llvm-6502/lib/Target/AArch64/AArch64AsmPrinter.cpp
Rafael Espindola b56c57bcbb Move the llvm mangler to lib/IR.
This makes it available to tools that don't link with target (like llvm-ar).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198708 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-07 21:19:40 +00:00

302 lines
11 KiB
C++

//===-- AArch64AsmPrinter.cpp - Print machine code to an AArch64 .s file --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format AArch64 assembly language.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "AArch64AsmPrinter.h"
#include "InstPrinter/AArch64InstPrinter.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/DebugInfo.h"
#include "llvm/IR/Mangler.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
/// Try to print a floating-point register as if it belonged to a specified
/// register-class. For example the inline asm operand modifier "b" requires its
/// argument to be printed as "bN".
static bool printModifiedFPRAsmOperand(const MachineOperand &MO,
const TargetRegisterInfo *TRI,
char RegType, raw_ostream &O) {
if (!MO.isReg())
return true;
for (MCRegAliasIterator AR(MO.getReg(), TRI, true); AR.isValid(); ++AR) {
if (AArch64::FPR8RegClass.contains(*AR)) {
O << RegType << TRI->getEncodingValue(MO.getReg());
return false;
}
}
// The register doesn't correspond to anything floating-point like.
return true;
}
/// Implements the 'w' and 'x' inline asm operand modifiers, which print a GPR
/// with the obvious type and an immediate 0 as either wzr or xzr.
static bool printModifiedGPRAsmOperand(const MachineOperand &MO,
const TargetRegisterInfo *TRI,
const TargetRegisterClass &RegClass,
raw_ostream &O) {
char Prefix = &RegClass == &AArch64::GPR32RegClass ? 'w' : 'x';
if (MO.isImm() && MO.getImm() == 0) {
O << Prefix << "zr";
return false;
} else if (MO.isReg()) {
if (MO.getReg() == AArch64::XSP || MO.getReg() == AArch64::WSP) {
O << (Prefix == 'x' ? "sp" : "wsp");
return false;
}
for (MCRegAliasIterator AR(MO.getReg(), TRI, true); AR.isValid(); ++AR) {
if (RegClass.contains(*AR)) {
O << AArch64InstPrinter::getRegisterName(*AR);
return false;
}
}
}
return true;
}
bool AArch64AsmPrinter::printSymbolicAddress(const MachineOperand &MO,
bool PrintImmediatePrefix,
StringRef Suffix, raw_ostream &O) {
StringRef Name;
StringRef Modifier;
switch (MO.getType()) {
default:
return true;
case MachineOperand::MO_GlobalAddress:
Name = getSymbol(MO.getGlobal())->getName();
// Global variables may be accessed either via a GOT or in various fun and
// interesting TLS-model specific ways. Set the prefix modifier as
// appropriate here.
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(MO.getGlobal())) {
Reloc::Model RelocM = TM.getRelocationModel();
if (GV->isThreadLocal()) {
switch (TM.getTLSModel(GV)) {
case TLSModel::GeneralDynamic:
Modifier = "tlsdesc";
break;
case TLSModel::LocalDynamic:
Modifier = "dtprel";
break;
case TLSModel::InitialExec:
Modifier = "gottprel";
break;
case TLSModel::LocalExec:
Modifier = "tprel";
break;
}
} else if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) {
Modifier = "got";
}
}
break;
case MachineOperand::MO_BlockAddress:
Name = GetBlockAddressSymbol(MO.getBlockAddress())->getName();
break;
case MachineOperand::MO_ConstantPoolIndex:
Name = GetCPISymbol(MO.getIndex())->getName();
break;
}
// Some instructions (notably ADRP) don't take the # prefix for
// immediates. Only print it if asked to.
if (PrintImmediatePrefix)
O << '#';
// Only need the joining "_" if both the prefix and the suffix are
// non-null. This little block simply takes care of the four possibly
// combinations involved there.
if (Modifier == "" && Suffix == "")
O << Name;
else if (Modifier == "" && Suffix != "")
O << ":" << Suffix << ':' << Name;
else if (Modifier != "" && Suffix == "")
O << ":" << Modifier << ':' << Name;
else
O << ":" << Modifier << '_' << Suffix << ':' << Name;
return false;
}
bool AArch64AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O) {
const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
if (!ExtraCode)
ExtraCode = "";
switch(ExtraCode[0]) {
default:
if (!AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O))
return false;
break;
case 'w':
// Output 32-bit general register operand, constant zero as wzr, or stack
// pointer as wsp. Ignored when used with other operand types.
if (!printModifiedGPRAsmOperand(MI->getOperand(OpNum), TRI,
AArch64::GPR32RegClass, O))
return false;
break;
case 'x':
// Output 64-bit general register operand, constant zero as xzr, or stack
// pointer as sp. Ignored when used with other operand types.
