mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 00:11:00 +00:00
ae74f55552
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28007 91177308-0d34-0410-b5e6-96231b3b80d8
870 lines
32 KiB
C++
870 lines
32 KiB
C++
//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass reassociates commutative expressions in an order that is designed
|
|
// to promote better constant propagation, GCSE, LICM, PRE...
|
|
//
|
|
// For example: 4 + (x + 5) -> x + (4 + 5)
|
|
//
|
|
// In the implementation of this algorithm, constants are assigned rank = 0,
|
|
// function arguments are rank = 1, and other values are assigned ranks
|
|
// corresponding to the reverse post order traversal of current function
|
|
// (starting at 2), which effectively gives values in deep loops higher rank
|
|
// than values not in loops.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "reassociate"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
Statistic<> NumLinear ("reassociate","Number of insts linearized");
|
|
Statistic<> NumChanged("reassociate","Number of insts reassociated");
|
|
Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
|
|
Statistic<> NumAnnihil("reassociate","Number of expr tree annihilated");
|
|
Statistic<> NumFactor ("reassociate","Number of multiplies factored");
|
|
|
|
struct ValueEntry {
|
|
unsigned Rank;
|
|
Value *Op;
|
|
ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
|
|
};
|
|
inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
|
|
return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
|
|
}
|
|
}
|
|
|
|
/// PrintOps - Print out the expression identified in the Ops list.
|
|
///
|
|
static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
|
|
Module *M = I->getParent()->getParent()->getParent();
|
|
std::cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
|
|
<< *Ops[0].Op->getType();
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
|
WriteAsOperand(std::cerr << " ", Ops[i].Op, false, true, M)
|
|
<< "," << Ops[i].Rank;
|
|
}
|
|
|
|
namespace {
|
|
class Reassociate : public FunctionPass {
|
|
std::map<BasicBlock*, unsigned> RankMap;
|
|
std::map<Value*, unsigned> ValueRankMap;
|
|
bool MadeChange;
|
|
public:
|
|
bool runOnFunction(Function &F);
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
}
|
|
private:
|
|
void BuildRankMap(Function &F);
|
|
unsigned getRank(Value *V);
|
|
void ReassociateExpression(BinaryOperator *I);
|
|
void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
|
|
unsigned Idx = 0);
|
|
Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
|
|
void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
|
|
void LinearizeExpr(BinaryOperator *I);
|
|
Value *RemoveFactorFromExpression(Value *V, Value *Factor);
|
|
void ReassociateBB(BasicBlock *BB);
|
|
|
|
void RemoveDeadBinaryOp(Value *V);
|
|
};
|
|
|
|
RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions");
|
|
}
|
|
|
|
// Public interface to the Reassociate pass
|
|
FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
|
|
|
|
void Reassociate::RemoveDeadBinaryOp(Value *V) {
|
|
BinaryOperator *BOp = dyn_cast<BinaryOperator>(V);
|
|
if (!BOp || !BOp->use_empty()) return;
|
|
|
|
Value *LHS = BOp->getOperand(0), *RHS = BOp->getOperand(1);
|
|
RemoveDeadBinaryOp(LHS);
|
|
RemoveDeadBinaryOp(RHS);
|
|
}
|
|
|
|
|
|
static bool isUnmovableInstruction(Instruction *I) {
|
|
if (I->getOpcode() == Instruction::PHI ||
|
|
I->getOpcode() == Instruction::Alloca ||
|
|
I->getOpcode() == Instruction::Load ||
|
|
I->getOpcode() == Instruction::Malloc ||
|
|
I->getOpcode() == Instruction::Invoke ||
|
|
I->getOpcode() == Instruction::Call ||
|
|
I->getOpcode() == Instruction::Div ||
|
|
I->getOpcode() == Instruction::Rem)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void Reassociate::BuildRankMap(Function &F) {
|
|
unsigned i = 2;
|
|
|
|
// Assign distinct ranks to function arguments
|
|
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
|
|
ValueRankMap[I] = ++i;
|
|
|
|
ReversePostOrderTraversal<Function*> RPOT(&F);
|
|
for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
|
|
E = RPOT.end(); I != E; ++I) {
|
|
BasicBlock *BB = *I;
|
|
unsigned BBRank = RankMap[BB] = ++i << 16;
|
|
|
|
// Walk the basic block, adding precomputed ranks for any instructions that
|
|
// we cannot move. This ensures that the ranks for these instructions are
|
|
// all different in the block.
