mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 20:29:48 +00:00
623d2e618f
The idea of the AnyReg Calling Convention is to provide the call arguments in registers, but not to force them to be placed in a paticular order into a specified set of registers. Instead it is up tp the register allocator to assign any register as it sees fit. The same applies to the return value (if applicable). Differential Revision: http://llvm-reviews.chandlerc.com/D2009 Reviewed by Andy git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194293 91177308-0d34-0410-b5e6-96231b3b80d8
624 lines
24 KiB
TableGen
624 lines
24 KiB
TableGen
//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This describes the calling conventions for the X86-32 and X86-64
|
|
// architectures.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// CCIfSubtarget - Match if the current subtarget has a feature F.
|
|
class CCIfSubtarget<string F, CCAction A>
|
|
: CCIf<!strconcat("State.getTarget().getSubtarget<X86Subtarget>().", F), A>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Return Value Calling Conventions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Return-value conventions common to all X86 CC's.
|
|
def RetCC_X86Common : CallingConv<[
|
|
// Scalar values are returned in AX first, then DX. For i8, the ABI
|
|
// requires the values to be in AL and AH, however this code uses AL and DL
|
|
// instead. This is because using AH for the second register conflicts with
|
|
// the way LLVM does multiple return values -- a return of {i16,i8} would end
|
|
// up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
|
|
// for functions that return two i8 values are currently expected to pack the
|
|
// values into an i16 (which uses AX, and thus AL:AH).
|
|
//
|
|
// For code that doesn't care about the ABI, we allow returning more than two
|
|
// integer values in registers.
|
|
CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
|
|
CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
|
|
CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
|
|
CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
|
|
|
|
// Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3
|
|
// can only be used by ABI non-compliant code. If the target doesn't have XMM
|
|
// registers, it won't have vector types.
|
|
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
|
|
|
|
// 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
|
|
// can only be used by ABI non-compliant code. This vector type is only
|
|
// supported while using the AVX target feature.
|
|
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
|
|
CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
|
|
|
|
// 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
|
|
// can only be used by ABI non-compliant code. This vector type is only
|
|
// supported while using the AVX-512 target feature.
|
|
CCIfType<[v16i32, v8i64, v16f32, v8f64],
|
|
CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
|
|
|
|
// MMX vector types are always returned in MM0. If the target doesn't have
|
|
// MM0, it doesn't support these vector types.
|
|
CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
|
|
|
|
// Long double types are always returned in ST0 (even with SSE).
|
|
CCIfType<[f80], CCAssignToReg<[ST0, ST1]>>
|
|
]>;
|
|
|
|
// X86-32 C return-value convention.
|
|
def RetCC_X86_32_C : CallingConv<[
|
|
// The X86-32 calling convention returns FP values in ST0, unless marked
|
|
// with "inreg" (used here to distinguish one kind of reg from another,
|
|
// weirdly; this is really the sse-regparm calling convention) in which
|
|
// case they use XMM0, otherwise it is the same as the common X86 calling
|
|
// conv.
|
|
CCIfInReg<CCIfSubtarget<"hasSSE2()",
|
|
CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
|
|
CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>,
|
|
CCDelegateTo<RetCC_X86Common>
|
|
]>;
|
|
|
|
// X86-32 FastCC return-value convention.
|
|
def RetCC_X86_32_Fast : CallingConv<[
|
|
// The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
|
|
// SSE2.
|
|
// This can happen when a float, 2 x float, or 3 x float vector is split by
|
|
// target lowering, and is returned in 1-3 sse regs.
|
|
CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
|
|
CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
|
|
|
|
// For integers, ECX can be used as an extra return register
|
|
CCIfType<[i8], CCAssignToReg<[AL, DL, CL]>>,
|
|
CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
|
|
CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
|
|
|
|
// Otherwise, it is the same as the common X86 calling convention.
|
|
CCDelegateTo<RetCC_X86Common>
|
|
]>;
|
|
|
|
// Intel_OCL_BI return-value convention.
|
|
def RetCC_Intel_OCL_BI : CallingConv<[
|
|
// Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
|
|
CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
|
|
CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
|
|
|
|
// 256-bit FP vectors
|
|
// No more than 4 registers
|
|
CCIfType<[v8f32, v4f64, v8i32, v4i64],
|
|
CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
|
|
|
|
// 512-bit FP vectors
|
|
CCIfType<[v16f32, v8f64, v16i32, v8i64],
|
|
CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
|
|
|
|
// i32, i64 in the standard way
|
|
CCDelegateTo<RetCC_X86Common>
|
|
]>;
|
|
|
|
// X86-32 HiPE return-value convention.
