llvm-6502/lib/CodeGen/InstrSched/InstrScheduling.cpp
Vikram S. Adve c5b4632c27 Bug fixes:
(1) Ensure that delay slot instructions are not moved out of place (this
    was happening for some CALL instructions).  Basically, we need to
    move all delay slot instructions out of the graph and handle them
    along with the delayed control transfer instruction.
(2) Mark scheduled instructions correctly when instructions are scheduled
    in more than one cycle in a single step (due to delay slots).


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@678 91177308-0d34-0410-b5e6-96231b3b80d8
2001-09-30 23:43:34 +00:00

1517 lines
48 KiB
C++

// $Id$
//***************************************************************************
// File:
// InstrScheduling.cpp
//
// Purpose:
//
// History:
// 7/23/01 - Vikram Adve - Created
//**************************************************************************/
//************************* User Include Files *****************************/
#include "llvm/CodeGen/InstrScheduling.h"
#include "SchedPriorities.h"
#include "llvm/Analysis/LiveVar/BBLiveVar.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Instruction.h"
//************************ System Include Files *****************************/
#include <hash_set>
#include <algorithm>
#include <iterator>
//************************* External Data Types *****************************/
cl::Enum<enum SchedDebugLevel_t> SchedDebugLevel("dsched", cl::NoFlags,
"enable instruction scheduling debugging information",
clEnumValN(Sched_NoDebugInfo, "n", "disable debug output"),
clEnumValN(Sched_PrintMachineCode, "y", "print machine code after scheduling"),
clEnumValN(Sched_PrintSchedTrace, "t", "print trace of scheduling actions"),
clEnumValN(Sched_PrintSchedGraphs, "g", "print scheduling graphs"), 0);
//************************* Internal Data Types *****************************/
class InstrSchedule;
class SchedulingManager;
class DelaySlotInfo;
//----------------------------------------------------------------------
// class InstrGroup:
//
// Represents a group of instructions scheduled to be issued
// in a single cycle.
//----------------------------------------------------------------------
class InstrGroup: public NonCopyable {
public:
inline const SchedGraphNode* operator[](unsigned int slotNum) const {
assert(slotNum < group.size());
return group[slotNum];
}
private:
friend class InstrSchedule;
inline void addInstr(const SchedGraphNode* node, unsigned int slotNum) {
assert(slotNum < group.size());
group[slotNum] = node;
}
/*ctor*/ InstrGroup(unsigned int nslots)
: group(nslots, NULL) {}
/*ctor*/ InstrGroup(); // disable: DO NOT IMPLEMENT
private:
vector<const SchedGraphNode*> group;
};
//----------------------------------------------------------------------
// class ScheduleIterator:
//
// Iterates over the machine instructions in the for a single basic block.
// The schedule is represented by an InstrSchedule object.
//----------------------------------------------------------------------
template<class _NodeType>
class ScheduleIterator: public std::forward_iterator<_NodeType, ptrdiff_t> {
private:
unsigned cycleNum;
unsigned slotNum;
const InstrSchedule& S;
public:
typedef ScheduleIterator<_NodeType> _Self;
/*ctor*/ inline ScheduleIterator(const InstrSchedule& _schedule,
unsigned _cycleNum,
unsigned _slotNum)
: cycleNum(_cycleNum), slotNum(_slotNum), S(_schedule) {
skipToNextInstr();
}
/*ctor*/ inline ScheduleIterator(const _Self& x)
: cycleNum(x.cycleNum), slotNum(x.slotNum), S(x.S) {}
inline bool operator==(const _Self& x) const {
return (slotNum == x.slotNum && cycleNum== x.cycleNum && &S==&x.S);
}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline _NodeType* operator*() const {
assert(cycleNum < S.groups.size());
return (*S.groups[cycleNum])[slotNum];
}
inline _NodeType* operator->() const { return operator*(); }
_Self& operator++(); // Preincrement
inline _Self operator++(int) { // Postincrement
_Self tmp(*this); ++*this; return tmp;
}
static _Self begin(const InstrSchedule& _schedule);
static _Self end( const InstrSchedule& _schedule);
private:
inline _Self& operator=(const _Self& x); // DISABLE -- DO NOT IMPLEMENT
void skipToNextInstr();
};
//----------------------------------------------------------------------
// class InstrSchedule:
//
// Represents the schedule of machine instructions for a single basic block.
//----------------------------------------------------------------------
class InstrSchedule: public NonCopyable {
private:
const unsigned int nslots;
unsigned int numInstr;
vector<InstrGroup*> groups; // indexed by cycle number
vector<cycles_t> startTime; // indexed by node id
public: // iterators
typedef ScheduleIterator<SchedGraphNode> iterator;
typedef ScheduleIterator<const SchedGraphNode> const_iterator;
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
public: // constructors and destructor
/*ctor*/ InstrSchedule (unsigned int _nslots,
unsigned int _numNodes);
/*dtor*/ ~InstrSchedule ();
public: // accessor functions to query chosen schedule
const SchedGraphNode* getInstr (unsigned int slotNum,
cycles_t c) const {
const InstrGroup* igroup = this->getIGroup(c);
return (igroup == NULL)? NULL : (*igroup)[slotNum];
}
inline InstrGroup* getIGroup (cycles_t c) {
if (c >= groups.size())
groups.resize(c+1);
if (groups[c] == NULL)
groups[c] = new InstrGroup(nslots);
return groups[c];
}
inline const InstrGroup* getIGroup (cycles_t c) const {
assert(c < groups.size());
return groups[c];
}
inline cycles_t getStartTime (unsigned int nodeId) const {
assert(nodeId < startTime.size());
return startTime[nodeId];
}
unsigned int getNumInstructions() const {
return numInstr;
}
inline void scheduleInstr (const SchedGraphNode* node,
unsigned int slotNum,
cycles_t cycle) {
InstrGroup* igroup = this->getIGroup(cycle);
assert((*igroup)[slotNum] == NULL && "Slot already filled?");
igroup->addInstr(node, slotNum);
assert(node->getNodeId() < startTime.size());
startTime[node->getNodeId()] = cycle;
++numInstr;
}
private:
friend class iterator;
friend class const_iterator;
/*ctor*/ InstrSchedule (); // Disable: DO NOT IMPLEMENT.
