llvm-6502/include/llvm/Support/CallSite.h
David Blaikie 453f4f0130 Use only explicit bool conversion operators
BitVector/SmallBitVector::reference::operator bool remain implicit since
they model more exactly a bool, rather than something else that can be
boolean tested.

The most common (non-buggy) case are where such objects are used as
return expressions in bool-returning functions or as boolean function
arguments. In those cases I've used (& added if necessary) a named
function to provide the equivalent (or sometimes negative, depending on
convenient wording) test.

One behavior change (YAMLParser) was made, though no test case is
included as I'm not sure how to reach that code path. Essentially any
comparison of llvm::yaml::document_iterators would be invalid if neither
iterator was at the end.

This helped uncover a couple of bugs in Clang - test cases provided for
those in a separate commit along with similar changes to `operator bool`
instances in Clang.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181868 91177308-0d34-0410-b5e6-96231b3b80d8
2013-05-15 07:36:59 +00:00

316 lines
11 KiB
C++

//===-- llvm/Support/CallSite.h - Abstract Call & Invoke instrs -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the CallSite class, which is a handy wrapper for code that
// wants to treat Call and Invoke instructions in a generic way. When in non-
// mutation context (e.g. an analysis) ImmutableCallSite should be used.
// Finally, when some degree of customization is necessary between these two
// extremes, CallSiteBase<> can be supplied with fine-tuned parameters.
//
// NOTE: These classes are supposed to have "value semantics". So they should be
// passed by value, not by reference; they should not be "new"ed or "delete"d.
// They are efficiently copyable, assignable and constructable, with cost
// equivalent to copying a pointer (notice that they have only a single data
// member). The internal representation carries a flag which indicates which of
// the two variants is enclosed. This allows for cheaper checks when various
// accessors of CallSite are employed.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_CALLSITE_H
#define LLVM_SUPPORT_CALLSITE_H
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Instructions.h"
namespace llvm {
class CallInst;
class InvokeInst;
template <typename FunTy = const Function,
typename ValTy = const Value,
typename UserTy = const User,
typename InstrTy = const Instruction,
typename CallTy = const CallInst,
typename InvokeTy = const InvokeInst,
typename IterTy = User::const_op_iterator>
class CallSiteBase {
protected:
PointerIntPair<InstrTy*, 1, bool> I;
public:
CallSiteBase() : I(0, false) {}
CallSiteBase(CallTy *CI) : I(CI, true) { assert(CI); }
CallSiteBase(InvokeTy *II) : I(II, false) { assert(II); }
CallSiteBase(ValTy *II) { *this = get(II); }
protected:
/// CallSiteBase::get - This static method is sort of like a constructor. It
/// will create an appropriate call site for a Call or Invoke instruction, but
/// it can also create a null initialized CallSiteBase object for something
/// which is NOT a call site.
///
static CallSiteBase get(ValTy *V) {
if (InstrTy *II = dyn_cast<InstrTy>(V)) {
if (II->getOpcode() == Instruction::Call)
return CallSiteBase(static_cast<CallTy*>(II));
else if (II->getOpcode() == Instruction::Invoke)
return CallSiteBase(static_cast<InvokeTy*>(II));
}
return CallSiteBase();
}
public:
/// isCall - true if a CallInst is enclosed.
/// Note that !isCall() does not mean it is an InvokeInst enclosed,
/// it also could signify a NULL Instruction pointer.
bool isCall() const { return I.getInt(); }
