llvm-6502/lib/Transforms/Utils/DemoteRegToStack.cpp
Nick Lewycky 81e480463d Reimplement isPotentiallyReachable to make nocapture deduction much stronger.
Adds unit tests for it too.

Split BasicBlockUtils into an analysis-half and a transforms-half, and put the
analysis bits into a new Analysis/CFG.{h,cpp}. Promote isPotentiallyReachable
into llvm::isPotentiallyReachable and move it into Analysis/CFG.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187283 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-27 01:24:00 +00:00

150 lines
5.7 KiB
C++

//===- DemoteRegToStack.cpp - Move a virtual register to the stack --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
using namespace llvm;
/// DemoteRegToStack - This function takes a virtual register computed by an
/// Instruction and replaces it with a slot in the stack frame, allocated via
/// alloca. This allows the CFG to be changed around without fear of
/// invalidating the SSA information for the value. It returns the pointer to
/// the alloca inserted to create a stack slot for I.
AllocaInst *llvm::DemoteRegToStack(Instruction &I, bool VolatileLoads,
Instruction *AllocaPoint) {
if (I.use_empty()) {
I.eraseFromParent();
return 0;
}
// Create a stack slot to hold the value.
AllocaInst *Slot;
if (AllocaPoint) {
Slot = new AllocaInst(I.getType(), 0,
I.getName()+".reg2mem", AllocaPoint);
} else {
Function *F = I.getParent()->getParent();
Slot = new AllocaInst(I.getType(), 0, I.getName()+".reg2mem",
F->getEntryBlock().begin());
}
// Change all of the users of the instruction to read from the stack slot.
while (!I.use_empty()) {
Instruction *U = cast<Instruction>(I.use_back());
if (PHINode *PN = dyn_cast<PHINode>(U)) {
// If this is a PHI node, we can't insert a load of the value before the
// use. Instead insert the load in the predecessor block corresponding
// to the incoming value.
//
// Note that if there are multiple edges from a basic block to this PHI
// node that we cannot have multiple loads. The problem is that the
// resulting PHI node will have multiple values (from each load) coming in
// from the same block, which is illegal SSA form. For this reason, we
// keep track of and reuse loads we insert.
DenseMap<BasicBlock*, Value*> Loads;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == &I) {
Value *&V = Loads[PN->getIncomingBlock(i)];
if (V == 0) {
// Insert the load into the predecessor block
V = new LoadInst(Slot, I.getName()+".reload", VolatileLoads,
PN->getIncomingBlock(i)->getTerminator());
}
PN->setIncomingValue(i, V);
}
} else {
// If this is a normal instruction, just insert a load.
Value *V = new LoadInst(Slot, I.getName()+".reload", VolatileLoads, U);
U->replaceUsesOfWith(&I, V);
}
}
// Insert stores of the computed value into the stack slot. We have to be
// careful if I is an invoke instruction, because we can't insert the store
// AFTER the terminator instruction.
BasicBlock::iterator InsertPt;
if (!isa<TerminatorInst>(I)) {
InsertPt = &I;
++InsertPt;
} else {
InvokeInst &II = cast<InvokeInst>(I);
if (II.getNormalDest()->getSinglePredecessor())
InsertPt = II.getNormalDest()->getFirstInsertionPt();
else {
// We cannot demote invoke instructions to the stack if their normal edge
// is critical. Therefore, split the critical edge and insert the store
// in the newly created basic block.
unsigned SuccNum = GetSuccessorNumber(I.getParent(), II.getNormalDest());
TerminatorInst *TI = &cast<TerminatorInst>(I);
assert (isCriticalEdge(TI, SuccNum) &&
"Expected a critical edge!");
BasicBlock *BB = SplitCriticalEdge(TI, SuccNum);
assert (BB && "Unable to split critical edge.");
InsertPt = BB->getFirstInsertionPt();
}
}
for (; isa<PHINode>(InsertPt) || isa<LandingPadInst>(InsertPt); ++InsertPt)
/* empty */; // Don't insert before PHI nodes or landingpad instrs.
new StoreInst(&I, Slot, InsertPt);
return Slot;
}
/// DemotePHIToStack - This function takes a virtual register computed by a PHI
/// node and replaces it with a slot in the stack frame allocated via alloca.
/// The PHI node is deleted. It returns the pointer to the alloca inserted.
AllocaInst *llvm::DemotePHIToStack(PHINode *P, Instruction *AllocaPoint) {
if (P->use_empty()) {
P->eraseFromParent();
return 0;
}
// Create a stack slot to hold the value.
AllocaInst *Slot;
if (AllocaPoint) {
Slot = new AllocaInst(P->getType(), 0,
P->getName()+".reg2mem", AllocaPoint);
} else {
Function *F = P->getParent()->getParent();
Slot = new AllocaInst(P->getType(), 0, P->getName()+".reg2mem",
F->getEntryBlock().begin());
}
// Iterate over each operand inserting a store in each predecessor.
for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
if (InvokeInst *II = dyn_cast<InvokeInst>(P->getIncomingValue(i))) {
assert(II->getParent() != P->getIncomingBlock(i) &&
"Invoke edge not supported yet"); (void)II;
}
new StoreInst(P->getIncomingValue(i), Slot,
P->getIncomingBlock(i)->getTerminator());
}
// Insert a load in place of the PHI and replace all uses.
BasicBlock::iterator InsertPt = P;
for (; isa<PHINode>(InsertPt) || isa<LandingPadInst>(InsertPt); ++InsertPt)
/* empty */; // Don't insert before PHI nodes or landingpad instrs.
Value *V = new LoadInst(Slot, P->getName()+".reload", InsertPt);
P->replaceAllUsesWith(V);
// Delete PHI.
P->eraseFromParent();
return Slot;
}