llvm-6502/lib/Analysis/DataStructure/DataStructure.cpp

2437 lines
89 KiB
C++

//===- DataStructure.cpp - Implement the core data structure analysis -----===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the core data structure functionality.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure/DSGraphTraits.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Timer.h"
#include <iostream>
#include <algorithm>
using namespace llvm;
#define COLLAPSE_ARRAYS_AGGRESSIVELY 0
namespace {
Statistic<> NumFolds ("dsa", "Number of nodes completely folded");
Statistic<> NumCallNodesMerged("dsa", "Number of call nodes merged");
Statistic<> NumNodeAllocated ("dsa", "Number of nodes allocated");
Statistic<> NumDNE ("dsa", "Number of nodes removed by reachability");
Statistic<> NumTrivialDNE ("dsa", "Number of nodes trivially removed");
Statistic<> NumTrivialGlobalDNE("dsa", "Number of globals trivially removed");
static cl::opt<unsigned>
DSAFieldLimit("dsa-field-limit", cl::Hidden,
cl::desc("Number of fields to track before collapsing a node"),
cl::init(256));
}
#if 0
#define TIME_REGION(VARNAME, DESC) \
NamedRegionTimer VARNAME(DESC)
#else
#define TIME_REGION(VARNAME, DESC)
#endif
using namespace DS;
/// isForwarding - Return true if this NodeHandle is forwarding to another
/// one.
bool DSNodeHandle::isForwarding() const {
return N && N->isForwarding();
}
DSNode *DSNodeHandle::HandleForwarding() const {
assert(N->isForwarding() && "Can only be invoked if forwarding!");
DEBUG(
{ //assert not looping
DSNode* NH = N;
std::set<DSNode*> seen;
while(NH && NH->isForwarding()) {
assert(seen.find(NH) == seen.end() && "Loop detected");
seen.insert(NH);
NH = NH->ForwardNH.N;
}
}
);
// Handle node forwarding here!
DSNode *Next = N->ForwardNH.getNode(); // Cause recursive shrinkage
Offset += N->ForwardNH.getOffset();
if (--N->NumReferrers == 0) {
// Removing the last referrer to the node, sever the forwarding link
N->stopForwarding();
}
N = Next;
N->NumReferrers++;
if (N->Size <= Offset) {
assert(N->Size <= 1 && "Forwarded to shrunk but not collapsed node?");
Offset = 0;
}
return N;
}
//===----------------------------------------------------------------------===//
// DSScalarMap Implementation
//===----------------------------------------------------------------------===//
DSNodeHandle &DSScalarMap::AddGlobal(GlobalValue *GV) {
assert(ValueMap.count(GV) == 0 && "GV already exists!");
// If the node doesn't exist, check to see if it's a global that is
// equated to another global in the program.
EquivalenceClasses<GlobalValue*>::iterator ECI = GlobalECs.findValue(GV);
if (ECI != GlobalECs.end()) {
GlobalValue *Leader = *GlobalECs.findLeader(ECI);
if (Leader != GV) {
GV = Leader;
iterator I = ValueMap.find(GV);
if (I != ValueMap.end())
return I->second;
}
}
// Okay, this is either not an equivalenced global or it is the leader, it
// will be inserted into the scalar map now.
GlobalSet.insert(GV);
return ValueMap.insert(std::make_pair(GV, DSNodeHandle())).first->second;
}
//===----------------------------------------------------------------------===//
// DSNode Implementation
//===----------------------------------------------------------------------===//
DSNode::DSNode(const Type *T, DSGraph *G)
: NumReferrers(0), Size(0), ParentGraph(G), Ty(Type::VoidTy), NodeType(0) {
// Add the type entry if it is specified...
if (T) mergeTypeInfo(T, 0);
if (G) G->addNode(this);
++NumNodeAllocated;
}
// DSNode copy constructor... do not copy over the referrers list!
DSNode::DSNode(const DSNode &N, DSGraph *G, bool NullLinks)
: NumReferrers(0), Size(N.Size), ParentGraph(G),
Ty(N.Ty), Globals(N.Globals), NodeType(N.NodeType) {
if (!NullLinks) {
Links = N.Links;
} else
Links.resize(N.Links.size()); // Create the appropriate number of null links
G->addNode(this);
++NumNodeAllocated;
}
/// getTargetData - Get the target data object used to construct this node.