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
if (isUnmovableInstruction(I))
|
|
ValueRankMap[I] = ++BBRank;
|
|
}
|
|
}
|
|
|
|
unsigned Reassociate::getRank(Value *V) {
|
|
if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
|
|
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
|
|
|
|
unsigned &CachedRank = ValueRankMap[I];
|
|
if (CachedRank) return CachedRank; // Rank already known?
|
|
|
|
// If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
|
|
// we can reassociate expressions for code motion! Since we do not recurse
|
|
// for PHI nodes, we cannot have infinite recursion here, because there
|
|
// cannot be loops in the value graph that do not go through PHI nodes.
|
|
unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
|
|
for (unsigned i = 0, e = I->getNumOperands();
|
|
i != e && Rank != MaxRank; ++i)
|
|
Rank = std::max(Rank, getRank(I->getOperand(i)));
|
|
|
|
// If this is a not or neg instruction, do not count it for rank. This
|
|
// assures us that X and ~X will have the same rank.
|
|
if (!I->getType()->isIntegral() ||
|
|
(!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
|
|
++Rank;
|
|
|
|
//DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
|
|
//<< Rank << "\n");
|
|
|
|
return CachedRank = Rank;
|
|
}
|
|
|
|
/// isReassociableOp - Return true if V is an instruction of the specified
|
|
/// opcode and if it only has one use.
|
|
static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
|
|
if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
|
|
cast<Instruction>(V)->getOpcode() == Opcode)
|
|
return cast<BinaryOperator>(V);
|
|
return 0;
|
|
}
|
|
|
|
/// LowerNegateToMultiply - Replace 0-X with X*-1.
|
|
///
|
|
static Instruction *LowerNegateToMultiply(Instruction *Neg) {
|
|
Constant *Cst;
|
|
if (Neg->getType()->isFloatingPoint())
|
|
Cst = ConstantFP::get(Neg->getType(), -1);
|
|
else
|
|
Cst = ConstantInt::getAllOnesValue(Neg->getType());
|
|
|
|
std::string NegName = Neg->getName(); Neg->setName("");
|
|
Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, NegName,
|
|
Neg);
|
|
Neg->replaceAllUsesWith(Res);
|
|
Neg->eraseFromParent();
|
|
return Res;
|
|
}
|
|
|
|
// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
|
|
// Note that if D is also part of the expression tree that we recurse to
|
|
// linearize it as well. Besides that case, this does not recurse into A,B, or
|
|
// C.
|
|
void Reassociate::LinearizeExpr(BinaryOperator *I) {
|
|
BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
|
|
BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
|
|
assert(isReassociableOp(LHS, I->getOpcode()) &&
|
|
isReassociableOp(RHS, I->getOpcode()) &&
|
|
"Not an expression that needs linearization?");
|
|
|
|
DEBUG(std::cerr << "Linear" << *LHS << *RHS << *I);
|
|
|
|
// Move the RHS instruction to live immediately before I, avoiding breaking
|
|
// dominator properties.
|
|
RHS->moveBefore(I);
|
|
|
|
// Move operands around to do the linearization.
|
|
I->setOperand(1, RHS->getOperand(0));
|
|
RHS->setOperand(0, LHS);
|
|
I->setOperand(0, RHS);
|
|
|
|
++NumLinear;
|
|
MadeChange = true;
|
|
DEBUG(std::cerr << "Linearized: " << *I);
|
|
|
|
// If D is part of this expression tree, tail recurse.