};
/*ctor*/
InstrSchedule::InstrSchedule(unsigned int _nslots, unsigned int _numNodes)
: nslots(_nslots),
numInstr(0),
groups(2 * _numNodes / _nslots), // 2 x lower-bound for #cycles
startTime(_numNodes, (cycles_t) -1) // set all to -1
{
}
/*dtor*/
InstrSchedule::~InstrSchedule()
{
for (unsigned c=0, NC=groups.size(); c < NC; c++)
if (groups[c] != NULL)
delete groups[c]; // delete InstrGroup objects
}
template<class _NodeType>
inline
void
ScheduleIterator<_NodeType>::skipToNextInstr()
{
while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL)
++cycleNum; // skip cycles with no instructions
while (cycleNum < S.groups.size() &&
(*S.groups[cycleNum])[slotNum] == NULL)
{
++slotNum;
if (slotNum == S.nslots)
{
++cycleNum;
slotNum = 0;
while(cycleNum < S.groups.size() && S.groups[cycleNum] == NULL)
++cycleNum; // skip cycles with no instructions
}
}
}
template<class _NodeType>
inline
ScheduleIterator<_NodeType>&
ScheduleIterator<_NodeType>::operator++() // Preincrement
{
++slotNum;
if (slotNum == S.nslots)
{
++cycleNum;
slotNum = 0;
}
skipToNextInstr();
return *this;
}
template<class _NodeType>
ScheduleIterator<_NodeType>
ScheduleIterator<_NodeType>::begin(const InstrSchedule& _schedule)
{
return _Self(_schedule, 0, 0);
}
template<class _NodeType>
ScheduleIterator<_NodeType>
ScheduleIterator<_NodeType>::end(const InstrSchedule& _schedule)
{
return _Self(_schedule, _schedule.groups.size(), 0);
}
InstrSchedule::iterator
InstrSchedule::begin()
{
return iterator::begin(*this);
}
InstrSchedule::const_iterator
InstrSchedule::begin() const
{
return const_iterator::begin(*this);
}
InstrSchedule::iterator
InstrSchedule::end()
{
return iterator::end(*this);
}
InstrSchedule::const_iterator
InstrSchedule::end() const
{
return const_iterator::end( *this);
}
//----------------------------------------------------------------------
// class DelaySlotInfo:
//
// Record information about delay slots for a single branch instruction.
// Delay slots are simply indexed by slot number 1 ... numDelaySlots
//----------------------------------------------------------------------
class DelaySlotInfo: public NonCopyable {
private:
const SchedGraphNode* brNode;
unsigned int ndelays;
vector<const SchedGraphNode*> delayNodeVec;
cycles_t delayedNodeCycle;
unsigned int delayedNodeSlotNum;
public:
/*ctor*/ DelaySlotInfo (const SchedGraphNode* _brNode,
unsigned _ndelays)
: brNode(_brNode), ndelays(_ndelays),
delayedNodeCycle(0), delayedNodeSlotNum(0) {}
inline unsigned getNumDelays () {
return ndelays;
}
inline const vector<const SchedGraphNode*>& getDelayNodeVec() {
return delayNodeVec;
}
inline void addDelayNode (const SchedGraphNode* node) {
delayNodeVec.push_back(node);
assert(delayNodeVec.size() <= ndelays && "Too many delay slot instrs!");
}
inline void recordChosenSlot (cycles_t cycle, unsigned slotNum) {
delayedNodeCycle = cycle;
delayedNodeSlotNum = slotNum;
}
unsigned scheduleDelayedNode (SchedulingManager& S);
};
//----------------------------------------------------------------------
// class SchedulingManager:
//
// Represents the schedule of machine instructions for a single basic block.
//----------------------------------------------------------------------
class SchedulingManager: public NonCopyable {
public: // publicly accessible data members
const unsigned int nslots;
const MachineSchedInfo& schedInfo;
SchedPriorities& schedPrio;
InstrSchedule isched;
private:
unsigned int totalInstrCount;
cycles_t curTime;
cycles_t nextEarliestIssueTime; // next cycle we can issue
vector<hash_set<const SchedGraphNode*> > choicesForSlot; // indexed by slot#
vector<const SchedGraphNode*> choiceVec; // indexed by node ptr
vector<int> numInClass; // indexed by sched class
vector<cycles_t> nextEarliestStartTime; // indexed by opCode
hash_map<const SchedGraphNode*, DelaySlotInfo*> delaySlotInfoForBranches;
// indexed by branch node ptr
public:
/*ctor*/ SchedulingManager (const TargetMachine& _target,
const SchedGraph* graph,
SchedPriorities& schedPrio);
/*dtor*/ ~SchedulingManager () {}
//----------------------------------------------------------------------
// Simplify access to the machine instruction info
//----------------------------------------------------------------------
inline const MachineInstrInfo& getInstrInfo () const {
return schedInfo.getInstrInfo();
}
//----------------------------------------------------------------------
// Interface for checking and updating the current time
//----------------------------------------------------------------------
inline cycles_t getTime () const {
return curTime;
}
inline cycles_t getEarliestIssueTime() const {
return nextEarliestIssueTime;
}
inline cycles_t getEarliestStartTimeForOp(MachineOpCode opCode) const {
assert(opCode < (int) nextEarliestStartTime.size());
return nextEarliestStartTime[opCode];
}
// Update current time to specified cycle
inline void updateTime (cycles_t c) {
curTime = c;
schedPrio.updateTime(c);
}
//----------------------------------------------------------------------
// Functions to manage the choices for the current cycle including:
// -- a vector of choices by priority (choiceVec)
// -- vectors of the choices for each instruction slot (choicesForSlot[])
// -- number of choices in each sched class, used to check issue conflicts
// between choices for a single cycle
//----------------------------------------------------------------------
inline unsigned int getNumChoices () const {
return choiceVec.size();
}
inline unsigned getNumChoicesInClass (const InstrSchedClass& sc) const {
assert(sc < (int) numInClass.size() && "Invalid op code or sched class!");
return numInClass[sc];
}
inline const SchedGraphNode* getChoice(unsigned int i) const {
// assert(i < choiceVec.size()); don't check here.
return choiceVec[i];
}
inline hash_set<const SchedGraphNode*>& getChoicesForSlot(unsigned slotNum) {
assert(slotNum < nslots);
return choicesForSlot[slotNum];
}
inline void addChoice (const SchedGraphNode* node) {
// Append the instruction to the vector of choices for current cycle.
