llvm-6502/include/llvm/Analysis/MemoryDependenceAnalysis.h
Hal Finkel 851b04c920 Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.

As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.

The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.

Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.

This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217342 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-07 18:57:58 +00:00

449 lines
19 KiB
C++

//===- llvm/Analysis/MemoryDependenceAnalysis.h - Memory Deps --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the MemoryDependenceAnalysis analysis pass.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_MEMORYDEPENDENCEANALYSIS_H
#define LLVM_ANALYSIS_MEMORYDEPENDENCEANALYSIS_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
namespace llvm {
class Function;
class FunctionPass;
class Instruction;
class CallSite;
class AliasAnalysis;
class AssumptionTracker;
class DataLayout;
class MemoryDependenceAnalysis;
class PredIteratorCache;
class DominatorTree;
class PHITransAddr;
/// MemDepResult - A memory dependence query can return one of three different
/// answers, described below.
class MemDepResult {
enum DepType {
/// Invalid - Clients of MemDep never see this.
Invalid = 0,
/// Clobber - This is a dependence on the specified instruction which
/// clobbers the desired value. The pointer member of the MemDepResult
/// pair holds the instruction that clobbers the memory. For example,
/// this occurs when we see a may-aliased store to the memory location we
/// care about.
///
/// There are several cases that may be interesting here:
/// 1. Loads are clobbered by may-alias stores.
/// 2. Loads are considered clobbered by partially-aliased loads. The
/// client may choose to analyze deeper into these cases.
Clobber,
/// Def - This is a dependence on the specified instruction which
/// defines/produces the desired memory location. The pointer member of
/// the MemDepResult pair holds the instruction that defines the memory.
/// Cases of interest:
/// 1. This could be a load or store for dependence queries on
/// load/store. The value loaded or stored is the produced value.
/// Note that the pointer operand may be different than that of the
/// queried pointer due to must aliases and phi translation. Note
/// that the def may not be the same type as the query, the pointers
/// may just be must aliases.
/// 2. For loads and stores, this could be an allocation instruction. In
/// this case, the load is loading an undef value or a store is the
/// first store to (that part of) the allocation.
/// 3. Dependence queries on calls return Def only when they are
/// readonly calls or memory use intrinsics with identical callees
/// and no intervening clobbers. No validation is done that the
/// operands to the calls are the same.
Def,
/// Other - This marker indicates that the query has no known dependency
/// in the specified block. More detailed state info is encoded in the
/// upper part of the pair (i.e. the Instruction*)
Other
};
/// If DepType is "Other", the upper part of the pair
/// (i.e. the Instruction* part) is instead used to encode more detailed
/// type information as follows
enum OtherType {
/// NonLocal - This marker indicates that the query has no dependency in
/// the specified block. To find out more, the client should query other
/// predecessor blocks.
NonLocal = 0x4,
/// NonFuncLocal - This marker indicates that the query has no
/// dependency in the specified function.
NonFuncLocal = 0x8,
/// Unknown - This marker indicates that the query dependency
/// is unknown.
Unknown = 0xc
};
typedef PointerIntPair<Instruction*, 2, DepType> PairTy;
PairTy Value;
explicit MemDepResult(PairTy V) : Value(V) {}
public:
MemDepResult() : Value(nullptr, Invalid) {}
/// get methods: These are static ctor methods for creating various
/// MemDepResult kinds.
static MemDepResult getDef(Instruction *Inst) {
assert(Inst && "Def requires inst");
return MemDepResult(PairTy(Inst, Def));
}
static MemDepResult getClobber(Instruction *Inst) {
assert(Inst && "Clobber requires inst");
return MemDepResult(PairTy(Inst, Clobber));
}
static MemDepResult getNonLocal() {
return MemDepResult(
PairTy(reinterpret_cast<Instruction*>(NonLocal), Other));
}
static MemDepResult getNonFuncLocal() {
return MemDepResult(
PairTy(reinterpret_cast<Instruction*>(NonFuncLocal), Other));
}
static MemDepResult getUnknown() {
return MemDepResult(
PairTy(reinterpret_cast<Instruction*>(Unknown), Other));
}
/// isClobber - Return true if this MemDepResult represents a query that is
/// an instruction clobber dependency.