|
|
if (isReassociableOp(I->getOperand(1), I->getOpcode()))
|
|
LinearizeExpr(I);
|
|
}
|
|
|
|
|
|
/// LinearizeExprTree - Given an associative binary expression tree, traverse
|
|
/// all of the uses putting it into canonical form. This forces a left-linear
|
|
/// form of the the expression (((a+b)+c)+d), and collects information about the
|
|
/// rank of the non-tree operands.
|
|
///
|
|
/// NOTE: These intentionally destroys the expression tree operands (turning
|
|
/// them into undef values) to reduce #uses of the values. This means that the
|
|
/// caller MUST use something like RewriteExprTree to put the values back in.
|
|
///
|
|
void Reassociate::LinearizeExprTree(BinaryOperator *I,
|
|
std::vector<ValueEntry> &Ops) {
|
|
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
|
|
unsigned Opcode = I->getOpcode();
|
|
|
|
// First step, linearize the expression if it is in ((A+B)+(C+D)) form.
|
|
BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
|
|
BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
|
|
|
|
// If this is a multiply expression tree and it contains internal negations,
|
|
// transform them into multiplies by -1 so they can be reassociated.
|
|
if (I->getOpcode() == Instruction::Mul) {
|
|
if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
|
|
LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
|
|
LHSBO = isReassociableOp(LHS, Opcode);
|
|
}
|
|
if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
|
|
RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
|
|
RHSBO = isReassociableOp(RHS, Opcode);
|
|
}
|
|
}
|
|
|
|
if (!LHSBO) {
|
|
if (!RHSBO) {
|
|
// Neither the LHS or RHS as part of the tree, thus this is a leaf. As
|
|
// such, just remember these operands and their rank.
|
|
Ops.push_back(ValueEntry(getRank(LHS), LHS));
|
|
Ops.push_back(ValueEntry(getRank(RHS), RHS));
|
|
|
|
// Clear the leaves out.
|
|
I->setOperand(0, UndefValue::get(I->getType()));
|
|
I->setOperand(1, UndefValue::get(I->getType()));
|
|
return;
|
|
} else {
|
|
// Turn X+(Y+Z) -> (Y+Z)+X
|
|
std::swap(LHSBO, RHSBO);
|
|
std::swap(LHS, RHS);
|
|
bool Success = !I->swapOperands();
|
|
assert(Success && "swapOperands failed");
|
|
MadeChange = true;
|
|
}
|
|
} else if (RHSBO) {
|
|
// Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
|
|
// part of the expression tree.
|
|
LinearizeExpr(I);
|
|
LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
|
|
RHS = I->getOperand(1);
|
|
RHSBO = 0;
|
|
}
|
|
|
|
// Okay, now we know that the LHS is a nested expression and that the RHS is
|
|
// not. Perform reassociation.
|
|
assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
|
|
|
|
// Move LHS right before I to make sure that the tree expression dominates all
|
|
// values.
|
|
LHSBO->moveBefore(I);
|
|
|
|
// Linearize the expression tree on the LHS.
|
|
LinearizeExprTree(LHSBO, Ops);
|
|
|
|
// Remember the RHS operand and its rank.
|
|
Ops.push_back(ValueEntry(getRank(RHS), RHS));
|
|
|
|
// Clear the RHS leaf out.
|
|
I->setOperand(1, UndefValue::get(I->getType()));
|
|
}
|
|
|
|
// RewriteExprTree - Now that the operands for this expression tree are
|
|
// linearized and optimized, emit them in-order. This function is written to be
|
|
// tail recursive.
|
|
void Reassociate::RewriteExprTree(BinaryOperator *I,
|
|
std::vector<ValueEntry> &Ops,
|
|
unsigned i) {
|
|
if (i+2 == Ops.size()) {
|
|
if (I->getOperand(0) != Ops[i].Op ||
|
|
I->getOperand(1) != Ops[i+1].Op) {
|
|
Value *OldLHS = I->getOperand(0);
|
|
DEBUG(std::cerr << "RA: " << *I);
|
|
I->setOperand(0, Ops[i].Op);
|
|
I->setOperand(1, Ops[i+1].Op);
|
|
DEBUG(std::cerr << "TO: " << *I);
|
|
MadeChange = true;
|
|
++NumChanged;
|
|
|
|
// If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
|
|
// delete the extra, now dead, nodes.