// Increment numInClass[c] for the sched class to which the instr belongs.
choiceVec.push_back(node);
const InstrSchedClass& sc = schedInfo.getSchedClass(node->getMachineInstr()->getOpCode());
assert(sc < (int) numInClass.size());
numInClass[sc]++;
}
inline void addChoiceToSlot (unsigned int slotNum,
const SchedGraphNode* node) {
// Add the instruction to the choice set for the specified slot
assert(slotNum < nslots);
choicesForSlot[slotNum].insert(node);
}
inline void resetChoices () {
choiceVec.clear();
for (unsigned int s=0; s < nslots; s++)
choicesForSlot[s].clear();
for (unsigned int c=0; c < numInClass.size(); c++)
numInClass[c] = 0;
}
//----------------------------------------------------------------------
// Code to query and manage the partial instruction schedule so far
//----------------------------------------------------------------------
inline unsigned int getNumScheduled () const {
return isched.getNumInstructions();
}
inline unsigned int getNumUnscheduled() const {
return totalInstrCount - isched.getNumInstructions();
}
inline bool isScheduled (const SchedGraphNode* node) const {
return (isched.getStartTime(node->getNodeId()) >= 0);
}
inline void scheduleInstr (const SchedGraphNode* node,
unsigned int slotNum,
cycles_t cycle)
{
assert(! isScheduled(node) && "Instruction already scheduled?");
// add the instruction to the schedule
isched.scheduleInstr(node, slotNum, cycle);
// update the earliest start times of all nodes that conflict with `node'
// and the next-earliest time anything can issue if `node' causes bubbles
updateEarliestStartTimes(node, cycle);
// remove the instruction from the choice sets for all slots
for (unsigned s=0; s < nslots; s++)
choicesForSlot[s].erase(node);
// and decrement the instr count for the sched class to which it belongs
const InstrSchedClass& sc = schedInfo.getSchedClass(node->getMachineInstr()->getOpCode());
assert(sc < (int) numInClass.size());
numInClass[sc]--;
}
//----------------------------------------------------------------------
// Create and retrieve delay slot info for delayed instructions
//----------------------------------------------------------------------
inline DelaySlotInfo* getDelaySlotInfoForInstr(const SchedGraphNode* bn,
bool createIfMissing=false)
{
DelaySlotInfo* dinfo;
hash_map<const SchedGraphNode*, DelaySlotInfo* >::const_iterator
I = delaySlotInfoForBranches.find(bn);
if (I == delaySlotInfoForBranches.end())
{
if (createIfMissing)
{
dinfo = new DelaySlotInfo(bn,
getInstrInfo().getNumDelaySlots(bn->getMachineInstr()->getOpCode()));
delaySlotInfoForBranches[bn] = dinfo;
}
else
dinfo = NULL;
}
else
dinfo = (*I).second;
return dinfo;
}
private:
/*ctor*/ SchedulingManager (); // Disable: DO NOT IMPLEMENT.
void updateEarliestStartTimes(const SchedGraphNode* node,
cycles_t schedTime);
};
/*ctor*/
SchedulingManager::SchedulingManager(const TargetMachine& target,
const SchedGraph* graph,
SchedPriorities& _schedPrio)
: nslots(target.getSchedInfo().getMaxNumIssueTotal()),
schedInfo(target.getSchedInfo()),
schedPrio(_schedPrio),
isched(nslots, graph->getNumNodes()),
totalInstrCount(graph->getNumNodes() - 2),
nextEarliestIssueTime(0),
choicesForSlot(nslots),
numInClass(target.getSchedInfo().getNumSchedClasses(), 0), // set all to 0
nextEarliestStartTime(target.getInstrInfo().getNumRealOpCodes(),
(cycles_t) 0) // set all to 0
{
updateTime(0);
// Note that an upper bound on #choices for each slot is = nslots since
// we use this vector to hold a feasible set of instructions, and more
// would be infeasible. Reserve that much memory since it is probably small.
for (unsigned int i=0; i < nslots; i++)
choicesForSlot[i].resize(nslots);
}
void
SchedulingManager::updateEarliestStartTimes(const SchedGraphNode* node,
cycles_t schedTime)
{
if (schedInfo.numBubblesAfter(node->getMachineInstr()->getOpCode()) > 0)
{ // Update next earliest time before which *nothing* can issue.
nextEarliestIssueTime = max(nextEarliestIssueTime,
curTime + 1 + schedInfo.numBubblesAfter(node->getMachineInstr()->getOpCode()));
}
const vector<MachineOpCode>*
conflictVec = schedInfo.getConflictList(node->getMachineInstr()->getOpCode());
if (conflictVec != NULL)
for (unsigned i=0; i < conflictVec->size(); i++)
{
MachineOpCode toOp = (*conflictVec)[i];
cycles_t est = schedTime + schedInfo.getMinIssueGap(node->getMachineInstr()->getOpCode(),
toOp);
assert(toOp < (int) nextEarliestStartTime.size());
if (nextEarliestStartTime[toOp] < est)
nextEarliestStartTime[toOp] = est;
}
}
//************************* Internal Functions *****************************/
static void
AssignInstructionsToSlots(class SchedulingManager& S, unsigned maxIssue)
{
// find the slot to start from, in the current cycle
unsigned int startSlot = 0;
cycles_t curTime = S.getTime();
assert(maxIssue > 0 && maxIssue <= S.nslots - startSlot);
// If only one instruction can be issued, do so.
if (maxIssue == 1)
for (unsigned s=startSlot; s < S.nslots; s++)
if (S.getChoicesForSlot(s).size() > 0)
{// found the one instruction
S.scheduleInstr(*S.getChoicesForSlot(s).begin(), s, curTime);
return;
}
// Otherwise, choose from the choices for each slot
//
InstrGroup* igroup = S.isched.getIGroup(S.getTime());
assert(igroup != NULL && "Group creation failed?");
// Find a slot that has only a single choice, and take it.