///
const TargetData &DSNode::getTargetData() const {
return ParentGraph->getTargetData();
}
void DSNode::assertOK() const {
assert((Ty != Type::VoidTy ||
Ty == Type::VoidTy && (Size == 0 ||
(NodeType & DSNode::Array))) &&
"Node not OK!");
assert(ParentGraph && "Node has no parent?");
const DSScalarMap &SM = ParentGraph->getScalarMap();
for (unsigned i = 0, e = Globals.size(); i != e; ++i) {
assert(SM.global_count(Globals[i]));
assert(SM.find(Globals[i])->second.getNode() == this);
}
}
/// forwardNode - Mark this node as being obsolete, and all references to it
/// should be forwarded to the specified node and offset.
///
void DSNode::forwardNode(DSNode *To, unsigned Offset) {
assert(this != To && "Cannot forward a node to itself!");
assert(ForwardNH.isNull() && "Already forwarding from this node!");
if (To->Size <= 1) Offset = 0;
assert((Offset < To->Size || (Offset == To->Size && Offset == 0)) &&
"Forwarded offset is wrong!");
ForwardNH.setTo(To, Offset);
NodeType = DEAD;
Size = 0;
Ty = Type::VoidTy;
// Remove this node from the parent graph's Nodes list.
ParentGraph->unlinkNode(this);
ParentGraph = 0;
}
// addGlobal - Add an entry for a global value to the Globals list. This also
// marks the node with the 'G' flag if it does not already have it.
//
void DSNode::addGlobal(GlobalValue *GV) {
// First, check to make sure this is the leader if the global is in an
// equivalence class.
GV = getParentGraph()->getScalarMap().getLeaderForGlobal(GV);
// Keep the list sorted.
std::vector<GlobalValue*>::iterator I =
std::lower_bound(Globals.begin(), Globals.end(), GV);
if (I == Globals.end() || *I != GV) {
Globals.insert(I, GV);
NodeType |= GlobalNode;
}
}
// removeGlobal - Remove the specified global that is explicitly in the globals
// list.
void DSNode::removeGlobal(GlobalValue *GV) {
std::vector<GlobalValue*>::iterator I =
std::lower_bound(Globals.begin(), Globals.end(), GV);
assert(I != Globals.end() && *I == GV && "Global not in node!");
Globals.erase(I);
}
/// foldNodeCompletely - If we determine that this node has some funny
/// behavior happening to it that we cannot represent, we fold it down to a
/// single, completely pessimistic, node. This node is represented as a
/// single byte with a single TypeEntry of "void".
///
void DSNode::foldNodeCompletely() {
if (isNodeCompletelyFolded()) return; // If this node is already folded...
++NumFolds;
// If this node has a size that is <= 1, we don't need to create a forwarding
// node.
if (getSize() <= 1) {
NodeType |= DSNode::Array;
Ty = Type::VoidTy;
Size = 1;
assert(Links.size() <= 1 && "Size is 1, but has more links?");
Links.resize(1);
} else {
// Create the node we are going to forward to. This is required because
// some referrers may have an offset that is > 0. By forcing them to
// forward, the forwarder has the opportunity to correct the offset.
DSNode *DestNode = new DSNode(0, ParentGraph);
DestNode->NodeType = NodeType|DSNode::Array;
DestNode->Ty = Type::VoidTy;
DestNode->Size = 1;
DestNode->Globals.swap(Globals);
// Start forwarding to the destination node...
forwardNode(DestNode, 0);
if (!Links.empty()) {
DestNode->Links.reserve(1);
DSNodeHandle NH(DestNode);
DestNode->Links.push_back(Links[0]);
// If we have links, merge all of our outgoing links together...
for (unsigned i = Links.size()-1; i != 0; --i)
NH.getNode()->Links[0].mergeWith(Links[i]);
Links.clear();
} else {
DestNode->Links.resize(1);
}
}
}
/// isNodeCompletelyFolded - Return true if this node has been completely
/// folded down to something that can never be expanded, effectively losing
/// all of the field sensitivity that may be present in the node.