/// isInvoke - true if a InvokeInst is enclosed.
///
bool isInvoke() const { return getInstruction() && !I.getInt(); }
InstrTy *getInstruction() const { return I.getPointer(); }
InstrTy *operator->() const { return I.getPointer(); }
LLVM_EXPLICIT operator bool() const { return I.getPointer(); }
/// getCalledValue - Return the pointer to function that is being called.
///
ValTy *getCalledValue() const {
assert(getInstruction() && "Not a call or invoke instruction!");
return *getCallee();
}
/// getCalledFunction - Return the function being called if this is a direct
/// call, otherwise return null (if it's an indirect call).
///
FunTy *getCalledFunction() const {
return dyn_cast<FunTy>(getCalledValue());
}
/// setCalledFunction - Set the callee to the specified value.
///
void setCalledFunction(Value *V) {
assert(getInstruction() && "Not a call or invoke instruction!");
*getCallee() = V;
}
/// isCallee - Determine whether the passed iterator points to the
/// callee operand's Use.
///
bool isCallee(value_use_iterator<UserTy> UI) const {
return getCallee() == &UI.getUse();
}
ValTy *getArgument(unsigned ArgNo) const {
assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!");
return *(arg_begin() + ArgNo);
}
void setArgument(unsigned ArgNo, Value* newVal) {
assert(getInstruction() && "Not a call or invoke instruction!");
assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!");
getInstruction()->setOperand(ArgNo, newVal);
}
/// Given a value use iterator, returns the argument that corresponds to it.
/// Iterator must actually correspond to an argument.
unsigned getArgumentNo(value_use_iterator<UserTy> I) const {
assert(getInstruction() && "Not a call or invoke instruction!");
assert(arg_begin() <= &I.getUse() && &I.getUse() < arg_end()
&& "Argument # out of range!");
return &I.getUse() - arg_begin();
}
/// arg_iterator - The type of iterator to use when looping over actual
/// arguments at this call site.
typedef IterTy arg_iterator;
/// arg_begin/arg_end - Return iterators corresponding to the actual argument
/// list for a call site.
IterTy arg_begin() const {
assert(getInstruction() && "Not a call or invoke instruction!");
// Skip non-arguments
return (*this)->op_begin();
}
IterTy arg_end() const { return (*this)->op_end() - getArgumentEndOffset(); }
bool arg_empty() const { return arg_end() == arg_begin(); }
unsigned arg_size() const { return unsigned(arg_end() - arg_begin()); }
/// getType - Return the type of the instruction that generated this call site
///
Type *getType() const { return (*this)->getType(); }
/// getCaller - Return the caller function for this call site
///
FunTy *getCaller() const { return (*this)->getParent()->getParent(); }
#define CALLSITE_DELEGATE_GETTER(METHOD) \
InstrTy *II = getInstruction(); \
return isCall() \
? cast<CallInst>(II)->METHOD \
: cast<InvokeInst>(II)->METHOD
#define CALLSITE_DELEGATE_SETTER(METHOD) \
InstrTy *II = getInstruction(); \
if (isCall()) \
cast<CallInst>(II)->METHOD; \
else \
cast<InvokeInst>(II)->METHOD
/// getCallingConv/setCallingConv - get or set the calling convention of the
/// call.
CallingConv::ID getCallingConv() const {
CALLSITE_DELEGATE_GETTER(getCallingConv());
}
void setCallingConv(CallingConv::ID CC) {
CALLSITE_DELEGATE_SETTER(setCallingConv(CC));
}
/// getAttributes/setAttributes - get or set the parameter attributes of
/// the call.
const AttributeSet &getAttributes() const {
CALLSITE_DELEGATE_GETTER(getAttributes());
}
void setAttributes(const AttributeSet &PAL) {
CALLSITE_DELEGATE_SETTER(setAttributes(PAL));
}
/// \brief Return true if this function has the given attribute.