// If all slots have 0 or multiple choices, pick the first slot with
// choices and use its last instruction (just to avoid shifting the vector).
unsigned numIssued;
for (numIssued = 0; numIssued < maxIssue; numIssued++)
{
int chosenSlot = -1, chosenNodeIndex = -1;
for (unsigned s=startSlot; s < S.nslots; s++)
if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() == 1)
{
chosenSlot = (int) s;
break;
}
if (chosenSlot == -1)
for (unsigned s=startSlot; s < S.nslots; s++)
if ((*igroup)[s] == NULL && S.getChoicesForSlot(s).size() > 0)
{
chosenSlot = (int) s;
break;
}
if (chosenSlot != -1)
{ // Insert the chosen instr in the chosen slot and
// erase it from all slots.
const SchedGraphNode* node= *S.getChoicesForSlot(chosenSlot).begin();
S.scheduleInstr(node, chosenSlot, curTime);
}
}
assert(numIssued > 0 && "Should not happen when maxIssue > 0!");
}
//
// For now, just assume we are scheduling within a single basic block.
// Get the machine instruction vector for the basic block and clear it,
// then append instructions in scheduled order.
// Also, re-insert the dummy PHI instructions that were at the beginning
// of the basic block, since they are not part of the schedule.
//
static void
RecordSchedule(const BasicBlock* bb, const SchedulingManager& S)
{
MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
const MachineInstrInfo& mii = S.schedInfo.getInstrInfo();
#ifndef NDEBUG
// Lets make sure we didn't lose any instructions, except possibly
// some NOPs from delay slots. Also, PHIs are not included in the schedule.
unsigned numInstr = 0;
for (MachineCodeForBasicBlock::iterator I=mvec.begin(); I != mvec.end(); ++I)
if (! mii.isNop((*I)->getOpCode()) &&
! mii.isDummyPhiInstr((*I)->getOpCode()))
++numInstr;
assert(S.isched.getNumInstructions() >= numInstr &&
"Lost some non-NOP instructions during scheduling!");
#endif
if (S.isched.getNumInstructions() == 0)
return; // empty basic block!
// First find the dummy instructions at the start of the basic block
MachineCodeForBasicBlock::iterator I = mvec.begin();
for ( ; I != mvec.end(); ++I)
if (! mii.isDummyPhiInstr((*I)->getOpCode()))
break;
// Erase all except the dummy PHI instructions from mvec, and
// pre-allocate create space for the ones we will put back in.
mvec.erase(I, mvec.end());
mvec.reserve(mvec.size() + S.isched.getNumInstructions());
InstrSchedule::const_iterator NIend = S.isched.end();
for (InstrSchedule::const_iterator NI = S.isched.begin(); NI != NIend; ++NI)
mvec.push_back(const_cast<MachineInstr*>((*NI)->getMachineInstr()));
}
static void
MarkSuccessorsReady(SchedulingManager& S, const SchedGraphNode* node)
{
// Check if any successors are now ready that were not already marked
// ready before, and that have not yet been scheduled.
//
for (sg_succ_const_iterator SI = succ_begin(node); SI !=succ_end(node); ++SI)
if (! (*SI)->isDummyNode()
&& ! S.isScheduled(*SI)
&& ! S.schedPrio.nodeIsReady(*SI))
{// successor not scheduled and not marked ready; check *its* preds.
bool succIsReady = true;
for (sg_pred_const_iterator P=pred_begin(*SI); P != pred_end(*SI); ++P)
if (! (*P)->isDummyNode()
&& ! S.isScheduled(*P))
{
succIsReady = false;
break;
}
if (succIsReady) // add the successor to the ready list
S.schedPrio.insertReady(*SI);
}
}
// Choose up to `nslots' FEASIBLE instructions and assign each
// instruction to all possible slots that do not violate feasibility.
// FEASIBLE means it should be guaranteed that the set
// of chosen instructions can be issued in a single group.
//
// Return value:
// maxIssue : total number of feasible instructions
// S.choicesForSlot[i=0..nslots] : set of instructions feasible in slot i
//
static unsigned
FindSlotChoices(SchedulingManager& S,
DelaySlotInfo*& getDelaySlotInfo)
{
// initialize result vectors to empty
S.resetChoices();
// find the slot to start from, in the current cycle
unsigned int startSlot = 0;
InstrGroup* igroup = S.isched.getIGroup(S.getTime());
for (int s = S.nslots - 1; s >= 0; s--)
if ((*igroup)[s] != NULL)
{
startSlot = s+1;
break;
}
// Make sure we pick at most one instruction that would break the group.
// Also, if we do pick one, remember which it was.
unsigned int indexForBreakingNode = S.nslots;
unsigned int indexForDelayedInstr = S.nslots;
DelaySlotInfo* delaySlotInfo = NULL;
getDelaySlotInfo = NULL;
// Choose instructions in order of priority.
// Add choices to the choice vector in the SchedulingManager class as
// we choose them so that subsequent choices will be correctly tested
// for feasibility, w.r.t. higher priority choices for the same cycle.
//
while (S.getNumChoices() < S.nslots - startSlot)
{
const SchedGraphNode* nextNode=S.schedPrio.getNextHighest(S,S.getTime());
if (nextNode == NULL)
break; // no more instructions for this cycle
if (S.getInstrInfo().getNumDelaySlots(nextNode->getMachineInstr()->getOpCode()) > 0)
{
delaySlotInfo = S.getDelaySlotInfoForInstr(nextNode);
if (delaySlotInfo != NULL)
{
if (indexForBreakingNode < S.nslots)
// cannot issue a delayed instr in the same cycle as one
// that breaks the issue group or as another delayed instr
nextNode = NULL;
else
indexForDelayedInstr = S.getNumChoices();
}
}
else if (S.schedInfo.breaksIssueGroup(nextNode->getMachineInstr()->getOpCode()))
{
if (indexForBreakingNode < S.nslots)
// have a breaking instruction already so throw this one away
nextNode = NULL;
else
indexForBreakingNode = S.getNumChoices();
}
if (nextNode != NULL)
S.addChoice(nextNode);
if (S.schedInfo.isSingleIssue(nextNode->getMachineInstr()->getOpCode()))
{
assert(S.getNumChoices() == 1 &&
"Prioritizer returned invalid instr for this cycle!");
break;
}
if (indexForDelayedInstr < S.nslots)
break; // leave the rest for delay slots
}
assert(S.getNumChoices() <= S.nslots);
assert(! (indexForDelayedInstr < S.nslots &&
indexForBreakingNode < S.nslots) && "Cannot have both in a cycle");
// Assign each chosen instruction to all possible slots for that instr.