|
|
RemoveDeadBinaryOp(OldLHS);
|
|
}
|
|
return;
|
|
}
|
|
assert(i+2 < Ops.size() && "Ops index out of range!");
|
|
|
|
if (I->getOperand(1) != Ops[i].Op) {
|
|
DEBUG(std::cerr << "RA: " << *I);
|
|
I->setOperand(1, Ops[i].Op);
|
|
DEBUG(std::cerr << "TO: " << *I);
|
|
MadeChange = true;
|
|
++NumChanged;
|
|
}
|
|
|
|
BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
|
|
assert(LHS->getOpcode() == I->getOpcode() &&
|
|
"Improper expression tree!");
|
|
|
|
// Compactify the tree instructions together with each other to guarantee
|
|
// that the expression tree is dominated by all of Ops.
|
|
LHS->moveBefore(I);
|
|
RewriteExprTree(LHS, Ops, i+1);
|
|
}
|
|
|
|
|
|
|
|
// NegateValue - Insert instructions before the instruction pointed to by BI,
|
|
// that computes the negative version of the value specified. The negative
|
|
// version of the value is returned, and BI is left pointing at the instruction
|
|
// that should be processed next by the reassociation pass.
|
|
//
|
|
static Value *NegateValue(Value *V, Instruction *BI) {
|
|
// We are trying to expose opportunity for reassociation. One of the things
|
|
// that we want to do to achieve this is to push a negation as deep into an
|
|
// expression chain as possible, to expose the add instructions. In practice,
|
|
// this means that we turn this:
|
|
// X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
|
|
// so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
|
|
// the constants. We assume that instcombine will clean up the mess later if
|
|
// we introduce tons of unnecessary negation instructions...
|
|
//
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
|
|
// Push the negates through the add.
|
|
I->setOperand(0, NegateValue(I->getOperand(0), BI));
|
|
I->setOperand(1, NegateValue(I->getOperand(1), BI));
|
|
|
|
// We must move the add instruction here, because the neg instructions do
|
|
// not dominate the old add instruction in general. By moving it, we are
|
|
// assured that the neg instructions we just inserted dominate the
|
|
// instruction we are about to insert after them.
|
|
//
|
|
I->moveBefore(BI);
|
|
I->setName(I->getName()+".neg");
|
|
return I;
|
|
}
|
|
|
|
// Insert a 'neg' instruction that subtracts the value from zero to get the
|
|
// negation.
|
|
//
|
|
return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
|
|
}
|
|
|
|
/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
|
|
/// only used by an add, transform this into (X+(0-Y)) to promote better
|
|
/// reassociation.
|
|
static Instruction *BreakUpSubtract(Instruction *Sub) {
|
|
// Don't bother to break this up unless either the LHS is an associable add or
|
|
// if this is only used by one.
|
|
if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
|
|
!isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
|
|
!(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
|
|
return 0;
|
|
|
|
// Convert a subtract into an add and a neg instruction... so that sub
|
|
// instructions can be commuted with other add instructions...
|
|
//
|
|
// Calculate the negative value of Operand 1 of the sub instruction...
|
|
// and set it as the RHS of the add instruction we just made...
|
|
//
|
|
std::string Name = Sub->getName();
|
|
Sub->setName("");
|
|
Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
|
|
Instruction *New =
|
|
BinaryOperator::createAdd(Sub->getOperand(0), NegVal, Name, Sub);
|
|
|
|
// Everyone now refers to the add instruction.
|
|
Sub->replaceAllUsesWith(New);
|
|
Sub->eraseFromParent();
|
|
|
|
DEBUG(std::cerr << "Negated: " << *New);
|
|
return New;
|
|
}
|
|
|
|
/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
|
|
/// by one, change this into a multiply by a constant to assist with further
|
|
/// reassociation.
|
|
static Instruction *ConvertShiftToMul(Instruction *Shl) {
|
|
// If an operand of this shift is a reassociable multiply, or if the shift
|
|
// is used by a reassociable multiply or add, turn into a multiply.
