits 32:12) of a pc-relative symbolic address
assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa"
&& Constraint != "Ush" && "Unimplemented constraints");
return TargetLowering::getConstraintType(Constraint);
}
TargetLowering::ConstraintWeight
AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info,
const char *Constraint) const {
llvm_unreachable("Constraint weight unimplemented");
}
void
AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
SDValue Result(0, 0);
// Only length 1 constraints are C_Other.
if (Constraint.size() != 1) return;
// Only C_Other constraints get lowered like this. That means constants for us
// so return early if there's no hope the constraint can be lowered.
switch(Constraint[0]) {
default: break;
case 'I': case 'J': case 'K': case 'L':
case 'M': case 'N': case 'Z': {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
if (!C)
return;
uint64_t CVal = C->getZExtValue();
uint32_t Bits;
switch (Constraint[0]) {
default:
// FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J'
// is a peculiarly useless SUB constraint.
llvm_unreachable("Unimplemented C_Other constraint");
case 'I':
if (CVal <= 0xfff)
break;
return;
case 'K':
if (A64Imms::isLogicalImm(32, CVal, Bits))
break;
return;
case 'L':
if (A64Imms::isLogicalImm(64, CVal, Bits))
break;
return;
case 'Z':
if (CVal == 0)
break;
return;
}
Result = DAG.getTargetConstant(CVal, Op.getValueType());
break;
}
case 'S': {
// An absolute symbolic address or label reference.
if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
Result = DAG.getTargetGlobalAddress(GA->getGlobal(), Op.getDebugLoc(),
GA->getValueType(0));
} else if (const BlockAddressSDNode *BA
= dyn_cast<BlockAddressSDNode>(Op)) {
Result = DAG.getTargetBlockAddress(BA->getBlockAddress(),
BA->getValueType(0));
} else if (const ExternalSymbolSDNode *ES
= dyn_cast<ExternalSymbolSDNode>(Op)) {
Result = DAG.getTargetExternalSymbol(ES->getSymbol(),
ES->getValueType(0));
} else
return;
break;
}
case 'Y':
if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
if (CFP->isExactlyValue(0.0)) {
Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0));
break;
}
}
return;
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
// It's an unknown constraint for us. Let generic code have a go.
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
std::pair<unsigned, const TargetRegisterClass*>
AArch64TargetLowering::getRegForInlineAsmConstraint(
const std::string &Constraint,
EVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
if (VT.getSizeInBits() <= 32)
return std::make_pair(0U, &AArch64::GPR32RegClass);
else if (VT == MVT::i64)
return std::make_pair(0U, &AArch64::GPR64RegClass);
break;
case 'w':
if (VT == MVT::f16)
return std::make_pair(0U, &AArch64::FPR16RegClass);
else if (VT == MVT::f32)
return std::make_pair(0U, &AArch64::FPR32RegClass);
else if (VT == MVT::f64)
return std::make_pair(0U, &AArch64::FPR64RegClass);
else if (VT.getSizeInBits() == 64)
return std::make_pair(0U, &AArch64::VPR64RegClass);
else if (VT == MVT::f128)
return std::make_pair(0U, &AArch64::FPR128RegClass);
else if (VT.getSizeInBits() == 128)
return std::make_pair(0U, &AArch64::VPR128RegClass);
break;
}
}
// Use the default implementation in TargetLowering to convert the register
// constraint into a member of a register class.
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}