// But if only one instruction was chosen, put it only in the first
// feasible slot; no more analysis will be needed.
//
if (indexForDelayedInstr >= S.nslots &&
indexForBreakingNode >= S.nslots)
{ // No instructions that break the issue group or that have delay slots.
// This is the common case, so handle it separately for efficiency.
if (S.getNumChoices() == 1)
{
MachineOpCode opCode = S.getChoice(0)->getMachineInstr()->getOpCode();
unsigned int s;
for (s=startSlot; s < S.nslots; s++)
if (S.schedInfo.instrCanUseSlot(opCode, s))
break;
assert(s < S.nslots && "No feasible slot for this opCode?");
S.addChoiceToSlot(s, S.getChoice(0));
}
else
{
for (unsigned i=0; i < S.getNumChoices(); i++)
{
MachineOpCode opCode = S.getChoice(i)->getMachineInstr()->getOpCode();
for (unsigned int s=startSlot; s < S.nslots; s++)
if (S.schedInfo.instrCanUseSlot(opCode, s))
S.addChoiceToSlot(s, S.getChoice(i));
}
}
}
else if (indexForDelayedInstr < S.nslots)
{
// There is an instruction that needs delay slots.
// Try to assign that instruction to a higher slot than any other
// instructions in the group, so that its delay slots can go
// right after it.
//
assert(indexForDelayedInstr == S.getNumChoices() - 1 &&
"Instruction with delay slots should be last choice!");
assert(delaySlotInfo != NULL && "No delay slot info for instr?");
const SchedGraphNode* delayedNode = S.getChoice(indexForDelayedInstr);
MachineOpCode delayOpCode = delayedNode->getMachineInstr()->getOpCode();
unsigned ndelays= S.getInstrInfo().getNumDelaySlots(delayOpCode);
unsigned delayedNodeSlot = S.nslots;
int highestSlotUsed;
// Find the last possible slot for the delayed instruction that leaves
// at least `d' slots vacant after it (d = #delay slots)
for (int s = S.nslots-ndelays-1; s >= (int) startSlot; s--)
if (S.schedInfo.instrCanUseSlot(delayOpCode, s))
{
delayedNodeSlot = s;
break;
}
highestSlotUsed = -1;
for (unsigned i=0; i < S.getNumChoices() - 1; i++)
{
// Try to assign every other instruction to a lower numbered
// slot than delayedNodeSlot.
MachineOpCode opCode =S.getChoice(i)->getMachineInstr()->getOpCode();
bool noSlotFound = true;
unsigned int s;
for (s=startSlot; s < delayedNodeSlot; s++)
if (S.schedInfo.instrCanUseSlot(opCode, s))
{
S.addChoiceToSlot(s, S.getChoice(i));
noSlotFound = false;
}
// No slot before `delayedNodeSlot' was found for this opCode
// Use a later slot, and allow some delay slots to fall in
// the next cycle.
if (noSlotFound)
for ( ; s < S.nslots; s++)
if (S.schedInfo.instrCanUseSlot(opCode, s))
{
S.addChoiceToSlot(s, S.getChoice(i));
break;
}
assert(s < S.nslots && "No feasible slot for instruction?");
highestSlotUsed = max(highestSlotUsed, (int) s);
}
assert(highestSlotUsed <= (int) S.nslots-1 && "Invalid slot used?");
// We will put the delayed node in the first slot after the
// highest slot used. But we just mark that for now, and
// schedule it separately because we want to schedule the delay
// slots for the node at the same time.
cycles_t dcycle = S.getTime();
unsigned int dslot = highestSlotUsed + 1;
if (dslot == S.nslots)
{
dslot = 0;
++dcycle;
}
delaySlotInfo->recordChosenSlot(dcycle, dslot);
getDelaySlotInfo = delaySlotInfo;
}
else
{ // There is an instruction that breaks the issue group.
// For such an instruction, assign to the last possible slot in
// the current group, and then don't assign any other instructions
// to later slots.
assert(indexForBreakingNode < S.nslots);
const SchedGraphNode* breakingNode=S.getChoice(indexForBreakingNode);
unsigned breakingSlot = INT_MAX;
unsigned int nslotsToUse = S.nslots;
// Find the last possible slot for this instruction.
for (int s = S.nslots-1; s >= (int) startSlot; s--)
if (S.schedInfo.instrCanUseSlot(breakingNode->getMachineInstr()->getOpCode(), s))
{
breakingSlot = s;
break;
}
assert(breakingSlot < S.nslots &&
"No feasible slot for `breakingNode'?");
// Higher priority instructions than the one that breaks the group:
// These can be assigned to all slots, but will be assigned only
// to earlier slots if possible.
for (unsigned i=0;
i < S.getNumChoices() && i < indexForBreakingNode; i++)
{
MachineOpCode opCode =S.getChoice(i)->getMachineInstr()->getOpCode();
// If a higher priority instruction cannot be assigned to
// any earlier slots, don't schedule the breaking instruction.
//
bool foundLowerSlot = false;
nslotsToUse = S.nslots; // May be modified in the loop
for (unsigned int s=startSlot; s < nslotsToUse; s++)
if (S.schedInfo.instrCanUseSlot(opCode, s))
{
if (breakingSlot < S.nslots && s < breakingSlot)
{
foundLowerSlot = true;
nslotsToUse = breakingSlot; // RESETS LOOP UPPER BOUND!
}
S.addChoiceToSlot(s, S.getChoice(i));
}
if (!foundLowerSlot)
breakingSlot = INT_MAX; // disable breaking instr
}
// Assign the breaking instruction (if any) to a single slot
// Otherwise, just ignore the instruction. It will simply be
// scheduled in a later cycle.
if (breakingSlot < S.nslots)
{
S.addChoiceToSlot(breakingSlot, breakingNode);
nslotsToUse = breakingSlot;
}
else
nslotsToUse = S.nslots;
// For lower priority instructions than the one that breaks the
// group, only assign them to slots lower than the breaking slot.