bool isClobber() const { return Value.getInt() == Clobber; }
/// isDef - Return true if this MemDepResult represents a query that is
/// an instruction definition dependency.
bool isDef() const { return Value.getInt() == Def; }
/// isNonLocal - Return true if this MemDepResult represents a query that
/// is transparent to the start of the block, but where a non-local hasn't
/// been done.
bool isNonLocal() const {
return Value.getInt() == Other
&& Value.getPointer() == reinterpret_cast<Instruction*>(NonLocal);
}
/// isNonFuncLocal - Return true if this MemDepResult represents a query
/// that is transparent to the start of the function.
bool isNonFuncLocal() const {
return Value.getInt() == Other
&& Value.getPointer() == reinterpret_cast<Instruction*>(NonFuncLocal);
}
/// isUnknown - Return true if this MemDepResult represents a query which
/// cannot and/or will not be computed.
bool isUnknown() const {
return Value.getInt() == Other
&& Value.getPointer() == reinterpret_cast<Instruction*>(Unknown);
}
/// getInst() - If this is a normal dependency, return the instruction that
/// is depended on. Otherwise, return null.
Instruction *getInst() const {
if (Value.getInt() == Other) return nullptr;
return Value.getPointer();
}
bool operator==(const MemDepResult &M) const { return Value == M.Value; }
bool operator!=(const MemDepResult &M) const { return Value != M.Value; }
bool operator<(const MemDepResult &M) const { return Value < M.Value; }
bool operator>(const MemDepResult &M) const { return Value > M.Value; }
private:
friend class MemoryDependenceAnalysis;
/// Dirty - Entries with this marker occur in a LocalDeps map or
/// NonLocalDeps map when the instruction they previously referenced was
/// removed from MemDep. In either case, the entry may include an
/// instruction pointer. If so, the pointer is an instruction in the
/// block where scanning can start from, saving some work.
///
/// In a default-constructed MemDepResult object, the type will be Dirty
/// and the instruction pointer will be null.
///
/// isDirty - Return true if this is a MemDepResult in its dirty/invalid.
/// state.
bool isDirty() const { return Value.getInt() == Invalid; }
static MemDepResult getDirty(Instruction *Inst) {
return MemDepResult(PairTy(Inst, Invalid));
}
};
/// NonLocalDepEntry - This is an entry in the NonLocalDepInfo cache. For
/// each BasicBlock (the BB entry) it keeps a MemDepResult.
class NonLocalDepEntry {
BasicBlock *BB;
MemDepResult Result;
public:
NonLocalDepEntry(BasicBlock *bb, MemDepResult result)
: BB(bb), Result(result) {}
// This is used for searches.
NonLocalDepEntry(BasicBlock *bb) : BB(bb) {}
// BB is the sort key, it can't be changed.
BasicBlock *getBB() const { return BB; }
void setResult(const MemDepResult &R) { Result = R; }
const MemDepResult &getResult() const { return Result; }
bool operator<(const NonLocalDepEntry &RHS) const {
return BB < RHS.BB;
}
};
/// NonLocalDepResult - This is a result from a NonLocal dependence query.
/// For each BasicBlock (the BB entry) it keeps a MemDepResult and the
/// (potentially phi translated) address that was live in the block.
class NonLocalDepResult {
NonLocalDepEntry Entry;
Value *Address;
public:
NonLocalDepResult(BasicBlock *bb, MemDepResult result, Value *address)
: Entry(bb, result), Address(address) {}
// BB is the sort key, it can't be changed.
BasicBlock *getBB() const { return Entry.getBB(); }
void setResult(const MemDepResult &R, Value *Addr) {
Entry.setResult(R);
Address = Addr;
}
const MemDepResult &getResult() const { return Entry.getResult(); }
/// getAddress - Return the address of this pointer in this block. This can
/// be different than the address queried for the non-local result because
/// of phi translation. This returns null if the address was not available
/// in a block (i.e. because phi translation failed) or if this is a cached
/// result and that address was deleted.
///
/// The address is always null for a non-local 'call' dependence.
Value *getAddress() const { return Address; }
};
/// MemoryDependenceAnalysis - This is an analysis that determines, for a
/// given memory operation, what preceding memory operations it depends on.
