mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-21 00:32:23 +00:00
255f89faee
AKA: Recompile *ALL* the source code! This one went much better. No manual edits here. I spot-checked for silliness and grep-checked for really broken edits and everything seemed good. It all still compiles. Yell if you see something that looks goofy. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169133 91177308-0d34-0410-b5e6-96231b3b80d8
309 lines
11 KiB
C++
309 lines
11 KiB
C++
//===--- llvm/ADT/SparseSet.h - Sparse set ----------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the SparseSet class derived from the version described in
|
|
// Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters
|
|
// on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993.
|
|
//
|
|
// A sparse set holds a small number of objects identified by integer keys from
|
|
// a moderately sized universe. The sparse set uses more memory than other
|
|
// containers in order to provide faster operations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_SPARSESET_H
|
|
#define LLVM_ADT_SPARSESET_H
|
|
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include <limits>
|
|
|
|
namespace llvm {
|
|
|
|
/// SparseSetValTraits - Objects in a SparseSet are identified by keys that can
|
|
/// be uniquely converted to a small integer less than the set's universe. This
|
|
/// class allows the set to hold values that differ from the set's key type as
|
|
/// long as an index can still be derived from the value. SparseSet never
|
|
/// directly compares ValueT, only their indices, so it can map keys to
|
|
/// arbitrary values. SparseSetValTraits computes the index from the value
|
|
/// object. To compute the index from a key, SparseSet uses a separate
|
|
/// KeyFunctorT template argument.
|
|
///
|
|
/// A simple type declaration, SparseSet<Type>, handles these cases:
|
|
/// - unsigned key, identity index, identity value
|
|
/// - unsigned key, identity index, fat value providing getSparseSetIndex()
|
|
///
|
|
/// The type declaration SparseSet<Type, UnaryFunction> handles:
|
|
/// - unsigned key, remapped index, identity value (virtual registers)
|
|
/// - pointer key, pointer-derived index, identity value (node+ID)
|
|
/// - pointer key, pointer-derived index, fat value with getSparseSetIndex()
|
|
///
|
|
/// Only other, unexpected cases require specializing SparseSetValTraits.
|
|
///
|
|
/// For best results, ValueT should not require a destructor.
|
|
///
|
|
template<typename ValueT>
|
|
struct SparseSetValTraits {
|
|
static unsigned getValIndex(const ValueT &Val) {
|
|
return Val.getSparseSetIndex();
|
|
}
|
|
};
|
|
|
|
/// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The
|
|
/// generic implementation handles ValueT classes which either provide
|
|
/// getSparseSetIndex() or specialize SparseSetValTraits<>.
|
|
///
|
|
template<typename KeyT, typename ValueT, typename KeyFunctorT>
|
|
struct SparseSetValFunctor {
|
|
unsigned operator()(const ValueT &Val) const {
|
|
return SparseSetValTraits<ValueT>::getValIndex(Val);
|
|
}
|
|
};
|
|
|
|
/// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of
|
|
/// identity key/value sets.
|
|
template<typename KeyT, typename KeyFunctorT>
|
|
struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> {
|
|
unsigned operator()(const KeyT &Key) const {
|
|
return KeyFunctorT()(Key);
|
|
}
|
|
};
|
|
|
|
/// SparseSet - Fast set implmentation for objects that can be identified by
|
|
/// small unsigned keys.
|
|
///
|
|
/// SparseSet allocates memory proportional to the size of the key universe, so
|
|
/// it is not recommended for building composite data structures. It is useful
|
|
/// for algorithms that require a single set with fast operations.
|
|
///
|
|
/// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast
|
|
/// clear() and iteration as fast as a vector. The find(), insert(), and
|
|
/// erase() operations are all constant time, and typically faster than a hash
|
|
/// table. The iteration order doesn't depend on numerical key values, it only
|
|
/// depends on the order of insert() and erase() operations. When no elements
|
|
/// have been erased, the iteration order is the insertion order.
|
|
///
|
|
/// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but
|
|
/// offers constant-time clear() and size() operations as well as fast
|
|
/// iteration independent on the size of the universe.