|
|
def RetCC_X86_32_HiPE : CallingConv<[
|
|
// Promote all types to i32
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// Return: HP, P, VAL1, VAL2
|
|
CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
|
|
]>;
|
|
|
|
// X86-64 C return-value convention.
|
|
def RetCC_X86_64_C : CallingConv<[
|
|
// The X86-64 calling convention always returns FP values in XMM0.
|
|
CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
|
|
CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
|
|
|
|
// MMX vector types are always returned in XMM0.
|
|
CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
|
|
CCDelegateTo<RetCC_X86Common>
|
|
]>;
|
|
|
|
// X86-Win64 C return-value convention.
|
|
def RetCC_X86_Win64_C : CallingConv<[
|
|
// The X86-Win64 calling convention always returns __m64 values in RAX.
|
|
CCIfType<[x86mmx], CCBitConvertToType<i64>>,
|
|
|
|
// Otherwise, everything is the same as 'normal' X86-64 C CC.
|
|
CCDelegateTo<RetCC_X86_64_C>
|
|
]>;
|
|
|
|
// X86-64 HiPE return-value convention.
|
|
def RetCC_X86_64_HiPE : CallingConv<[
|
|
// Promote all types to i64
|
|
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
|
|
|
|
// Return: HP, P, VAL1, VAL2
|
|
CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
|
|
]>;
|
|
|
|
// X86-64 WebKit_JS return-value convention.
|
|
def RetCC_X86_64_WebKit_JS : CallingConv<[
|
|
// Promote all types to i64
|
|
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
|
|
|
|
// Return: RAX
|
|
CCIfType<[i64], CCAssignToReg<[RAX]>>
|
|
]>;
|
|
|
|
// X86-64 AnyReg return-value convention. No explicit register is specified for
|
|
// the return-value. The register allocator is allowed and expected to choose
|
|
// any free register.
|
|
//
|
|
// This calling convention is currently only supported by the stackmap and
|
|
// patchpoint intrinsics. All other uses will result in an assert on Debug
|
|
// builds. On Release builds we fallback to the X86 C calling convention.
|
|
def RetCC_X86_64_AnyReg : CallingConv<[
|
|
CCCustom<"CC_X86_AnyReg_Error">
|
|
]>;
|
|
|
|
// This is the root return-value convention for the X86-32 backend.
|
|
def RetCC_X86_32 : CallingConv<[
|
|
// If FastCC, use RetCC_X86_32_Fast.
|
|
CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
|
|
// If HiPE, use RetCC_X86_32_HiPE.
|
|
CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
|
|
|
|
// Otherwise, use RetCC_X86_32_C.
|
|
CCDelegateTo<RetCC_X86_32_C>
|
|
]>;
|
|
|
|
// This is the root return-value convention for the X86-64 backend.
|
|
def RetCC_X86_64 : CallingConv<[
|
|
// HiPE uses RetCC_X86_64_HiPE
|
|
CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
|
|
|
|
// Handle JavaScript calls.
|
|
CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
|
|
CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
|
|
|
|
// Handle explicit CC selection
|
|
CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
|
|
CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
|
|
|
|
// Mingw64 and native Win64 use Win64 CC
|
|
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
|
|
|
|
// Otherwise, drop to normal X86-64 CC
|
|
CCDelegateTo<RetCC_X86_64_C>
|
|
]>;
|
|
|
|
// This is the return-value convention used for the entire X86 backend.
|
|
def RetCC_X86 : CallingConv<[
|
|
|
|
// Check if this is the Intel OpenCL built-ins calling convention
|
|
CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
|
|
|
|
CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
|
|
CCDelegateTo<RetCC_X86_32>
|
|
]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86-64 Argument Calling Conventions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def CC_X86_64_C : CallingConv<[
|
|
// Handles byval parameters.
|
|
CCIfByVal<CCPassByVal<8, 8>>,
|
|
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// The 'nest' parameter, if any, is passed in R10.
|
|
CCIfNest<CCAssignToReg<[R10]>>,
|
|
|
|
// The first 6 integer arguments are passed in integer registers.
|
|
CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
|
|
CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
|
|
|
|
// The first 8 MMX vector arguments are passed in XMM registers on Darwin.
|
|
CCIfType<[x86mmx],
|
|
CCIfSubtarget<"isTargetDarwin()",
|
|
CCIfSubtarget<"hasSSE2()",
|
|
CCPromoteToType<v2i64>>>>,
|
|
|
|
// The first 8 FP/Vector arguments are passed in XMM registers.