// Otherwise, just ignore the instruction.
for (unsigned i=indexForBreakingNode+1; i < S.getNumChoices(); i++)
{
bool foundLowerSlot = false;
MachineOpCode opCode = S.getChoice(i)->getMachineInstr()->getOpCode();
for (unsigned int s=startSlot; s < nslotsToUse; s++)
if (S.schedInfo.instrCanUseSlot(opCode, s))
S.addChoiceToSlot(s, S.getChoice(i));
}
} // endif (no delay slots and no breaking slots)
return S.getNumChoices();
}
static unsigned
ChooseOneGroup(SchedulingManager& S)
{
assert(S.schedPrio.getNumReady() > 0
&& "Don't get here without ready instructions.");
cycles_t firstCycle = S.getTime();
DelaySlotInfo* getDelaySlotInfo = NULL;
// Choose up to `nslots' feasible instructions and their possible slots.
unsigned numIssued = FindSlotChoices(S, getDelaySlotInfo);
while (numIssued == 0)
{
S.updateTime(S.getTime()+1);
numIssued = FindSlotChoices(S, getDelaySlotInfo);
}
AssignInstructionsToSlots(S, numIssued);
if (getDelaySlotInfo != NULL)
numIssued += getDelaySlotInfo->scheduleDelayedNode(S);
// Print trace of scheduled instructions before newly ready ones
if (SchedDebugLevel >= Sched_PrintSchedTrace)
{
for (cycles_t c = firstCycle; c <= S.getTime(); c++)
{
cout << " Cycle " << c << " : Scheduled instructions:\n";
const InstrGroup* igroup = S.isched.getIGroup(c);
for (unsigned int s=0; s < S.nslots; s++)
{
cout << " ";
if ((*igroup)[s] != NULL)
cout << * ((*igroup)[s])->getMachineInstr() << endl;
else
cout << "<none>" << endl;
}
}
}
return numIssued;
}
static void
ForwardListSchedule(SchedulingManager& S)
{
unsigned N;
const SchedGraphNode* node;
S.schedPrio.initialize();
while ((N = S.schedPrio.getNumReady()) > 0)
{
cycles_t nextCycle = S.getTime();
// Choose one group of instructions for a cycle, plus any delay slot
// instructions (which may overflow into successive cycles).
// This will advance S.getTime() to the last cycle in which
// instructions are actually issued.
//
unsigned numIssued = ChooseOneGroup(S);
assert(numIssued > 0 && "Deadlock in list scheduling algorithm?");
// Notify the priority manager of scheduled instructions and mark
// any successors that may now be ready
//
for (cycles_t c = nextCycle; c <= S.getTime(); c++)
{
const InstrGroup* igroup = S.isched.getIGroup(c);
for (unsigned int s=0; s < S.nslots; s++)
if ((node = (*igroup)[s]) != NULL)
{
S.schedPrio.issuedReadyNodeAt(S.getTime(), node);
MarkSuccessorsReady(S, node);
}
}
// Move to the next the next earliest cycle for which
// an instruction can be issued, or the next earliest in which
// one will be ready, or to the next cycle, whichever is latest.
//
S.updateTime(max(S.getTime() + 1,
max(S.getEarliestIssueTime(),
S.schedPrio.getEarliestReadyTime())));
}
}
//---------------------------------------------------------------------
// Code for filling delay slots for delayed terminator instructions
// (e.g., BRANCH and RETURN). Delay slots for non-terminator
// instructions (e.g., CALL) are not handled here because they almost
// always can be filled with instructions from the call sequence code
// before a call. That's preferable because we incur many tradeoffs here
// when we cannot find single-cycle instructions that can be reordered.
//----------------------------------------------------------------------
static bool
NodeCanFillDelaySlot(const SchedulingManager& S,
const SchedGraphNode* node,
const SchedGraphNode* brNode,
bool nodeIsPredecessor)
{
assert(! node->isDummyNode());
// don't put a branch in the delay slot of another branch
if (S.getInstrInfo().isBranch(node->getMachineInstr()->getOpCode()))
return false;
// don't put a single-issue instruction in the delay slot of a branch
if (S.schedInfo.isSingleIssue(node->getMachineInstr()->getOpCode()))
return false;
// don't put a load-use dependence in the delay slot of a branch
const MachineInstrInfo& mii = S.getInstrInfo();
for (SchedGraphNode::const_iterator EI = node->beginInEdges();
EI != node->endInEdges(); ++EI)
if (! (*EI)->getSrc()->isDummyNode()
&& mii.isLoad((*EI)->getSrc()->getMachineInstr()->getOpCode())
&& (*EI)->getDepType() == SchedGraphEdge::CtrlDep)
return false;
// for now, don't put an instruction that does not have operand
// interlocks in the delay slot of a branch
if (! S.getInstrInfo().hasOperandInterlock(node->getMachineInstr()->getOpCode()))
return false;
// Finally, if the instruction preceeds the branch, we make sure the
// instruction can be reordered relative to the branch. We simply check
// if the instr. has only 1 outgoing edge, viz., a CD edge to the branch.
//
if (nodeIsPredecessor)
{
bool onlyCDEdgeToBranch = true;
for (SchedGraphNode::const_iterator OEI = node->beginOutEdges();
OEI != node->endOutEdges(); ++OEI)
if (! (*OEI)->getSink()->isDummyNode()
&& ((*OEI)->getSink() != brNode
|| (*OEI)->getDepType() != SchedGraphEdge::CtrlDep))
{
onlyCDEdgeToBranch = false;
break;
}
if (!onlyCDEdgeToBranch)
return false;
}
return true;
}
static void
MarkNodeForDelaySlot(SchedulingManager& S,
SchedGraph* graph,
SchedGraphNode* node,
const SchedGraphNode* brNode,
bool nodeIsPredecessor)
{
if (nodeIsPredecessor)
{ // If node is in the same basic block (i.e., preceeds brNode),
// remove it and all its incident edges from the graph. Make sure we
// add dummy edges for pred/succ nodes that become entry/exit nodes.
graph->eraseIncidentEdges(node, /*addDummyEdges*/ true);
}
else
{ // If the node was from a target block, add the node to the graph
// and add a CD edge from brNode to node.
assert(0 && "NOT IMPLEMENTED YET");
}
DelaySlotInfo* dinfo = S.getDelaySlotInfoForInstr(brNode, /*create*/ true);
dinfo->addDelayNode(node);
}
void
FindUsefulInstructionsForDelaySlots(SchedulingManager& S,
SchedGraphNode* brNode,
vector<SchedGraphNode*>& sdelayNodeVec)
{
const MachineInstrInfo& mii = S.getInstrInfo();
unsigned ndelays =
mii.getNumDelaySlots(brNode->getMachineInstr()->getOpCode());
if (ndelays == 0)
return;
sdelayNodeVec.reserve(ndelays);
// Use a separate vector to hold the feasible multi-cycle nodes.
