llvm-6502/lib/CodeGen/InstrSelection/InstrSelectionSupport.cpp
Chris Lattner 0c4e886dbf - Renamed Type::isIntegral() to Type::isInteger()
- Added new method Type::isIntegral() that is the same as isInteger, but
    also accepts bool.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3574 91177308-0d34-0410-b5e6-96231b3b80d8
2002-09-03 01:08:28 +00:00

502 lines
18 KiB
C++

//===-- InstrSelectionSupport.cpp -----------------------------------------===//
//
// Target-independent instruction selection code. See SparcInstrSelection.cpp
// for usage.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/InstrSelectionSupport.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrAnnot.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineCodeForMethod.h"
#include "llvm/CodeGen/InstrForest.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/MachineRegInfo.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Type.h"
#include "llvm/iMemory.h"
using std::vector;
//*************************** Local Functions ******************************/
// Generate code to load the constant into a TmpInstruction (virtual reg) and
// returns the virtual register.
//
static TmpInstruction*
InsertCodeToLoadConstant(Function *F,
Value* opValue,
Instruction* vmInstr,
vector<MachineInstr*>& loadConstVec,
TargetMachine& target)
{
// Create a tmp virtual register to hold the constant.
TmpInstruction* tmpReg = new TmpInstruction(opValue);
MachineCodeForInstruction &mcfi = MachineCodeForInstruction::get(vmInstr);
mcfi.addTemp(tmpReg);
target.getInstrInfo().CreateCodeToLoadConst(target, F, opValue, tmpReg,
loadConstVec, mcfi);
// Record the mapping from the tmp VM instruction to machine instruction.
// Do this for all machine instructions that were not mapped to any
// other temp values created by
// tmpReg->addMachineInstruction(loadConstVec.back());
return tmpReg;
}
//---------------------------------------------------------------------------
// Function GetConstantValueAsUnsignedInt
// Function GetConstantValueAsSignedInt
//
// Convenience functions to get the value of an integral constant, for an
// appropriate integer or non-integer type that can be held in a signed
// or unsigned integer respectively. The type of the argument must be
// the following:
// Signed or unsigned integer
// Boolean
// Pointer
//
// isValidConstant is set to true if a valid constant was found.
//---------------------------------------------------------------------------
uint64_t
GetConstantValueAsUnsignedInt(const Value *V,
bool &isValidConstant)
{
isValidConstant = true;
if (isa<Constant>(V))
if (const ConstantBool *CB = dyn_cast<ConstantBool>(V))
return (int64_t)CB->getValue();
else if (const ConstantSInt *CS = dyn_cast<ConstantSInt>(V))
return (uint64_t)CS->getValue();
else if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(V))
return CU->getValue();
isValidConstant = false;
return 0;
}
int64_t
GetConstantValueAsSignedInt(const Value *V,
bool &isValidConstant)
{
uint64_t C = GetConstantValueAsUnsignedInt(V, isValidConstant);
if (isValidConstant) {
if (V->getType()->isSigned() || C < INT64_MAX) // safe to cast to signed
return (int64_t) C;
else
isValidConstant = false;
}
return 0;
}
//---------------------------------------------------------------------------
// Function: FoldGetElemChain
//
// Purpose:
// Fold a chain of GetElementPtr instructions containing only
// constant offsets into an equivalent (Pointer, IndexVector) pair.
// Returns the pointer Value, and stores the resulting IndexVector
// in argument chainIdxVec. This is a helper function for
// FoldConstantIndices that does the actual folding.
//---------------------------------------------------------------------------
static Value*
FoldGetElemChain(InstrTreeNode* ptrNode, vector<Value*>& chainIdxVec)
{
InstructionNode* gepNode = dyn_cast<InstructionNode>(ptrNode);
if (gepNode == NULL)
return NULL; // ptr value is not computed in this tree
GetElementPtrInst* gepInst =
dyn_cast<GetElementPtrInst>(gepNode->getInstruction());
if (gepInst == NULL) // ptr value does not come from GEP instruction
return NULL;
// Return NULL if we don't fold any instructions in.
Value* ptrVal = NULL;
// Remember if the last instruction had a leading [0] index.
bool hasLeadingZero = false;
// Now chase the chain of getElementInstr instructions, if any.
