llvm-6502/include/llvm/Transforms/Scalar.h
2005-11-22 22:14:23 +00:00

304 lines
11 KiB
C++

//===-- Scalar.h - Scalar Transformations -----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header file defines prototypes for accessor functions that expose passes
// in the Scalar transformations library.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_SCALAR_H
#define LLVM_TRANSFORMS_SCALAR_H
namespace llvm {
class ModulePass;
class FunctionPass;
class GetElementPtrInst;
class PassInfo;
class TerminatorInst;
//===----------------------------------------------------------------------===//
//
// RaisePointerReferences - Try to eliminate as many pointer arithmetic
// expressions as possible, by converting expressions to use getelementptr and
// friends.
//
FunctionPass *createRaisePointerReferencesPass();
//===----------------------------------------------------------------------===//
//
// Constant Propagation Pass - A worklist driven constant propagation pass
//
FunctionPass *createConstantPropagationPass();
//===----------------------------------------------------------------------===//
//
// Sparse Conditional Constant Propagation Pass
//
FunctionPass *createSCCPPass();
//===----------------------------------------------------------------------===//
//
// DeadInstElimination - This pass quickly removes trivially dead instructions
// without modifying the CFG of the function. It is a BasicBlockPass, so it
// runs efficiently when queued next to other BasicBlockPass's.
//
FunctionPass *createDeadInstEliminationPass();
//===----------------------------------------------------------------------===//
//
// DeadCodeElimination - This pass is more powerful than DeadInstElimination,
// because it is worklist driven that can potentially revisit instructions when
// their other instructions become dead, to eliminate chains of dead
// computations.
//
FunctionPass *createDeadCodeEliminationPass();
//===----------------------------------------------------------------------===//
//
// DeadStoreElimination - This pass deletes stores that are post-dominated by
// must-aliased stores and are not loaded used between the stores.
//
FunctionPass *createDeadStoreEliminationPass();
//===----------------------------------------------------------------------===//
//
// AggressiveDCE - This pass uses the SSA based Aggressive DCE algorithm. This
// algorithm assumes instructions are dead until proven otherwise, which makes
// it more successful are removing non-obviously dead instructions.
//
FunctionPass *createAggressiveDCEPass();
//===----------------------------------------------------------------------===//
//
// Scalar Replacement of Aggregates - Break up alloca's of aggregates into
// multiple allocas if possible.
//
FunctionPass *createScalarReplAggregatesPass();
//===----------------------------------------------------------------------===//
//
// GCSE - This pass is designed to be a very quick global transformation that
// eliminates global common subexpressions from a function. It does this by
// examining the SSA value graph of the function, instead of doing slow
// bit-vector computations.
//
FunctionPass *createGCSEPass();
//===----------------------------------------------------------------------===//
//
// InductionVariableSimplify - Transform induction variables in a program to all
// use a single canonical induction variable per loop.
//
FunctionPass *createIndVarSimplifyPass();
//===----------------------------------------------------------------------===//
//
// InstructionCombining - Combine instructions to form fewer, simple
// instructions. This pass does not modify the CFG, and has a tendency to
// make instructions dead, so a subsequent DCE pass is useful.
//
// This pass combines things like:
// %Y = add int 1, %X
// %Z = add int 1, %Y
// into:
// %Z = add int 2, %X
//
FunctionPass *createInstructionCombiningPass();
//===----------------------------------------------------------------------===//
//
// LICM - This pass is a loop invariant code motion and memory promotion pass.
//
FunctionPass *createLICMPass();
//===----------------------------------------------------------------------===//
//
// LoopStrengthReduce - This pass is strength reduces GEP instructions that use
// a loop's canonical induction variable as one of their indices. The
// MaxTargetAMSize is the largest element size that the target architecture
// can handle in its addressing modes. Power of two multipliers less than or
// equal to this value are not reduced.
//
FunctionPass *createLoopStrengthReducePass(unsigned MaxTargetAMSize = 1);
//===----------------------------------------------------------------------===//
//
// LoopUnswitch - This pass is a simple loop unswitching pass.
//
FunctionPass *createLoopUnswitchPass();
//===----------------------------------------------------------------------===//
//
// LoopUnroll - This pass is a simple loop unrolling pass.
//
FunctionPass *createLoopUnrollPass();
//===----------------------------------------------------------------------===//
//
// This pass is used to promote memory references to be register references. A
// simple example of the transformation performed by this pass is:
//
// FROM CODE TO CODE
// %X = alloca int, uint 1 ret int 42
// store int 42, int *%X
// %Y = load int* %X
// ret int %Y
//
FunctionPass *createPromoteMemoryToRegisterPass();
//===----------------------------------------------------------------------===//
//
// This pass is used to demote registers to memory references .