bool hasFnAttr(Attribute::AttrKind A) const {
CALLSITE_DELEGATE_GETTER(hasFnAttr(A));
}
/// \brief Return true if the call or the callee has the given attribute.
bool paramHasAttr(unsigned i, Attribute::AttrKind A) const {
CALLSITE_DELEGATE_GETTER(paramHasAttr(i, A));
}
/// @brief Extract the alignment for a call or parameter (0=unknown).
uint16_t getParamAlignment(uint16_t i) const {
CALLSITE_DELEGATE_GETTER(getParamAlignment(i));
}
/// @brief Return true if the call should not be inlined.
bool isNoInline() const {
CALLSITE_DELEGATE_GETTER(isNoInline());
}
void setIsNoInline(bool Value = true) {
CALLSITE_DELEGATE_SETTER(setIsNoInline(Value));
}
/// @brief Determine if the call does not access memory.
bool doesNotAccessMemory() const {
CALLSITE_DELEGATE_GETTER(doesNotAccessMemory());
}
void setDoesNotAccessMemory() {
CALLSITE_DELEGATE_SETTER(setDoesNotAccessMemory());
}
/// @brief Determine if the call does not access or only reads memory.
bool onlyReadsMemory() const {
CALLSITE_DELEGATE_GETTER(onlyReadsMemory());
}
void setOnlyReadsMemory() {
CALLSITE_DELEGATE_SETTER(setOnlyReadsMemory());
}
/// @brief Determine if the call cannot return.
bool doesNotReturn() const {
CALLSITE_DELEGATE_GETTER(doesNotReturn());
}
void setDoesNotReturn() {
CALLSITE_DELEGATE_SETTER(setDoesNotReturn());
}
/// @brief Determine if the call cannot unwind.
bool doesNotThrow() const {
CALLSITE_DELEGATE_GETTER(doesNotThrow());
}
void setDoesNotThrow() {
CALLSITE_DELEGATE_SETTER(setDoesNotThrow());
}
#undef CALLSITE_DELEGATE_GETTER
#undef CALLSITE_DELEGATE_SETTER
/// @brief Determine whether this argument is not captured.
bool doesNotCapture(unsigned ArgNo) const {
return paramHasAttr(ArgNo + 1, Attribute::NoCapture);
}
/// @brief Determine whether this argument is passed by value.
bool isByValArgument(unsigned ArgNo) const {
return paramHasAttr(ArgNo + 1, Attribute::ByVal);
}
/// hasArgument - Returns true if this CallSite passes the given Value* as an
/// argument to the called function.
bool hasArgument(const Value *Arg) const {
for (arg_iterator AI = this->arg_begin(), E = this->arg_end(); AI != E;
++AI)
if (AI->get() == Arg)
return true;
return false;
}
private:
unsigned getArgumentEndOffset() const {
if (isCall())
return 1; // Skip Callee
else
return 3; // Skip BB, BB, Callee
}
IterTy getCallee() const {
if (isCall()) // Skip Callee
return cast<CallInst>(getInstruction())->op_end() - 1;
else // Skip BB, BB, Callee
return cast<InvokeInst>(getInstruction())->op_end() - 3;
}
};
class CallSite : public CallSiteBase<Function, Value, User, Instruction,
CallInst, InvokeInst, User::op_iterator> {
typedef CallSiteBase<Function, Value, User, Instruction,
CallInst, InvokeInst, User::op_iterator> Base;
public:
CallSite() {}
CallSite(Base B) : Base(B) {}
CallSite(Value* V) : Base(V) {}
CallSite(CallInst *CI) : Base(CI) {}
CallSite(InvokeInst *II) : Base(II) {}
CallSite(Instruction *II) : Base(II) {}
bool operator==(const CallSite &CS) const { return I == CS.I; }
bool operator!=(const CallSite &CS) const { return I != CS.I; }
bool operator<(const CallSite &CS) const {
return getInstruction() < CS.getInstruction();
}
private:
User::op_iterator getCallee() const;
};
/// ImmutableCallSite - establish a view to a call site for examination
class ImmutableCallSite : public CallSiteBase<> {
typedef CallSiteBase<> Base;
public:
ImmutableCallSite(const Value* V) : Base(V) {}
ImmutableCallSite(const CallInst *CI) : Base(CI) {}
ImmutableCallSite(const InvokeInst *II) : Base(II) {}
ImmutableCallSite(const Instruction *II) : Base(II) {}
ImmutableCallSite(CallSite CS) : Base(CS.getInstruction()) {}
};
} // End llvm namespace
#endif