if (!printModifiedGPRAsmOperand(MI->getOperand(OpNum), TRI,
AArch64::GPR64RegClass, O))
return false;
break;
case 'H':
// Output higher numbered of a 64-bit general register pair
case 'Q':
// Output least significant register of a 64-bit general register pair
case 'R':
// Output most significant register of a 64-bit general register pair
// FIXME note: these three operand modifiers will require, to some extent,
// adding a paired GPR64 register class. Initial investigation suggests that
// assertions are hit unless it has a type and is made legal for that type
// in ISelLowering. After that step is made, the number of modifications
// needed explodes (operation legality, calling conventions, stores, reg
// copies ...).
llvm_unreachable("FIXME: Unimplemented register pairs");
case 'b':
case 'h':
case 's':
case 'd':
case 'q':
if (!printModifiedFPRAsmOperand(MI->getOperand(OpNum), TRI,
ExtraCode[0], O))
return false;
break;
case 'A':
// Output symbolic address with appropriate relocation modifier (also
// suitable for ADRP).
if (!printSymbolicAddress(MI->getOperand(OpNum), false, "", O))
return false;
break;
case 'L':
// Output bits 11:0 of symbolic address with appropriate :lo12: relocation
// modifier.
if (!printSymbolicAddress(MI->getOperand(OpNum), true, "lo12", O))
return false;
break;
case 'G':
// Output bits 23:12 of symbolic address with appropriate :hi12: relocation
// modifier (currently only for TLS local exec).
if (!printSymbolicAddress(MI->getOperand(OpNum), true, "hi12", O))
return false;
break;
case 'a':
return PrintAsmMemoryOperand(MI, OpNum, AsmVariant, ExtraCode, O);
}
// There's actually no operand modifier, which leads to a slightly eclectic
// set of behaviour which we have to handle here.
const MachineOperand &MO = MI->getOperand(OpNum);
switch (MO.getType()) {
default:
llvm_unreachable("Unexpected operand for inline assembly");
case MachineOperand::MO_Register:
// GCC prints the unmodified operand of a 'w' constraint as the vector
// register. Technically, we could allocate the argument as a VPR128, but
// that leads to extremely dodgy copies being generated to get the data
// there.
if (printModifiedFPRAsmOperand(MO, TRI, 'v', O))
O << AArch64InstPrinter::getRegisterName(MO.getReg());
break;
case MachineOperand::MO_Immediate:
O << '#' << MO.getImm();
break;
case MachineOperand::MO_FPImmediate:
assert(MO.getFPImm()->isExactlyValue(0.0) && "Only FP 0.0 expected");
O << "#0.0";
break;
case MachineOperand::MO_BlockAddress:
case MachineOperand::MO_ConstantPoolIndex:
case MachineOperand::MO_GlobalAddress:
return printSymbolicAddress(MO, false, "", O);
}
return false;
}
bool AArch64AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNum,
unsigned AsmVariant,
const char *ExtraCode,
raw_ostream &O) {
// Currently both the memory constraints (m and Q) behave the same and amount
// to the address as a single register. In future, we may allow "m" to provide
// both a base and an offset.
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isReg() && "unexpected inline assembly memory operand");
O << '[' << AArch64InstPrinter::getRegisterName(MO.getReg()) << ']';
return false;
}
#include "AArch64GenMCPseudoLowering.inc"
void AArch64AsmPrinter::EmitInstruction(const MachineInstr *MI) {
// Do any auto-generated pseudo lowerings.
if (emitPseudoExpansionLowering(OutStreamer, MI))
return;
MCInst TmpInst;
LowerAArch64MachineInstrToMCInst(MI, TmpInst, *this);
OutStreamer.EmitInstruction(TmpInst);
}
void AArch64AsmPrinter::EmitEndOfAsmFile(Module &M) {
if (Subtarget->isTargetELF()) {
const TargetLoweringObjectFileELF &TLOFELF =
static_cast<const TargetLoweringObjectFileELF &>(getObjFileLowering());
MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
// Output stubs for external and common global variables.
MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
if (!Stubs.empty()) {
OutStreamer.SwitchSection(TLOFELF.getDataRelSection());
const DataLayout *TD = TM.getDataLayout();
for (unsigned i = 0, e = Stubs.size(); i != e; ++i) {
OutStreamer.EmitLabel(Stubs[i].first);
OutStreamer.EmitSymbolValue(Stubs[i].second.getPointer(),
TD->getPointerSize(0));
}
Stubs.clear();
}
}
}
bool AArch64AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
return AsmPrinter::runOnMachineFunction(MF);
}
// Force static initialization.
extern "C" void LLVMInitializeAArch64AsmPrinter() {
RegisterAsmPrinter<AArch64AsmPrinter> X(TheAArch64Target);
}