// Check for any non-constant indices and stop there.
//
InstructionNode* ptrChild = gepNode;
while (ptrChild && (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
ptrChild->getOpLabel() == GetElemPtrIdx))
{
// Child is a GetElemPtr instruction
gepInst = cast<GetElementPtrInst>(ptrChild->getValue());
User::op_iterator OI, firstIdx = gepInst->idx_begin();
User::op_iterator lastIdx = gepInst->idx_end();
bool allConstantOffsets = true;
// Check that all offsets are constant for this instruction
for (OI = firstIdx; allConstantOffsets && OI != lastIdx; ++OI)
allConstantOffsets = isa<ConstantInt>(*OI);
if (allConstantOffsets)
{ // Get pointer value out of ptrChild.
ptrVal = gepInst->getPointerOperand();
// Check for a leading [0] index, if any. It will be discarded later.
ConstantUInt* CV = dyn_cast<ConstantUInt>((Value*) *firstIdx);
hasLeadingZero = bool(CV && CV->getValue() == 0);
// Insert its index vector at the start, skipping any leading [0]
chainIdxVec.insert(chainIdxVec.begin(),
firstIdx + hasLeadingZero, lastIdx);
// Mark the folded node so no code is generated for it.
((InstructionNode*) ptrChild)->markFoldedIntoParent();
}
else // cannot fold this getElementPtr instr. or any further ones
break;
ptrChild = dyn_cast<InstructionNode>(ptrChild->leftChild());
}
// If the first getElementPtr instruction had a leading [0], add it back.
// Note that this instruction is the *last* one successfully folded above.
if (ptrVal && hasLeadingZero)
chainIdxVec.insert(chainIdxVec.begin(), ConstantUInt::get(Type::UIntTy,0));
return ptrVal;
}
//---------------------------------------------------------------------------
// Function: GetMemInstArgs
//
// Purpose:
// Get the pointer value and the index vector for a memory operation
// (GetElementPtr, Load, or Store). If all indices of the given memory
// operation are constant, fold in constant indices in a chain of
// preceding GetElementPtr instructions (if any), and return the
// pointer value of the first instruction in the chain.
// All folded instructions are marked so no code is generated for them.
//
// Return values:
// Returns the pointer Value to use.
// Returns the resulting IndexVector in idxVec.
// Returns true/false in allConstantIndices if all indices are/aren't const.
//---------------------------------------------------------------------------
// Check for a constant (uint) 0.
inline bool
IsZero(Value* idx)
{
return (isa<ConstantInt>(idx) && cast<ConstantInt>(idx)->isNullValue());
}
Value*
GetMemInstArgs(const InstructionNode* memInstrNode,
vector<Value*>& idxVec,
bool& allConstantIndices)
{
allConstantIndices = true;
Instruction* memInst = memInstrNode->getInstruction();
// If there is a GetElemPtr instruction to fold in to this instr,
// it must be in the left child for Load and GetElemPtr, and in the
// right child for Store instructions.
InstrTreeNode* ptrChild = (memInst->getOpcode() == Instruction::Store
? memInstrNode->rightChild()
: memInstrNode->leftChild());
// Default pointer is the one from the current instruction.
Value* ptrVal = ptrChild->getValue();
// GEP is the only indexed memory instruction. gepI is used below.
GetElementPtrInst* gepI = dyn_cast<GetElementPtrInst>(memInst);
// If memInst is a GEP, check if all indices are constant for this instruction
if (gepI)
for (User::op_iterator OI=gepI->idx_begin(), OE=gepI->idx_end();
allConstantIndices && OI != OE; ++OI)
if (! isa<Constant>(*OI))
allConstantIndices = false; // note: this also terminates loop!
// If we have only constant indices, fold chains of constant indices
// in this and any preceding GetElemPtr instructions.
bool foldedGEPs = false;
if (allConstantIndices)
if (Value* newPtr = FoldGetElemChain(ptrChild, idxVec))
{
ptrVal = newPtr;
foldedGEPs = true;
assert((!gepI || IsZero(*gepI->idx_begin())) && "1st index not 0");
}
// Append the index vector of the current instruction, if any.