|
|
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCIfSubtarget<"hasSSE1()",
|
|
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
|
|
|
|
// The first 8 256-bit vector arguments are passed in YMM registers, unless
|
|
// this is a vararg function.
|
|
// FIXME: This isn't precisely correct; the x86-64 ABI document says that
|
|
// fixed arguments to vararg functions are supposed to be passed in
|
|
// registers. Actually modeling that would be a lot of work, though.
|
|
CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
|
|
CCIfSubtarget<"hasFp256()",
|
|
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
|
|
YMM4, YMM5, YMM6, YMM7]>>>>,
|
|
|
|
// The first 8 512-bit vector arguments are passed in ZMM registers.
|
|
CCIfNotVarArg<CCIfType<[v16i32, v8i64, v16f32, v8f64],
|
|
CCIfSubtarget<"hasAVX512()",
|
|
CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
|
|
|
|
// Integer/FP values get stored in stack slots that are 8 bytes in size and
|
|
// 8-byte aligned if there are no more registers to hold them.
|
|
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
|
|
|
|
// Long doubles get stack slots whose size and alignment depends on the
|
|
// subtarget.
|
|
CCIfType<[f80], CCAssignToStack<0, 0>>,
|
|
|
|
// Vectors get 16-byte stack slots that are 16-byte aligned.
|
|
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
|
|
|
|
// 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
|
|
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
|
|
CCAssignToStack<32, 32>>,
|
|
|
|
// 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
|
|
CCIfType<[v16i32, v8i64, v16f32, v8f64],
|
|
CCAssignToStack<64, 64>>
|
|
]>;
|
|
|
|
// Calling convention used on Win64
|
|
def CC_X86_Win64_C : CallingConv<[
|
|
// FIXME: Handle byval stuff.
|
|
// FIXME: Handle varargs.
|
|
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// The 'nest' parameter, if any, is passed in R10.
|
|
CCIfNest<CCAssignToReg<[R10]>>,
|
|
|
|
// 128 bit vectors are passed by pointer
|
|
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
|
|
|
|
|
|
// 256 bit vectors are passed by pointer
|
|
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
|
|
|
|
// 512 bit vectors are passed by pointer
|
|
CCIfType<[v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
|
|
|
|
// The first 4 MMX vector arguments are passed in GPRs.
|
|
CCIfType<[x86mmx], CCBitConvertToType<i64>>,
|
|
|
|
// The first 4 integer arguments are passed in integer registers.
|
|
CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
|
|
[XMM0, XMM1, XMM2, XMM3]>>,
|
|
|
|
// Do not pass the sret argument in RCX, the Win64 thiscall calling
|
|
// convention requires "this" to be passed in RCX.
|
|
CCIfCC<"CallingConv::X86_ThisCall",
|
|
CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8 , R9 ],
|
|
[XMM1, XMM2, XMM3]>>>>,
|
|
|
|
CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ],
|
|
[XMM0, XMM1, XMM2, XMM3]>>,
|
|
|
|
// The first 4 FP/Vector arguments are passed in XMM registers.
|
|
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
|
|
[RCX , RDX , R8 , R9 ]>>,
|
|
|
|
// Integer/FP values get stored in stack slots that are 8 bytes in size and
|
|
// 8-byte aligned if there are no more registers to hold them.
|
|
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
|
|
|
|
// Long doubles get stack slots whose size and alignment depends on the
|
|
// subtarget.
|
|
CCIfType<[f80], CCAssignToStack<0, 0>>
|
|
]>;
|
|
|
|
def CC_X86_64_GHC : CallingConv<[
|
|
// Promote i8/i16/i32 arguments to i64.
|
|
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
|
|
|
|
// Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
|
|
CCIfType<[i64],
|
|
CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
|
|
|
|
// Pass in STG registers: F1, F2, F3, F4, D1, D2
|
|
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCIfSubtarget<"hasSSE1()",
|
|
CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>
|
|
]>;
|
|
|
|
def CC_X86_64_HiPE : CallingConv<[
|
|
// Promote i8/i16/i32 arguments to i64.
|
|
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
|
|
|
|
// Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
|
|
CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
|
|
|
|
// Integer/FP values get stored in stack slots that are 8 bytes in size and
|
|
// 8-byte aligned if there are no more registers to hold them.
|
|
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
|
|
]>;
|
|
|
|
def CC_X86_64_WebKit_JS : CallingConv<[
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// Integer/FP values are always stored in stack slots that are 8 bytes in size
|
|
// and 8-byte aligned.