|
|
if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
|
|
(Shl->hasOneUse() &&
|
|
(isReassociableOp(Shl->use_back(), Instruction::Mul) ||
|
|
isReassociableOp(Shl->use_back(), Instruction::Add)))) {
|
|
Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
|
|
MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
|
|
|
|
std::string Name = Shl->getName(); Shl->setName("");
|
|
Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
|
|
Name, Shl);
|
|
Shl->replaceAllUsesWith(Mul);
|
|
Shl->eraseFromParent();
|
|
return Mul;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Scan backwards and forwards among values with the same rank as element i to
|
|
// see if X exists. If X does not exist, return i.
|
|
static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
|
|
Value *X) {
|
|
unsigned XRank = Ops[i].Rank;
|
|
unsigned e = Ops.size();
|
|
for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
|
|
if (Ops[j].Op == X)
|
|
return j;
|
|
// Scan backwards
|
|
for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
|
|
if (Ops[j].Op == X)
|
|
return j;
|
|
return i;
|
|
}
|
|
|
|
/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
|
|
/// and returning the result. Insert the tree before I.
|
|
static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
|
|
if (Ops.size() == 1) return Ops.back();
|
|
|
|
Value *V1 = Ops.back();
|
|
Ops.pop_back();
|
|
Value *V2 = EmitAddTreeOfValues(I, Ops);
|
|
return BinaryOperator::createAdd(V2, V1, "tmp", I);
|
|
}
|
|
|
|
/// RemoveFactorFromExpression - If V is an expression tree that is a
|
|
/// multiplication sequence, and if this sequence contains a multiply by Factor,
|
|
/// remove Factor from the tree and return the new tree.
|
|
Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
|
|
BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
|
|
if (!BO) return 0;
|
|
|
|
std::vector<ValueEntry> Factors;
|
|
LinearizeExprTree(BO, Factors);
|
|
|
|
bool FoundFactor = false;
|
|
for (unsigned i = 0, e = Factors.size(); i != e; ++i)
|
|
if (Factors[i].Op == Factor) {
|
|
FoundFactor = true;
|
|
Factors.erase(Factors.begin()+i);
|
|
break;
|
|
}
|
|
if (!FoundFactor) {
|
|
// Make sure to restore the operands to the expression tree.
|
|
RewriteExprTree(BO, Factors);
|
|
return 0;
|
|
}
|
|
|
|
if (Factors.size() == 1) return Factors[0].Op;
|
|
|
|
RewriteExprTree(BO, Factors);
|
|
return BO;
|
|
}
|
|
|
|
/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
|
|
/// add its operands as factors, otherwise add V to the list of factors.
|
|
static void FindSingleUseMultiplyFactors(Value *V,
|
|
std::vector<Value*> &Factors) {
|
|
BinaryOperator *BO;
|
|
if ((!V->hasOneUse() && !V->use_empty()) ||
|
|
!(BO = dyn_cast<BinaryOperator>(V)) ||
|
|
BO->getOpcode() != Instruction::Mul) {
|
|
Factors.push_back(V);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, add the LHS and RHS to the list of factors.
|
|
FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
|
|
FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
|
|
}
|
|
|
|
|
|
|
|
Value *Reassociate::OptimizeExpression(BinaryOperator *I,
|
|
std::vector<ValueEntry> &Ops) {
|
|
// Now that we have the linearized expression tree, try to optimize it.
|
|
// Start by folding any constants that we found.
|
|
bool IterateOptimization = false;
|
|
if (Ops.size() == 1) return Ops[0].Op;
|
|
|
|
unsigned Opcode = I->getOpcode();
|
|
|
|
if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
|
|
if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
|
|
Ops.pop_back();
|
|
Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
|
|
return OptimizeExpression(I, Ops);
|
|
}
|
|
|
|
// Check for destructive annihilation due to a constant being used.