/// It builds on alias analysis information, and tries to provide a lazy,
/// caching interface to a common kind of alias information query.
///
/// The dependency information returned is somewhat unusual, but is pragmatic.
/// If queried about a store or call that might modify memory, the analysis
/// will return the instruction[s] that may either load from that memory or
/// store to it. If queried with a load or call that can never modify memory,
/// the analysis will return calls and stores that might modify the pointer,
/// but generally does not return loads unless a) they are volatile, or
/// b) they load from *must-aliased* pointers. Returning a dependence on
/// must-alias'd pointers instead of all pointers interacts well with the
/// internal caching mechanism.
///
class MemoryDependenceAnalysis : public FunctionPass {
// A map from instructions to their dependency.
typedef DenseMap<Instruction*, MemDepResult> LocalDepMapType;
LocalDepMapType LocalDeps;
public:
typedef std::vector<NonLocalDepEntry> NonLocalDepInfo;
private:
/// ValueIsLoadPair - This is a pair<Value*, bool> where the bool is true if
/// the dependence is a read only dependence, false if read/write.
typedef PointerIntPair<const Value*, 1, bool> ValueIsLoadPair;
/// BBSkipFirstBlockPair - This pair is used when caching information for a
/// block. If the pointer is null, the cache value is not a full query that
/// starts at the specified block. If non-null, the bool indicates whether
/// or not the contents of the block was skipped.
typedef PointerIntPair<BasicBlock*, 1, bool> BBSkipFirstBlockPair;
/// NonLocalPointerInfo - This record is the information kept for each
/// (value, is load) pair.
struct NonLocalPointerInfo {
/// Pair - The pair of the block and the skip-first-block flag.
BBSkipFirstBlockPair Pair;
/// NonLocalDeps - The results of the query for each relevant block.
NonLocalDepInfo NonLocalDeps;
/// Size - The maximum size of the dereferences of the
/// pointer. May be UnknownSize if the sizes are unknown.
uint64_t Size;
/// AATags - The AA tags associated with dereferences of the
/// pointer. The members may be null if there are no tags or
/// conflicting tags.
AAMDNodes AATags;
NonLocalPointerInfo() : Size(AliasAnalysis::UnknownSize) {}
};
/// CachedNonLocalPointerInfo - This map stores the cached results of doing
/// a pointer lookup at the bottom of a block. The key of this map is the
/// pointer+isload bit, the value is a list of <bb->result> mappings.
typedef DenseMap<ValueIsLoadPair,
NonLocalPointerInfo> CachedNonLocalPointerInfo;
CachedNonLocalPointerInfo NonLocalPointerDeps;
// A map from instructions to their non-local pointer dependencies.
typedef DenseMap<Instruction*,
SmallPtrSet<ValueIsLoadPair, 4> > ReverseNonLocalPtrDepTy;
ReverseNonLocalPtrDepTy ReverseNonLocalPtrDeps;
/// PerInstNLInfo - This is the instruction we keep for each cached access
/// that we have for an instruction. The pointer is an owning pointer and
/// the bool indicates whether we have any dirty bits in the set.
typedef std::pair<NonLocalDepInfo, bool> PerInstNLInfo;
// A map from instructions to their non-local dependencies.
typedef DenseMap<Instruction*, PerInstNLInfo> NonLocalDepMapType;
NonLocalDepMapType NonLocalDeps;
// A reverse mapping from dependencies to the dependees. This is
// used when removing instructions to keep the cache coherent.
typedef DenseMap<Instruction*,
SmallPtrSet<Instruction*, 4> > ReverseDepMapType;
ReverseDepMapType ReverseLocalDeps;
// A reverse mapping from dependencies to the non-local dependees.
ReverseDepMapType ReverseNonLocalDeps;
/// Current AA implementation, just a cache.
AliasAnalysis *AA;
const DataLayout *DL;
DominatorTree *DT;
AssumptionTracker *AT;
std::unique_ptr<PredIteratorCache> PredCache;
public:
MemoryDependenceAnalysis();
~MemoryDependenceAnalysis();
static char ID;
/// Pass Implementation stuff. This doesn't do any analysis eagerly.
bool runOnFunction(Function &) override;
/// Clean up memory in between runs
void releaseMemory() override;
/// getAnalysisUsage - Does not modify anything. It uses Value Numbering
/// and Alias Analysis.
