llvm-6502/lib/Target/SystemZ
Eric Christopher 04bcc11905 Move DataLayout back to the TargetMachine from TargetSubtargetInfo
derived classes.

Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.

*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227113 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-26 19:03:15 +00:00
..
AsmParser Minor cleanup to all the switches after MatchInstructionImpl in all the AsmParsers. 2015-01-03 08:16:34 +00:00
Disassembler Pass an ArrayRef to MCDisassembler::getInstruction. 2014-11-12 02:04:27 +00:00
InstPrinter
MCTargetDesc Use the integrated assembler as default on SystemZ 2015-01-13 19:45:16 +00:00
TargetInfo
CMakeLists.txt
LLVMBuild.txt
Makefile
README.txt
SystemZ.h
SystemZ.td
SystemZAsmPrinter.cpp Move DataLayout back to the TargetMachine from TargetSubtargetInfo 2015-01-26 19:03:15 +00:00
SystemZAsmPrinter.h std::unique_ptrify the MCStreamer argument to createAsmPrinter 2015-01-18 20:29:04 +00:00
SystemZCallingConv.cpp
SystemZCallingConv.h
SystemZCallingConv.td
SystemZConstantPoolValue.cpp
SystemZConstantPoolValue.h
SystemZElimCompare.cpp
SystemZFrameLowering.cpp
SystemZFrameLowering.h
SystemZInstrBuilder.h
SystemZInstrFormats.td
SystemZInstrFP.td Replace neverHasSideEffects=1 with hasSideEffects=0 in all .td files. 2014-11-26 00:46:26 +00:00
SystemZInstrInfo.cpp
SystemZInstrInfo.h
SystemZInstrInfo.td Replace neverHasSideEffects=1 with hasSideEffects=0 in all .td files. 2014-11-26 00:46:26 +00:00
SystemZISelDAGToDAG.cpp
SystemZISelLowering.cpp [SelectionDAG] Allow targets to specify legality of extloads' result 2015-01-08 00:51:32 +00:00
SystemZISelLowering.h
SystemZLongBranch.cpp
SystemZMachineFunctionInfo.cpp
SystemZMachineFunctionInfo.h
SystemZMCInstLower.cpp
SystemZMCInstLower.h
SystemZOperands.td
SystemZOperators.td
SystemZPatterns.td
SystemZProcessors.td
SystemZRegisterInfo.cpp
SystemZRegisterInfo.h
SystemZRegisterInfo.td
SystemZSelectionDAGInfo.cpp
SystemZSelectionDAGInfo.h
SystemZShortenInst.cpp
SystemZSubtarget.cpp Move DataLayout back to the TargetMachine from TargetSubtargetInfo 2015-01-26 19:03:15 +00:00
SystemZSubtarget.h Move DataLayout back to the TargetMachine from TargetSubtargetInfo 2015-01-26 19:03:15 +00:00
SystemZTargetMachine.cpp Move DataLayout back to the TargetMachine from TargetSubtargetInfo 2015-01-26 19:03:15 +00:00
SystemZTargetMachine.h Move DataLayout back to the TargetMachine from TargetSubtargetInfo 2015-01-26 19:03:15 +00:00

//===---------------------------------------------------------------------===//
// Random notes about and ideas for the SystemZ backend.
//===---------------------------------------------------------------------===//

The initial backend is deliberately restricted to z10.  We should add support
for later architectures at some point.

--

SystemZDAGToDAGISel::SelectInlineAsmMemoryOperand() is passed "m" for all
inline asm memory constraints; it doesn't get to see the original constraint.
This means that it must conservatively treat all inline asm constraints
as the most restricted type, "R".

--

If an inline asm ties an i32 "r" result to an i64 input, the input
will be treated as an i32, leaving the upper bits uninitialised.
For example:

define void @f4(i32 *%dst) {
  %val = call i32 asm "blah $0", "=r,0" (i64 103)
  store i32 %val, i32 *%dst
  ret void
}

from CodeGen/SystemZ/asm-09.ll will use LHI rather than LGHI.
to load 103.  This seems to be a general target-independent problem.

--

The tuning of the choice between LOAD ADDRESS (LA) and addition in
SystemZISelDAGToDAG.cpp is suspect.  It should be tweaked based on
performance measurements.

--

There is no scheduling support.

--

We don't use the BRANCH ON INDEX instructions.

--

We might want to use BRANCH ON CONDITION for conditional indirect calls
and conditional returns.

--

We don't use the TEST DATA CLASS instructions.

--

We could use the generic floating-point forms of LOAD COMPLEMENT,
LOAD NEGATIVE and LOAD POSITIVE in cases where we don't need the
condition codes.  For example, we could use LCDFR instead of LCDBR.

--

We only use MVC, XC and CLC for constant-length block operations.
We could extend them to variable-length operations too,
using EXECUTE RELATIVE LONG.

MVCIN, MVCLE and CLCLE may be worthwhile too.

--

We don't use CUSE or the TRANSLATE family of instructions for string
operations.  The TRANSLATE ones are probably more difficult to exploit.

--

We don't take full advantage of builtins like fabsl because the calling
conventions require f128s to be returned by invisible reference.

--

ADD LOGICAL WITH SIGNED IMMEDIATE could be useful when we need to
produce a carry.  SUBTRACT LOGICAL IMMEDIATE could be useful when we
need to produce a borrow.  (Note that there are no memory forms of
ADD LOGICAL WITH CARRY and SUBTRACT LOGICAL WITH BORROW, so the high
part of 128-bit memory operations would probably need to be done
via a register.)

--

We don't use the halfword forms of LOAD REVERSED and STORE REVERSED
(LRVH and STRVH).

--

We don't use ICM or STCM.

--

DAGCombiner doesn't yet fold truncations of extended loads.  Functions like:

    unsigned long f (unsigned long x, unsigned short *y)
    {
      return (x << 32) | *y;
    }

therefore end up as:

        sllg    %r2, %r2, 32
        llgh    %r0, 0(%r3)
        lr      %r2, %r0
        br      %r14

but truncating the load would give:

        sllg    %r2, %r2, 32
        lh      %r2, 0(%r3)
        br      %r14

--

Functions like:

define i64 @f1(i64 %a) {
  %and = and i64 %a, 1
  ret i64 %and
}

ought to be implemented as:

        lhi     %r0, 1
        ngr     %r2, %r0
        br      %r14

but two-address optimisations reverse the order of the AND and force:

        lhi     %r0, 1
        ngr     %r0, %r2
        lgr     %r2, %r0
        br      %r14

CodeGen/SystemZ/and-04.ll has several examples of this.

--

Out-of-range displacements are usually handled by loading the full
address into a register.  In many cases it would be better to create
an anchor point instead.  E.g. for:

define void @f4a(i128 *%aptr, i64 %base) {
  %addr = add i64 %base, 524288
  %bptr = inttoptr i64 %addr to i128 *
  %a = load volatile i128 *%aptr
  %b = load i128 *%bptr
  %add = add i128 %a, %b
  store i128 %add, i128 *%aptr
  ret void
}

(from CodeGen/SystemZ/int-add-08.ll) we load %base+524288 and %base+524296
into separate registers, rather than using %base+524288 as a base for both.

--

Dynamic stack allocations round the size to 8 bytes and then allocate
that rounded amount.  It would be simpler to subtract the unrounded
size from the copy of the stack pointer and then align the result.
See CodeGen/SystemZ/alloca-01.ll for an example.

--

If needed, we can support 16-byte atomics using LPQ, STPQ and CSDG.

--

We might want to model all access registers and use them to spill
32-bit values.