// Skip the leading [0] index if preceding GEPs were folded into this.
if (gepI)
idxVec.insert(idxVec.end(), gepI->idx_begin() +foldedGEPs, gepI->idx_end());
return ptrVal;
}
//------------------------------------------------------------------------
// Function Set2OperandsFromInstr
// Function Set3OperandsFromInstr
//
// For the common case of 2- and 3-operand arithmetic/logical instructions,
// set the m/c instr. operands directly from the VM instruction's operands.
// Check whether the first or second operand is 0 and can use a dedicated "0"
// register.
// Check whether the second operand should use an immediate field or register.
// (First and third operands are never immediates for such instructions.)
//
// Arguments:
// canDiscardResult: Specifies that the result operand can be discarded
// by using the dedicated "0"
//
// op1position, op2position and resultPosition: Specify in which position
// in the machine instruction the 3 operands (arg1, arg2
// and result) should go.
//
//------------------------------------------------------------------------
void
Set2OperandsFromInstr(MachineInstr* minstr,
InstructionNode* vmInstrNode,
const TargetMachine& target,
bool canDiscardResult,
int op1Position,
int resultPosition)
{
Set3OperandsFromInstr(minstr, vmInstrNode, target,
canDiscardResult, op1Position,
/*op2Position*/ -1, resultPosition);
}
void
Set3OperandsFromInstr(MachineInstr* minstr,
InstructionNode* vmInstrNode,
const TargetMachine& target,
bool canDiscardResult,
int op1Position,
int op2Position,
int resultPosition)
{
assert(op1Position >= 0);
assert(resultPosition >= 0);
// operand 1
minstr->SetMachineOperandVal(op1Position, MachineOperand::MO_VirtualRegister,
vmInstrNode->leftChild()->getValue());
// operand 2 (if any)
if (op2Position >= 0)
minstr->SetMachineOperandVal(op2Position, MachineOperand::MO_VirtualRegister,
vmInstrNode->rightChild()->getValue());
// result operand: if it can be discarded, use a dead register if one exists
if (canDiscardResult && target.getRegInfo().getZeroRegNum() >= 0)
minstr->SetMachineOperandReg(resultPosition,
target.getRegInfo().getZeroRegNum());
else
minstr->SetMachineOperandVal(resultPosition,
MachineOperand::MO_VirtualRegister, vmInstrNode->getValue());
}
MachineOperand::MachineOperandType
ChooseRegOrImmed(Value* val,
MachineOpCode opCode,
const TargetMachine& target,
bool canUseImmed,
unsigned int& getMachineRegNum,
int64_t& getImmedValue)
{
MachineOperand::MachineOperandType opType =
MachineOperand::MO_VirtualRegister;
getMachineRegNum = 0;
getImmedValue = 0;
// Check for the common case first: argument is not constant
//
Constant *CPV = dyn_cast<Constant>(val);
if (!CPV) return opType;
if (ConstantBool *CPB = dyn_cast<ConstantBool>(CPV))
{
if (!CPB->getValue() && target.getRegInfo().getZeroRegNum() >= 0)
{
getMachineRegNum = target.getRegInfo().getZeroRegNum();
return MachineOperand::MO_MachineRegister;
}
getImmedValue = 1;
return MachineOperand::MO_SignExtendedImmed;
}
// Otherwise it needs to be an integer or a NULL pointer
if (! CPV->getType()->isInteger() &&
! (isa<PointerType>(CPV->getType()) &&
CPV->isNullValue()))
return opType;
// Now get the constant value and check if it fits in the IMMED field.
// Take advantage of the fact that the max unsigned value will rarely
// fit into any IMMED field and ignore that case (i.e., cast smaller
// unsigned constants to signed).
//
int64_t intValue;
if (isa<PointerType>(CPV->getType()))
{
intValue = 0;
}
else if (CPV->getType()->isSigned())
{
intValue = cast<ConstantSInt>(CPV)->getValue();
}
else
{
uint64_t V = cast<ConstantUInt>(CPV)->getValue();
if (V >= INT64_MAX) return opType;
intValue = (int64_t)V;
}
if (intValue == 0 && target.getRegInfo().getZeroRegNum() >= 0)
{
opType = MachineOperand::MO_MachineRegister;
getMachineRegNum = target.getRegInfo().getZeroRegNum();
}
else if (canUseImmed &&
target.getInstrInfo().constantFitsInImmedField(opCode, intValue))
{
opType = CPV->getType()->isSigned()
? MachineOperand::MO_SignExtendedImmed
: MachineOperand::MO_UnextendedImmed;
getImmedValue = intValue;
}
return opType;
}
//---------------------------------------------------------------------------
// Function: FixConstantOperandsForInstr
//
// Purpose:
// Special handling for constant operands of a machine instruction
// -- if the constant is 0, use the hardwired 0 register, if any;
// -- if the constant fits in the IMMEDIATE field, use that field;
// -- else create instructions to put the constant into a register, either
// directly or by loading explicitly from the constant pool.