// These will be used if not enough single-cycle nodes are found.
//
vector<SchedGraphNode*> mdelayNodeVec;
for (sg_pred_iterator P = pred_begin(brNode);
P != pred_end(brNode) && sdelayNodeVec.size() < ndelays; ++P)
if (! (*P)->isDummyNode() &&
! mii.isNop((*P)->getMachineInstr()->getOpCode()) &&
NodeCanFillDelaySlot(S, *P, brNode, /*pred*/ true))
{
if (mii.maxLatency((*P)->getMachineInstr()->getOpCode()) > 1)
mdelayNodeVec.push_back(*P);
else
sdelayNodeVec.push_back(*P);
}
// If not enough single-cycle instructions were found, select the
// lowest-latency multi-cycle instructions and use them.
// Note that this is the most efficient code when only 1 (or even 2)
// values need to be selected.
//
while (sdelayNodeVec.size() < ndelays && mdelayNodeVec.size() > 0)
{
unsigned lmin =
mii.maxLatency(mdelayNodeVec[0]->getMachineInstr()->getOpCode());
unsigned minIndex = 0;
for (unsigned i=1; i < mdelayNodeVec.size(); i++)
{
unsigned li =
mii.maxLatency(mdelayNodeVec[i]->getMachineInstr()->getOpCode());
if (lmin >= li)
{
lmin = li;
minIndex = i;
}
}
sdelayNodeVec.push_back(mdelayNodeVec[minIndex]);
if (sdelayNodeVec.size() < ndelays) // avoid the last erase!
mdelayNodeVec.erase(mdelayNodeVec.begin() + minIndex);
}
}
// Remove the NOPs currently in delay slots from the graph.
// Mark instructions specified in sdelayNodeVec to replace them.
// If not enough useful instructions were found, mark the NOPs to be used
// for filling delay slots, otherwise, otherwise just discard them.
//
void
ReplaceNopsWithUsefulInstr(SchedulingManager& S,
SchedGraphNode* node,
vector<SchedGraphNode*> sdelayNodeVec,
SchedGraph* graph)
{
vector<SchedGraphNode*> nopNodeVec;
const MachineInstrInfo& mii = S.getInstrInfo();
unsigned ndelays= mii.getNumDelaySlots(node->getMachineInstr()->getOpCode());
assert(ndelays > 0 && "Unnecessary call to replace NOPs");
// Remove the NOPs currently in delay slots from the graph.
// If not enough useful instructions were found, use the NOPs to
// fill delay slots, otherwise, just discard them.
for (sg_succ_iterator I=succ_begin(node); I != succ_end(node); ++I)
if (! (*I)->isDummyNode()
&& mii.isNop((*I)->getMachineInstr()->getOpCode()))
{
if (sdelayNodeVec.size() < ndelays)
sdelayNodeVec.push_back(*I);
else
nopNodeVec.push_back(*I);
}
assert(sdelayNodeVec.size() == ndelays);
// Mark the nodes chosen for delay slots. This removes them from the graph.
for (unsigned i=0; i < sdelayNodeVec.size(); i++)
MarkNodeForDelaySlot(S, graph, sdelayNodeVec[i], node, true);
// And remove the unused NOPs from the graph.
for (unsigned i=0; i < nopNodeVec.size(); i++)
graph->eraseIncidentEdges(nopNodeVec[i], /*addDummyEdges*/ true);
}
// For all delayed instructions, choose instructions to put in the delay
// slots and pull those out of the graph. Mark them for the delay slots
// in the DelaySlotInfo object for that graph node. If no useful work
// is found for a delay slot, use the NOP that is currently in that slot.
//
// We try to fill the delay slots with useful work for all instructions
// except CALLs. For CALLs, it is nearly always possible to use one of the
// call sequence instrs and putting anything else in the delay slot could be
// suboptimal.
//
static void
ChooseInstructionsForDelaySlots(SchedulingManager& S,
const BasicBlock* bb,
SchedGraph* graph)
{
const MachineInstrInfo& mii = S.getInstrInfo();
const TerminatorInst* termInstr = bb->getTerminator();
MachineCodeForVMInstr& termMvec = termInstr->getMachineInstrVec();
vector<SchedGraphNode*> delayNodeVec;
const MachineInstr* brInstr;
assert(termInstr->getOpcode() != Instruction::Call
&& "Call used as terminator?");
// To find instructions that need delay slots without searching the entire
// machine code, we assume the only delayed instructions are CALLs or
// instructions generated for the terminator inst.
// Find the first branch instr in the sequence of machine instrs for term
//
unsigned first = 0;
while (first < termMvec.size() &&
! mii.isBranch(termMvec[first]->getOpCode()))
{
++first;
}
assert(first < termMvec.size() &&
"No branch instructions for BR? Ok, but weird! Delete assertion.");
brInstr = (first < termMvec.size())? termMvec[first] : NULL;
// Compute a vector of the nodes chosen for delay slots and then
// mark delay slots to replace NOPs with these useful instructions.
//
if (brInstr != NULL)
{
SchedGraphNode* brNode = graph->getGraphNodeForInstr(brInstr);
FindUsefulInstructionsForDelaySlots(S, brNode, delayNodeVec);
ReplaceNopsWithUsefulInstr(S, brNode, delayNodeVec, graph);
}
// Also mark delay slots for other delayed instructions to hold NOPs.
// Simply passing in an empty delayNodeVec will have this effect.