|
|
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
|
|
]>;
|
|
|
|
// No explicit register is specified for the AnyReg calling convention. The
|
|
// register allocator may assign the arguments to any free register.
|
|
//
|
|
// This calling convention is currently only supported by the stackmap and
|
|
// patchpoint intrinsics. All other uses will result in an assert on Debug
|
|
// builds. On Release builds we fallback to the X86 C calling convention.
|
|
def CC_X86_64_AnyReg : CallingConv<[
|
|
CCCustom<"CC_X86_AnyReg_Error">
|
|
]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86 C Calling Convention
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
|
|
/// values are spilled on the stack, and the first 4 vector values go in XMM
|
|
/// regs.
|
|
def CC_X86_32_Common : CallingConv<[
|
|
// Handles byval parameters.
|
|
CCIfByVal<CCPassByVal<4, 4>>,
|
|
|
|
// The first 3 float or double arguments, if marked 'inreg' and if the call
|
|
// is not a vararg call and if SSE2 is available, are passed in SSE registers.
|
|
CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
|
|
CCIfSubtarget<"hasSSE2()",
|
|
CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
|
|
|
|
// The first 3 __m64 vector arguments are passed in mmx registers if the
|
|
// call is not a vararg call.
|
|
CCIfNotVarArg<CCIfType<[x86mmx],
|
|
CCAssignToReg<[MM0, MM1, MM2]>>>,
|
|
|
|
// Integer/Float values get stored in stack slots that are 4 bytes in
|
|
// size and 4-byte aligned.
|
|
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
|
|
|
|
// Doubles get 8-byte slots that are 4-byte aligned.
|
|
CCIfType<[f64], CCAssignToStack<8, 4>>,
|
|
|
|
// Long doubles get slots whose size depends on the subtarget.
|
|
CCIfType<[f80], CCAssignToStack<0, 4>>,
|
|
|
|
// The first 4 SSE vector arguments are passed in XMM registers.
|
|
CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
|
|
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
|
|
|
|
// The first 4 AVX 256-bit vector arguments are passed in YMM registers.
|
|
CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
|
|
CCIfSubtarget<"hasFp256()",
|
|
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
|
|
|
|
// Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
|
|
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
|
|
|
|
// 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
|
|
CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
|
|
CCAssignToStack<32, 32>>,
|
|
|
|
// __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
|
|
// passed in the parameter area.
|
|
CCIfType<[x86mmx], CCAssignToStack<8, 4>>]>;
|
|
|
|
def CC_X86_32_C : CallingConv<[
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// The 'nest' parameter, if any, is passed in ECX.
|
|
CCIfNest<CCAssignToReg<[ECX]>>,
|
|
|
|
// The first 3 integer arguments, if marked 'inreg' and if the call is not
|
|
// a vararg call, are passed in integer registers.
|
|
CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
|
|
|
|
// Otherwise, same as everything else.
|
|
CCDelegateTo<CC_X86_32_Common>
|
|
]>;
|
|
|
|
def CC_X86_32_FastCall : CallingConv<[
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// The 'nest' parameter, if any, is passed in EAX.
|
|
CCIfNest<CCAssignToReg<[EAX]>>,
|
|
|
|
// The first 2 integer arguments are passed in ECX/EDX
|
|
CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
|
|
|
|
// Otherwise, same as everything else.
|
|
CCDelegateTo<CC_X86_32_Common>
|
|
]>;
|
|
|
|
def CC_X86_32_ThisCall : CallingConv<[
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// Pass sret arguments indirectly through stack.
|
|
CCIfSRet<CCAssignToStack<4, 4>>,
|
|
|
|
// The first integer argument is passed in ECX
|
|
CCIfType<[i32], CCAssignToReg<[ECX]>>,
|
|
|
|
// Otherwise, same as everything else.
|
|
CCDelegateTo<CC_X86_32_Common>
|
|
]>;
|
|
|
|
def CC_X86_32_FastCC : CallingConv<[
|
|
// Handles byval parameters. Note that we can't rely on the delegation
|
|
// to CC_X86_32_Common for this because that happens after code that
|
|
// puts arguments in registers.
|
|
CCIfByVal<CCPassByVal<4, 4>>,
|
|
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// The 'nest' parameter, if any, is passed in EAX.
|
|
CCIfNest<CCAssignToReg<[EAX]>>,
|
|
|
|
// The first 2 integer arguments are passed in ECX/EDX
|
|
CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
|
|
|
|
// The first 3 float or double arguments, if the call is not a vararg
|
|
// call and if SSE2 is available, are passed in SSE registers.