|
|
if (ConstantIntegral *CstVal = dyn_cast<ConstantIntegral>(Ops.back().Op))
|
|
switch (Opcode) {
|
|
default: break;
|
|
case Instruction::And:
|
|
if (CstVal->isNullValue()) { // ... & 0 -> 0
|
|
++NumAnnihil;
|
|
return CstVal;
|
|
} else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
|
|
Ops.pop_back();
|
|
}
|
|
break;
|
|
case Instruction::Mul:
|
|
if (CstVal->isNullValue()) { // ... * 0 -> 0
|
|
++NumAnnihil;
|
|
return CstVal;
|
|
} else if (cast<ConstantInt>(CstVal)->getRawValue() == 1) {
|
|
Ops.pop_back(); // ... * 1 -> ...
|
|
}
|
|
break;
|
|
case Instruction::Or:
|
|
if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
|
|
++NumAnnihil;
|
|
return CstVal;
|
|
}
|
|
// FALLTHROUGH!
|
|
case Instruction::Add:
|
|
case Instruction::Xor:
|
|
if (CstVal->isNullValue()) // ... [|^+] 0 -> ...
|
|
Ops.pop_back();
|
|
break;
|
|
}
|
|
if (Ops.size() == 1) return Ops[0].Op;
|
|
|
|
// Handle destructive annihilation do to identities between elements in the
|
|
// argument list here.
|
|
switch (Opcode) {
|
|
default: break;
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
// Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
|
|
// If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
|
// First, check for X and ~X in the operand list.
|
|
assert(i < Ops.size());
|
|
if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
|
|
Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
|
|
unsigned FoundX = FindInOperandList(Ops, i, X);
|
|
if (FoundX != i) {
|
|
if (Opcode == Instruction::And) { // ...&X&~X = 0
|
|
++NumAnnihil;
|
|
return Constant::getNullValue(X->getType());
|
|
} else if (Opcode == Instruction::Or) { // ...|X|~X = -1
|
|
++NumAnnihil;
|
|
return ConstantIntegral::getAllOnesValue(X->getType());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Next, check for duplicate pairs of values, which we assume are next to
|
|
// each other, due to our sorting criteria.
|
|
assert(i < Ops.size());
|
|
if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
|
|
if (Opcode == Instruction::And || Opcode == Instruction::Or) {
|
|
// Drop duplicate values.
|
|
Ops.erase(Ops.begin()+i);
|
|
--i; --e;
|
|
IterateOptimization = true;
|
|
++NumAnnihil;
|
|
} else {
|
|
assert(Opcode == Instruction::Xor);
|
|
if (e == 2) {
|
|
++NumAnnihil;
|
|
return Constant::getNullValue(Ops[0].Op->getType());
|
|
}
|
|
// ... X^X -> ...
|
|
Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
|
|
i -= 1; e -= 2;
|
|
IterateOptimization = true;
|
|
++NumAnnihil;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Instruction::Add:
|
|
// Scan the operand lists looking for X and -X pairs. If we find any, we
|
|
// can simplify the expression. X+-X == 0.
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
|
assert(i < Ops.size());
|
|
// Check for X and -X in the operand list.
|
|
if (BinaryOperator::isNeg(Ops[i].Op)) {
|
|
Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
|
|
unsigned FoundX = FindInOperandList(Ops, i, X);
|
|
if (FoundX != i) {
|
|
// Remove X and -X from the operand list.
|
|
if (Ops.size() == 2) {
|
|
++NumAnnihil;
|
|
return Constant::getNullValue(X->getType());
|
|
} else {
|
|
Ops.erase(Ops.begin()+i);
|
|
if (i < FoundX)
|
|
--FoundX;
|
|
else
|
|
--i; // Need to back up an extra one.
|
|
Ops.erase(Ops.begin()+FoundX);
|
|
IterateOptimization = true;
|
|
++NumAnnihil;
|
|
--i; // Revisit element.
|
|
e -= 2; // Removed two elements.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Scan the operand list, checking to see if there are any common factors
|
|
// between operands. Consider something like A*A+A*B*C+D. We would like to
|
|
// reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
|
|
// To efficiently find this, we count the number of times a factor occurs
|
|
// for any ADD operands that are MULs.