|
|
///
|
|
/// SparseSet contains a dense vector holding all the objects and a sparse
|
|
/// array holding indexes into the dense vector. Most of the memory is used by
|
|
/// the sparse array which is the size of the key universe. The SparseT
|
|
/// template parameter provides a space/speed tradeoff for sets holding many
|
|
/// elements.
|
|
///
|
|
/// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse
|
|
/// array uses 4 x Universe bytes.
|
|
///
|
|
/// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache
|
|
/// lines, but the sparse array is 4x smaller. N is the number of elements in
|
|
/// the set.
|
|
///
|
|
/// For sets that may grow to thousands of elements, SparseT should be set to
|
|
/// uint16_t or uint32_t.
|
|
///
|
|
/// @tparam ValueT The type of objects in the set.
|
|
/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
|
|
/// @tparam SparseT An unsigned integer type. See above.
|
|
///
|
|
template<typename ValueT,
|
|
typename KeyFunctorT = llvm::identity<unsigned>,
|
|
typename SparseT = uint8_t>
|
|
class SparseSet {
|
|
typedef typename KeyFunctorT::argument_type KeyT;
|
|
typedef SmallVector<ValueT, 8> DenseT;
|
|
DenseT Dense;
|
|
SparseT *Sparse;
|
|
unsigned Universe;
|
|
KeyFunctorT KeyIndexOf;
|
|
SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
|
|
|
|
// Disable copy construction and assignment.
|
|
// This data structure is not meant to be used that way.
|
|
SparseSet(const SparseSet&) LLVM_DELETED_FUNCTION;
|
|
SparseSet &operator=(const SparseSet&) LLVM_DELETED_FUNCTION;
|
|
|
|
public:
|
|
typedef ValueT value_type;
|
|
typedef ValueT &reference;
|
|
typedef const ValueT &const_reference;
|
|
typedef ValueT *pointer;
|
|
typedef const ValueT *const_pointer;
|
|
|
|
SparseSet() : Sparse(0), Universe(0) {}
|
|
~SparseSet() { free(Sparse); }
|
|
|
|
/// setUniverse - Set the universe size which determines the largest key the
|
|
/// set can hold. The universe must be sized before any elements can be
|
|
/// added.
|
|
///
|
|
/// @param U Universe size. All object keys must be less than U.
|
|
///
|
|
void setUniverse(unsigned U) {
|
|
// It's not hard to resize the universe on a non-empty set, but it doesn't
|
|
// seem like a likely use case, so we can add that code when we need it.
|
|
assert(empty() && "Can only resize universe on an empty map");
|
|
// Hysteresis prevents needless reallocations.
|
|
if (U >= Universe/4 && U <= Universe)
|
|
return;
|
|
free(Sparse);
|
|
// The Sparse array doesn't actually need to be initialized, so malloc
|
|
// would be enough here, but that will cause tools like valgrind to
|
|
// complain about branching on uninitialized data.
|
|
Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT)));
|
|
Universe = U;
|
|
}
|
|
|
|
// Import trivial vector stuff from DenseT.
|
|
typedef typename DenseT::iterator iterator;
|
|
typedef typename DenseT::const_iterator const_iterator;
|
|
|
|
const_iterator begin() const { return Dense.begin(); }
|
|
const_iterator end() const { return Dense.end(); }
|
|
iterator begin() { return Dense.begin(); }
|
|
iterator end() { return Dense.end(); }
|
|
|
|
/// empty - Returns true if the set is empty.
|
|
///
|
|
/// This is not the same as BitVector::empty().
|
|
///
|
|
bool empty() const { return Dense.empty(); }
|
|
|
|
/// size - Returns the number of elements in the set.
|
|
///
|
|
/// This is not the same as BitVector::size() which returns the size of the
|
|
/// universe.
|
|
///
|
|
unsigned size() const { return Dense.size(); }
|
|
|
|
/// clear - Clears the set. This is a very fast constant time operation.
|
|
///
|
|
void clear() {
|
|
// Sparse does not need to be cleared, see find().
|
|
Dense.clear();
|
|
}
|
|
|
|
/// findIndex - Find an element by its index.
|
|
///
|
|
/// @param Idx A valid index to find.
|
|
/// @returns An iterator to the element identified by key, or end().