///
void getAnalysisUsage(AnalysisUsage &AU) const override;
/// getDependency - Return the instruction on which a memory operation
/// depends. See the class comment for more details. It is illegal to call
/// this on non-memory instructions.
MemDepResult getDependency(Instruction *QueryInst);
/// getNonLocalCallDependency - Perform a full dependency query for the
/// specified call, returning the set of blocks that the value is
/// potentially live across. The returned set of results will include a
/// "NonLocal" result for all blocks where the value is live across.
///
/// This method assumes the instruction returns a "NonLocal" dependency
/// within its own block.
///
/// This returns a reference to an internal data structure that may be
/// invalidated on the next non-local query or when an instruction is
/// removed. Clients must copy this data if they want it around longer than
/// that.
const NonLocalDepInfo &getNonLocalCallDependency(CallSite QueryCS);
/// getNonLocalPointerDependency - Perform a full dependency query for an
/// access to the specified (non-volatile) memory location, returning the
/// set of instructions that either define or clobber the value.
///
/// This method assumes the pointer has a "NonLocal" dependency within BB.
void getNonLocalPointerDependency(const AliasAnalysis::Location &Loc,
bool isLoad, BasicBlock *BB,
SmallVectorImpl<NonLocalDepResult> &Result);
/// removeInstruction - Remove an instruction from the dependence analysis,
/// updating the dependence of instructions that previously depended on it.
void removeInstruction(Instruction *InstToRemove);
/// invalidateCachedPointerInfo - This method is used to invalidate cached
/// information about the specified pointer, because it may be too
/// conservative in memdep. This is an optional call that can be used when
/// the client detects an equivalence between the pointer and some other
/// value and replaces the other value with ptr. This can make Ptr available
/// in more places that cached info does not necessarily keep.
void invalidateCachedPointerInfo(Value *Ptr);
/// invalidateCachedPredecessors - Clear the PredIteratorCache info.
/// This needs to be done when the CFG changes, e.g., due to splitting
/// critical edges.
void invalidateCachedPredecessors();
/// getPointerDependencyFrom - Return the instruction on which a memory
/// location depends. If isLoad is true, this routine ignores may-aliases
/// with read-only operations. If isLoad is false, this routine ignores
/// may-aliases with reads from read-only locations. If possible, pass
/// the query instruction as well; this function may take advantage of
/// the metadata annotated to the query instruction to refine the result.
///
/// Note that this is an uncached query, and thus may be inefficient.
///
MemDepResult getPointerDependencyFrom(const AliasAnalysis::Location &Loc,
bool isLoad,
BasicBlock::iterator ScanIt,
BasicBlock *BB,
Instruction *QueryInst = nullptr);
/// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
/// looks at a memory location for a load (specified by MemLocBase, Offs,
/// and Size) and compares it against a load. If the specified load could
/// be safely widened to a larger integer load that is 1) still efficient,
/// 2) safe for the target, and 3) would provide the specified memory
/// location value, then this function returns the size in bytes of the
/// load width to use. If not, this returns zero.
static unsigned getLoadLoadClobberFullWidthSize(const Value *MemLocBase,
int64_t MemLocOffs,
unsigned MemLocSize,
const LoadInst *LI,
const DataLayout &DL);
private:
MemDepResult getCallSiteDependencyFrom(CallSite C, bool isReadOnlyCall,
BasicBlock::iterator ScanIt,
BasicBlock *BB);
bool getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
const AliasAnalysis::Location &Loc,
bool isLoad, BasicBlock *BB,
SmallVectorImpl<NonLocalDepResult> &Result,
DenseMap<BasicBlock*, Value*> &Visited,
bool SkipFirstBlock = false);
MemDepResult GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
bool isLoad, BasicBlock *BB,
NonLocalDepInfo *Cache,
unsigned NumSortedEntries);
void RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P);
/// verifyRemoved - Verify that the specified instruction does not occur
/// in our internal data structures.
void verifyRemoved(Instruction *Inst) const;
};
} // End llvm namespace
#endif