//
// In the first 2 cases, the operand of `minstr' is modified in place.
// Returns a vector of machine instructions generated for operands that
// fall under case 3; these must be inserted before `minstr'.
//---------------------------------------------------------------------------
vector<MachineInstr*>
FixConstantOperandsForInstr(Instruction* vmInstr,
MachineInstr* minstr,
TargetMachine& target)
{
vector<MachineInstr*> loadConstVec;
const MachineInstrDescriptor& instrDesc =
target.getInstrInfo().getDescriptor(minstr->getOpCode());
Function *F = vmInstr->getParent()->getParent();
for (unsigned op=0; op < minstr->getNumOperands(); op++)
{
const MachineOperand& mop = minstr->getOperand(op);
// skip the result position (for efficiency below) and any other
// positions already marked as not a virtual register
if (instrDesc.resultPos == (int) op ||
mop.getOperandType() != MachineOperand::MO_VirtualRegister ||
mop.getVRegValue() == NULL)
{
continue;
}
Value* opValue = mop.getVRegValue();
bool constantThatMustBeLoaded = false;
if (Constant *opConst = dyn_cast<Constant>(opValue))
{
unsigned int machineRegNum;
int64_t immedValue;
MachineOperand::MachineOperandType opType =
ChooseRegOrImmed(opValue, minstr->getOpCode(), target,
(target.getInstrInfo().getImmedConstantPos(minstr->getOpCode()) == (int) op),
machineRegNum, immedValue);
if (opType == MachineOperand::MO_MachineRegister)
minstr->SetMachineOperandReg(op, machineRegNum);
else if (opType == MachineOperand::MO_VirtualRegister)
constantThatMustBeLoaded = true; // load is generated below
else
minstr->SetMachineOperandConst(op, opType, immedValue);
}
if (constantThatMustBeLoaded || isa<GlobalValue>(opValue))
{ // opValue is a constant that must be explicitly loaded into a reg.
TmpInstruction* tmpReg = InsertCodeToLoadConstant(F, opValue,vmInstr,
loadConstVec,
target);
minstr->SetMachineOperandVal(op, MachineOperand::MO_VirtualRegister,
tmpReg);
}
}
//
// Also, check for implicit operands used by the machine instruction
// (no need to check those defined since they cannot be constants).
// These include:
// -- arguments to a Call
// -- return value of a Return
// Any such operand that is a constant value needs to be fixed also.
// The current instructions with implicit refs (viz., Call and Return)
// have no immediate fields, so the constant always needs to be loaded
// into a register.
//
bool isCall = target.getInstrInfo().isCall(minstr->getOpCode());
unsigned lastCallArgNum = 0; // unused if not a call
CallArgsDescriptor* argDesc = NULL; // unused if not a call
if (isCall)
argDesc = CallArgsDescriptor::get(minstr);
for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i)
if (isa<Constant>(minstr->getImplicitRef(i)) ||
isa<GlobalValue>(minstr->getImplicitRef(i)))
{
Value* oldVal = minstr->getImplicitRef(i);
TmpInstruction* tmpReg =
InsertCodeToLoadConstant(F, oldVal, vmInstr, loadConstVec, target);
minstr->setImplicitRef(i, tmpReg);
if (isCall)
{ // find and replace the argument in the CallArgsDescriptor
unsigned i=lastCallArgNum;
while (argDesc->getArgInfo(i).getArgVal() != oldVal)
++i;
assert(i < argDesc->getNumArgs() &&
"Constant operands to a call *must* be in the arg list");
lastCallArgNum = i;
argDesc->getArgInfo(i).replaceArgVal(tmpReg);
}
}
return loadConstVec;
}