|
|
std::map<Value*, unsigned> FactorOccurrences;
|
|
unsigned MaxOcc = 0;
|
|
Value *MaxOccVal = 0;
|
|
if (!I->getType()->isFloatingPoint()) {
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
|
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op))
|
|
if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
|
|
// Compute all of the factors of this added value.
|
|
std::vector<Value*> Factors;
|
|
FindSingleUseMultiplyFactors(BOp, Factors);
|
|
assert(Factors.size() > 1 && "Bad linearize!");
|
|
|
|
// Add one to FactorOccurrences for each unique factor in this op.
|
|
if (Factors.size() == 2) {
|
|
unsigned Occ = ++FactorOccurrences[Factors[0]];
|
|
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
|
|
if (Factors[0] != Factors[1]) { // Don't double count A*A.
|
|
Occ = ++FactorOccurrences[Factors[1]];
|
|
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
|
|
}
|
|
} else {
|
|
std::set<Value*> Duplicates;
|
|
for (unsigned i = 0, e = Factors.size(); i != e; ++i)
|
|
if (Duplicates.insert(Factors[i]).second) {
|
|
unsigned Occ = ++FactorOccurrences[Factors[i]];
|
|
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If any factor occurred more than one time, we can pull it out.
|
|
if (MaxOcc > 1) {
|
|
DEBUG(std::cerr << "\nFACTORING [" << MaxOcc << "]: "
|
|
<< *MaxOccVal << "\n");
|
|
|
|
// Create a new instruction that uses the MaxOccVal twice. If we don't do
|
|
// this, we could otherwise run into situations where removing a factor
|
|
// from an expression will drop a use of maxocc, and this can cause
|
|
// RemoveFactorFromExpression on successive values to behave differently.
|
|
Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
|
|
std::vector<Value*> NewMulOps;
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
|
if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
|
|
NewMulOps.push_back(V);
|
|
Ops.erase(Ops.begin()+i);
|
|
--i; --e;
|
|
}
|
|
}
|
|
|
|
// No need for extra uses anymore.
|
|
delete DummyInst;
|
|
|
|
unsigned NumAddedValues = NewMulOps.size();
|
|
Value *V = EmitAddTreeOfValues(I, NewMulOps);
|
|
Value *V2 = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
|
|
|
|
// Now that we have inserted V and its sole use, optimize it. This allows
|
|
// us to handle cases that require multiple factoring steps, such as this:
|
|
// A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
|
|
if (NumAddedValues > 1)
|
|
ReassociateExpression(cast<BinaryOperator>(V));
|
|
|
|
++NumFactor;
|
|
|
|
if (Ops.size() == 0)
|
|
return V2;
|
|
|
|
// Add the new value to the list of things being added.
|
|
Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
|
|
|
|
// Rewrite the tree so that there is now a use of V.
|
|
RewriteExprTree(I, Ops);
|
|
return OptimizeExpression(I, Ops);
|
|
}
|
|
break;
|
|
//case Instruction::Mul:
|
|
}
|
|
|
|
if (IterateOptimization)
|
|
return OptimizeExpression(I, Ops);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/// ReassociateBB - Inspect all of the instructions in this basic block,
|
|
/// reassociating them as we go.
|
|
void Reassociate::ReassociateBB(BasicBlock *BB) {
|
|
for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
|
|
Instruction *BI = BBI++;
|
|
if (BI->getOpcode() == Instruction::Shl &&
|
|
isa<ConstantInt>(BI->getOperand(1)))
|
|
if (Instruction *NI = ConvertShiftToMul(BI)) {
|
|
MadeChange = true;
|
|
BI = NI;
|
|
}
|
|
|
|
// Reject cases where it is pointless to do this.
|
|
if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
|
|
isa<PackedType>(BI->getType()))
|
|
continue; // Floating point ops are not associative.
|
|
|
|
// If this is a subtract instruction which is not already in negate form,
|
|
// see if we can convert it to X+-Y.