//
delayNodeVec.clear();
const MachineCodeForBasicBlock& bbMvec = bb->getMachineInstrVec();
for (unsigned i=0; i < bbMvec.size(); i++)
if (bbMvec[i] != brInstr &&
mii.getNumDelaySlots(bbMvec[i]->getOpCode()) > 0)
{
SchedGraphNode* node = graph->getGraphNodeForInstr(bbMvec[i]);
ReplaceNopsWithUsefulInstr(S, node, delayNodeVec, graph);
}
}
//
// Schedule the delayed branch and its delay slots
//
unsigned
DelaySlotInfo::scheduleDelayedNode(SchedulingManager& S)
{
assert(delayedNodeSlotNum < S.nslots && "Illegal slot for branch");
assert(S.isched.getInstr(delayedNodeSlotNum, delayedNodeCycle) == NULL
&& "Slot for branch should be empty");
unsigned int nextSlot = delayedNodeSlotNum;
cycles_t nextTime = delayedNodeCycle;
S.scheduleInstr(brNode, nextSlot, nextTime);
for (unsigned d=0; d < ndelays; d++)
{
++nextSlot;
if (nextSlot == S.nslots)
{
nextSlot = 0;
nextTime++;
}
// Find the first feasible instruction for this delay slot
// Note that we only check for issue restrictions here.
// We do *not* check for flow dependences but rely on pipeline
// interlocks to resolve them. Machines without interlocks
// will require this code to be modified.
for (unsigned i=0; i < delayNodeVec.size(); i++)
{
const SchedGraphNode* dnode = delayNodeVec[i];
if ( ! S.isScheduled(dnode)
&& S.schedInfo.instrCanUseSlot(dnode->getMachineInstr()->getOpCode(), nextSlot)
&& instrIsFeasible(S, dnode->getMachineInstr()->getOpCode()))
{
assert(S.getInstrInfo().hasOperandInterlock(dnode->getMachineInstr()->getOpCode())
&& "Instructions without interlocks not yet supported "
"when filling branch delay slots");
S.scheduleInstr(dnode, nextSlot, nextTime);
break;
}
}
}
// Update current time if delay slots overflowed into later cycles.
// Do this here because we know exactly which cycle is the last cycle
// that contains delay slots. The next loop doesn't compute that.
if (nextTime > S.getTime())
S.updateTime(nextTime);
// Now put any remaining instructions in the unfilled delay slots.
// This could lead to suboptimal performance but needed for correctness.
nextSlot = delayedNodeSlotNum;
nextTime = delayedNodeCycle;
for (unsigned i=0; i < delayNodeVec.size(); i++)
if (! S.isScheduled(delayNodeVec[i]))
{
do { // find the next empty slot
++nextSlot;
if (nextSlot == S.nslots)
{
nextSlot = 0;
nextTime++;
}
} while (S.isched.getInstr(nextSlot, nextTime) != NULL);
S.scheduleInstr(delayNodeVec[i], nextSlot, nextTime);
break;
}
return 1 + ndelays;
}
// Check if the instruction would conflict with instructions already
// chosen for the current cycle
//
static inline bool
ConflictsWithChoices(const SchedulingManager& S,
MachineOpCode opCode)
{
// Check if the instruction must issue by itself, and some feasible
// choices have already been made for this cycle
if (S.getNumChoices() > 0 && S.schedInfo.isSingleIssue(opCode))
return true;
// For each class that opCode belongs to, check if there are too many
// instructions of that class.
//
const InstrSchedClass sc = S.schedInfo.getSchedClass(opCode);
return (S.getNumChoicesInClass(sc) == S.schedInfo.getMaxIssueForClass(sc));
}
//************************* External Functions *****************************/
//---------------------------------------------------------------------------
// Function: ViolatesMinimumGap
//
// Purpose:
// Check minimum gap requirements relative to instructions scheduled in
// previous cycles.
// Note that we do not need to consider `nextEarliestIssueTime' here because
// that is also captured in the earliest start times for each opcode.
//---------------------------------------------------------------------------
static inline bool
ViolatesMinimumGap(const SchedulingManager& S,
MachineOpCode opCode,
const cycles_t inCycle)
{
return (inCycle < S.getEarliestStartTimeForOp(opCode));
}
//---------------------------------------------------------------------------
// Function: instrIsFeasible
//
// Purpose:
// Check if any issue restrictions would prevent the instruction from
// being issued in the current cycle
//---------------------------------------------------------------------------
bool
instrIsFeasible(const SchedulingManager& S,
MachineOpCode opCode)
{
// skip the instruction if it cannot be issued due to issue restrictions
// caused by previously issued instructions
if (ViolatesMinimumGap(S, opCode, S.getTime()))
return false;
// skip the instruction if it cannot be issued due to issue restrictions
// caused by previously chosen instructions for the current cycle
if (ConflictsWithChoices(S, opCode))
return false;
return true;
}
//---------------------------------------------------------------------------
// Function: ScheduleInstructionsWithSSA
//
// Purpose:
// Entry point for instruction scheduling on SSA form.
// Schedules the machine instructions generated by instruction selection.
// Assumes that register allocation has not been done, i.e., operands
// are still in SSA form.
//---------------------------------------------------------------------------
bool
ScheduleInstructionsWithSSA(Method* method,
const TargetMachine &target)
{
SchedGraphSet graphSet(method, target);
if (SchedDebugLevel >= Sched_PrintSchedGraphs)
{
cout << endl << "*** SCHEDULING GRAPHS FOR INSTRUCTION SCHEDULING"
<< endl;
graphSet.dump();
}
for (SchedGraphSet::const_iterator GI=graphSet.begin();
GI != graphSet.end(); ++GI)
{
SchedGraph* graph = (*GI).second;
const vector<const BasicBlock*>& bbvec = graph->getBasicBlocks();
assert(bbvec.size() == 1 && "Cannot schedule multiple basic blocks");
const BasicBlock* bb = bbvec[0];
if (SchedDebugLevel >= Sched_PrintSchedTrace)
cout << endl << "*** TRACE OF INSTRUCTION SCHEDULING OPERATIONS\n\n";
SchedPriorities schedPrio(method, graph); // expensive!
SchedulingManager S(target, graph, schedPrio);
ChooseInstructionsForDelaySlots(S, bb, graph); // modifies graph
ForwardListSchedule(S); // computes schedule in S
RecordSchedule((*GI).first, S); // records schedule in BB
}
if (SchedDebugLevel >= Sched_PrintMachineCode)
{
cout << endl
<< "*** Machine instructions after INSTRUCTION SCHEDULING" << endl;
PrintMachineInstructions(method);
}
return false; // no reason to fail yet
}