// In basically undoes the PromoteMemoryToRegister pass to
// make cfg hacking easier.
FunctionPass *createDemoteRegisterToMemoryPass();
extern const PassInfo *DemoteRegisterToMemoryID;
//===----------------------------------------------------------------------===//
//
// This pass reassociates commutative expressions in an order that is designed
// to promote better constant propagation, GCSE, LICM, PRE...
//
// For example: 4 + (x + 5) -> x + (4 + 5)
//
FunctionPass *createReassociatePass();
//===----------------------------------------------------------------------===//
//
// This pass eliminates correlated conditions, such as these:
// if (X == 0)
// if (X > 2) ; // Known false
// else
// Y = X * Z; // = 0
//
FunctionPass *createCorrelatedExpressionEliminationPass();
// createCondPropagationPass - This pass propagates information about
// conditional expressions through the program, allowing it to eliminate
// conditional branches in some cases.
//
FunctionPass *createCondPropagationPass();
//===----------------------------------------------------------------------===//
//
// TailDuplication - Eliminate unconditional branches through controlled code
// duplication, creating simpler CFG structures.
//
FunctionPass *createTailDuplicationPass();
//===----------------------------------------------------------------------===//
//
// CFG Simplification - Merge basic blocks, eliminate unreachable blocks,
// simplify terminator instructions, etc...
//
FunctionPass *createCFGSimplificationPass();
//===----------------------------------------------------------------------===//
//
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
// inserting a dummy basic block. This pass may be "required" by passes that
// cannot deal with critical edges. For this usage, a pass must call:
//
// AU.addRequiredID(BreakCriticalEdgesID);
//
// This pass obviously invalidates the CFG, but can update forward dominator
// (set, immediate dominators, tree, and frontier) information.
//
FunctionPass *createBreakCriticalEdgesPass();
extern const PassInfo *BreakCriticalEdgesID;
//===----------------------------------------------------------------------===//
//
// LoopSimplify pass - Insert Pre-header blocks into the CFG for every function
// in the module. This pass updates dominator information, loop information,
// and does not add critical edges to the CFG.
//
// AU.addRequiredID(LoopSimplifyID);
//
FunctionPass *createLoopSimplifyPass();
extern const PassInfo *LoopSimplifyID;
//===----------------------------------------------------------------------===//
//
// This pass eliminates call instructions to the current function which occur
// immediately before return instructions.
//
FunctionPass *createTailCallEliminationPass();
//===----------------------------------------------------------------------===//
// This pass convert malloc and free instructions to %malloc & %free function
// calls.
//
FunctionPass *createLowerAllocationsPass(bool LowerMallocArgToInteger = false);
//===----------------------------------------------------------------------===//
// This pass converts SwitchInst instructions into a sequence of chained binary
// branch instructions.
//
FunctionPass *createLowerSwitchPass();
//===----------------------------------------------------------------------===//
// This pass converts SelectInst instructions into conditional branch and PHI
// instructions. If the OnlyFP flag is set to true, then only floating point
// select instructions are lowered.
//
FunctionPass *createLowerSelectPass(bool OnlyFP = false);
//===----------------------------------------------------------------------===//
// This pass converts PackedType operations into low-level scalar operations.
//
FunctionPass *createLowerPackedPass();
//===----------------------------------------------------------------------===//
// This pass converts invoke and unwind instructions to use sjlj exception
// handling mechanisms. Note that after this pass runs the CFG is not entirely
// accurate (exceptional control flow edges are not correct anymore) so only
// very simple things should be done after the lowerinvoke pass has run (like
// generation of native code). This should *NOT* be used as a general purpose
// "my LLVM-to-LLVM pass doesn't support the invoke instruction yet" lowering
// pass.
//
FunctionPass *createLowerInvokePass(unsigned JumBufSize = 200,
unsigned JumpBufAlign = 0);
extern const PassInfo *LowerInvokePassID;
//===----------------------------------------------------------------------===//
/// createLowerGCPass - This function returns an instance of the "lowergc"
/// pass, which lowers garbage collection intrinsics to normal LLVM code.
///
FunctionPass *createLowerGCPass();
//===----------------------------------------------------------------------===//
// This pass reorders basic blocks in order to increase the number of fall-
// through conditional branches.
FunctionPass *createBlockPlacementPass();
//===----------------------------------------------------------------------===//
// This pass does partial redundancy elimination.
FunctionPass *createPREPass();
} // End llvm namespace
#endif