|
|
///
|
|
iterator findIndex(unsigned Idx) {
|
|
assert(Idx < Universe && "Key out of range");
|
|
assert(std::numeric_limits<SparseT>::is_integer &&
|
|
!std::numeric_limits<SparseT>::is_signed &&
|
|
"SparseT must be an unsigned integer type");
|
|
const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
|
|
for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) {
|
|
const unsigned FoundIdx = ValIndexOf(Dense[i]);
|
|
assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?");
|
|
if (Idx == FoundIdx)
|
|
return begin() + i;
|
|
// Stride is 0 when SparseT >= unsigned. We don't need to loop.
|
|
if (!Stride)
|
|
break;
|
|
}
|
|
return end();
|
|
}
|
|
|
|
/// find - Find an element by its key.
|
|
///
|
|
/// @param Key A valid key to find.
|
|
/// @returns An iterator to the element identified by key, or end().
|
|
///
|
|
iterator find(const KeyT &Key) {
|
|
return findIndex(KeyIndexOf(Key));
|
|
}
|
|
|
|
const_iterator find(const KeyT &Key) const {
|
|
return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key));
|
|
}
|
|
|
|
/// count - Returns true if this set contains an element identified by Key.
|
|
///
|
|
bool count(const KeyT &Key) const {
|
|
return find(Key) != end();
|
|
}
|
|
|
|
/// insert - Attempts to insert a new element.
|
|
///
|
|
/// If Val is successfully inserted, return (I, true), where I is an iterator
|
|
/// pointing to the newly inserted element.
|
|
///
|
|
/// If the set already contains an element with the same key as Val, return
|
|
/// (I, false), where I is an iterator pointing to the existing element.
|
|
///
|
|
/// Insertion invalidates all iterators.
|
|
///
|
|
std::pair<iterator, bool> insert(const ValueT &Val) {
|
|
unsigned Idx = ValIndexOf(Val);
|
|
iterator I = findIndex(Idx);
|
|
if (I != end())
|
|
return std::make_pair(I, false);
|
|
Sparse[Idx] = size();
|
|
Dense.push_back(Val);
|
|
return std::make_pair(end() - 1, true);
|
|
}
|
|
|
|
/// array subscript - If an element already exists with this key, return it.
|
|
/// Otherwise, automatically construct a new value from Key, insert it,
|
|
/// and return the newly inserted element.
|
|
ValueT &operator[](const KeyT &Key) {
|
|
return *insert(ValueT(Key)).first;
|
|
}
|
|
|
|
/// erase - Erases an existing element identified by a valid iterator.
|
|
///
|
|
/// This invalidates all iterators, but erase() returns an iterator pointing
|
|
/// to the next element. This makes it possible to erase selected elements
|
|
/// while iterating over the set:
|
|
///
|
|
/// for (SparseSet::iterator I = Set.begin(); I != Set.end();)
|
|
/// if (test(*I))
|
|
/// I = Set.erase(I);
|
|
/// else
|
|
/// ++I;
|
|
///
|
|
/// Note that end() changes when elements are erased, unlike std::list.
|
|
///
|
|
iterator erase(iterator I) {
|
|
assert(unsigned(I - begin()) < size() && "Invalid iterator");
|
|
if (I != end() - 1) {
|
|
*I = Dense.back();
|
|
unsigned BackIdx = ValIndexOf(Dense.back());
|
|
assert(BackIdx < Universe && "Invalid key in set. Did object mutate?");
|
|
Sparse[BackIdx] = I - begin();
|
|
}
|
|
// This depends on SmallVector::pop_back() not invalidating iterators.
|
|
// std::vector::pop_back() doesn't give that guarantee.
|
|
Dense.pop_back();
|
|
return I;
|
|
}
|
|
|
|
/// erase - Erases an element identified by Key, if it exists.
|
|
///
|
|
/// @param Key The key identifying the element to erase.
|
|
/// @returns True when an element was erased, false if no element was found.
|
|
///
|
|
bool erase(const KeyT &Key) {
|
|
iterator I = find(Key);
|
|
if (I == end())
|
|
return false;
|
|
erase(I);
|
|
return true;
|
|
}
|
|
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif
|