|
|
CCIfNotVarArg<CCIfType<[f32,f64],
|
|
CCIfSubtarget<"hasSSE2()",
|
|
CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
|
|
|
|
// Doubles get 8-byte slots that are 8-byte aligned.
|
|
CCIfType<[f64], CCAssignToStack<8, 8>>,
|
|
|
|
// Otherwise, same as everything else.
|
|
CCDelegateTo<CC_X86_32_Common>
|
|
]>;
|
|
|
|
def CC_X86_32_GHC : CallingConv<[
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// Pass in STG registers: Base, Sp, Hp, R1
|
|
CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
|
|
]>;
|
|
|
|
def CC_X86_32_HiPE : CallingConv<[
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
|
|
CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
|
|
|
|
// Integer/Float values get stored in stack slots that are 4 bytes in
|
|
// size and 4-byte aligned.
|
|
CCIfType<[i32, f32], CCAssignToStack<4, 4>>
|
|
]>;
|
|
|
|
// X86-64 Intel OpenCL built-ins calling convention.
|
|
def CC_Intel_OCL_BI : CallingConv<[
|
|
|
|
CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
|
|
CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8, R9 ]>>>,
|
|
|
|
CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
|
|
CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
|
|
|
|
CCIfType<[i32], CCAssignToStack<4, 4>>,
|
|
|
|
// The SSE vector arguments are passed in XMM registers.
|
|
CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
|
|
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
|
|
|
|
// The 256-bit vector arguments are passed in YMM registers.
|
|
CCIfType<[v8f32, v4f64, v8i32, v4i64],
|
|
CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
|
|
|
|
// The 512-bit vector arguments are passed in ZMM registers.
|
|
CCIfType<[v16f32, v8f64, v16i32, v8i64],
|
|
CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
|
|
|
|
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
|
|
CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64_C>>,
|
|
CCDelegateTo<CC_X86_32_C>
|
|
]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// X86 Root Argument Calling Conventions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// This is the root argument convention for the X86-32 backend.
|
|
def CC_X86_32 : CallingConv<[
|
|
CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
|
|
CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
|
|
CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
|
|
CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
|
|
CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
|
|
|
|
// Otherwise, drop to normal X86-32 CC
|
|
CCDelegateTo<CC_X86_32_C>
|
|
]>;
|
|
|
|
// This is the root argument convention for the X86-64 backend.
|
|
def CC_X86_64 : CallingConv<[
|
|
CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
|
|
CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
|
|
CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
|
|
CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
|
|
CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<CC_X86_Win64_C>>,
|
|
CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
|
|
|
|
// Mingw64 and native Win64 use Win64 CC
|
|
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
|
|
|
|
// Otherwise, drop to normal X86-64 CC
|
|
CCDelegateTo<CC_X86_64_C>
|
|
]>;
|
|
|
|
// This is the argument convention used for the entire X86 backend.
|
|
def CC_X86 : CallingConv<[
|
|
CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
|
|
CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
|
|
CCDelegateTo<CC_X86_32>
|
|
]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Callee-saved Registers.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def CSR_NoRegs : CalleeSavedRegs<(add)>;
|
|
|
|
def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
|
|
def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
|
|
|
|
def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
|
|
def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
|
|
|
|
def CSR_Win64 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15,
|
|
(sequence "XMM%u", 6, 15))>;
|
|
|
|
def CSR_MostRegs_64 : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
|
|
R11, R12, R13, R14, R15, RBP,
|
|
(sequence "XMM%u", 0, 15))>;
|
|
|
|
// Standard C + YMM6-15
|
|
def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
|
|
R13, R14, R15,
|
|
(sequence "YMM%u", 6, 15))>;
|
|
|
|
def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
|
|
R12, R13, R14, R15,
|
|
(sequence "ZMM%u", 6, 21),
|
|
K4, K5, K6, K7)>;
|
|
//Standard C + XMM 8-15
|
|
def CSR_64_Intel_OCL_BI : CalleeSavedRegs<(add CSR_64,
|
|
(sequence "XMM%u", 8, 15))>;
|
|
|
|
//Standard C + YMM 8-15
|
|
def CSR_64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add CSR_64,
|
|
(sequence "YMM%u", 8, 15))>;
|
|
|
|
def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add CSR_64,
|
|
(sequence "ZMM%u", 16, 31),
|
|
K4, K5, K6, K7)>;
|