|
|
if (BI->getOpcode() == Instruction::Sub) {
|
|
if (!BinaryOperator::isNeg(BI)) {
|
|
if (Instruction *NI = BreakUpSubtract(BI)) {
|
|
MadeChange = true;
|
|
BI = NI;
|
|
}
|
|
} else {
|
|
// Otherwise, this is a negation. See if the operand is a multiply tree
|
|
// and if this is not an inner node of a multiply tree.
|
|
if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
|
|
(!BI->hasOneUse() ||
|
|
!isReassociableOp(BI->use_back(), Instruction::Mul))) {
|
|
BI = LowerNegateToMultiply(BI);
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this instruction is a commutative binary operator, process it.
|
|
if (!BI->isAssociative()) continue;
|
|
BinaryOperator *I = cast<BinaryOperator>(BI);
|
|
|
|
// If this is an interior node of a reassociable tree, ignore it until we
|
|
// get to the root of the tree, to avoid N^2 analysis.
|
|
if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
|
|
continue;
|
|
|
|
// If this is an add tree that is used by a sub instruction, ignore it
|
|
// until we process the subtract.
|
|
if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
|
|
cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
|
|
continue;
|
|
|
|
ReassociateExpression(I);
|
|
}
|
|
}
|
|
|
|
void Reassociate::ReassociateExpression(BinaryOperator *I) {
|
|
|
|
// First, walk the expression tree, linearizing the tree, collecting
|
|
std::vector<ValueEntry> Ops;
|
|
LinearizeExprTree(I, Ops);
|
|
|
|
DEBUG(std::cerr << "RAIn:\t"; PrintOps(I, Ops);
|
|
std::cerr << "\n");
|
|
|
|
// Now that we have linearized the tree to a list and have gathered all of
|
|
// the operands and their ranks, sort the operands by their rank. Use a
|
|
// stable_sort so that values with equal ranks will have their relative
|
|
// positions maintained (and so the compiler is deterministic). Note that
|
|
// this sorts so that the highest ranking values end up at the beginning of
|
|
// the vector.
|
|
std::stable_sort(Ops.begin(), Ops.end());
|
|
|
|
// OptimizeExpression - Now that we have the expression tree in a convenient
|
|
// sorted form, optimize it globally if possible.
|
|
if (Value *V = OptimizeExpression(I, Ops)) {
|
|
// This expression tree simplified to something that isn't a tree,
|
|
// eliminate it.
|
|
DEBUG(std::cerr << "Reassoc to scalar: " << *V << "\n");
|
|
I->replaceAllUsesWith(V);
|
|
RemoveDeadBinaryOp(I);
|
|
return;
|
|
}
|
|
|
|
// We want to sink immediates as deeply as possible except in the case where
|
|
// this is a multiply tree used only by an add, and the immediate is a -1.
|
|
// In this case we reassociate to put the negation on the outside so that we
|
|
// can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
|
|
if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
|
|
cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
|
|
isa<ConstantInt>(Ops.back().Op) &&
|
|
cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
|
|
Ops.insert(Ops.begin(), Ops.back());
|
|
Ops.pop_back();
|
|
}
|
|
|
|
DEBUG(std::cerr << "RAOut:\t"; PrintOps(I, Ops);
|
|
std::cerr << "\n");
|
|
|
|
if (Ops.size() == 1) {
|
|
// This expression tree simplified to something that isn't a tree,
|
|
// eliminate it.
|
|
I->replaceAllUsesWith(Ops[0].Op);
|
|
RemoveDeadBinaryOp(I);
|
|
} else {
|
|
// Now that we ordered and optimized the expressions, splat them back into
|
|
// the expression tree, removing any unneeded nodes.
|
|
RewriteExprTree(I, Ops);
|
|
}
|
|
}
|
|
|
|
|
|
bool Reassociate::runOnFunction(Function &F) {
|
|
// Recalculate the rank map for F
|
|
BuildRankMap(F);
|
|
|
|
MadeChange = false;
|
|
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
|
|
ReassociateBB(FI);
|
|
|
|
// We are done with the rank map...
|
|
RankMap.clear();
|
|
ValueRankMap.clear();
|
|
return MadeChange;
|
|
}
|
|
|