///
bool DSNode::isNodeCompletelyFolded() const {
return getSize() == 1 && Ty == Type::VoidTy && isArray();
}
/// addFullGlobalsList - Compute the full set of global values that are
/// represented by this node. Unlike getGlobalsList(), this requires fair
/// amount of work to compute, so don't treat this method call as free.
void DSNode::addFullGlobalsList(std::vector<GlobalValue*> &List) const {
if (globals_begin() == globals_end()) return;
EquivalenceClasses<GlobalValue*> &EC = getParentGraph()->getGlobalECs();
for (globals_iterator I = globals_begin(), E = globals_end(); I != E; ++I) {
EquivalenceClasses<GlobalValue*>::iterator ECI = EC.findValue(*I);
if (ECI == EC.end())
List.push_back(*I);
else
List.insert(List.end(), EC.member_begin(ECI), EC.member_end());
}
}
/// addFullFunctionList - Identical to addFullGlobalsList, but only return the
/// functions in the full list.
void DSNode::addFullFunctionList(std::vector<Function*> &List) const {
if (globals_begin() == globals_end()) return;
EquivalenceClasses<GlobalValue*> &EC = getParentGraph()->getGlobalECs();
for (globals_iterator I = globals_begin(), E = globals_end(); I != E; ++I) {
EquivalenceClasses<GlobalValue*>::iterator ECI = EC.findValue(*I);
if (ECI == EC.end()) {
if (Function *F = dyn_cast<Function>(*I))
List.push_back(F);
} else {
for (EquivalenceClasses<GlobalValue*>::member_iterator MI =
EC.member_begin(ECI), E = EC.member_end(); MI != E; ++MI)
if (Function *F = dyn_cast<Function>(*MI))
List.push_back(F);
}
}
}
namespace {
/// TypeElementWalker Class - Used for implementation of physical subtyping...
///
class TypeElementWalker {
struct StackState {
const Type *Ty;
unsigned Offset;
unsigned Idx;
StackState(const Type *T, unsigned Off = 0)
: Ty(T), Offset(Off), Idx(0) {}
};
std::vector<StackState> Stack;
const TargetData &TD;
public:
TypeElementWalker(const Type *T, const TargetData &td) : TD(td) {
Stack.push_back(T);
StepToLeaf();
}
bool isDone() const { return Stack.empty(); }
const Type *getCurrentType() const { return Stack.back().Ty; }
unsigned getCurrentOffset() const { return Stack.back().Offset; }
void StepToNextType() {
PopStackAndAdvance();
StepToLeaf();
}
private:
/// PopStackAndAdvance - Pop the current element off of the stack and
/// advance the underlying element to the next contained member.
void PopStackAndAdvance() {
assert(!Stack.empty() && "Cannot pop an empty stack!");
Stack.pop_back();
while (!Stack.empty()) {
StackState &SS = Stack.back();
if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) {
++SS.Idx;
if (SS.Idx != ST->getNumElements()) {
const StructLayout *SL = TD.getStructLayout(ST);
SS.Offset +=
unsigned(SL->MemberOffsets[SS.Idx]-SL->MemberOffsets[SS.Idx-1]);
return;
}
Stack.pop_back(); // At the end of the structure
} else {
const ArrayType *AT = cast<ArrayType>(SS.Ty);
++SS.Idx;
if (SS.Idx != AT->getNumElements()) {
SS.Offset += unsigned(TD.getTypeSize(AT->getElementType()));
return;
}
Stack.pop_back(); // At the end of the array
}
}
}
/// StepToLeaf - Used by physical subtyping to move to the first leaf node
/// on the type stack.
void StepToLeaf() {
if (Stack.empty()) return;
while (!Stack.empty() && !Stack.back().Ty->isFirstClassType()) {
StackState &SS = Stack.back();
if (const StructType *ST = dyn_cast<StructType>(SS.Ty)) {
if (ST->getNumElements() == 0) {
assert(SS.Idx == 0);
PopStackAndAdvance();
} else {
// Step into the structure...
assert(SS.Idx < ST->getNumElements());
const StructLayout *SL = TD.getStructLayout(ST);
Stack.push_back(StackState(ST->getElementType(SS.Idx),
SS.Offset+unsigned(SL->MemberOffsets[SS.Idx])));
}
} else {
const ArrayType *AT = cast<ArrayType>(SS.Ty);
if (AT->getNumElements() == 0) {
assert(SS.Idx == 0);
PopStackAndAdvance();
} else {
// Step into the array...
assert(SS.Idx < AT->getNumElements());
Stack.push_back(StackState(AT->getElementType(),
SS.Offset+SS.Idx*
unsigned(TD.getTypeSize(AT->getElementType()))));
}
}
}
}
};
} // end anonymous namespace
/// ElementTypesAreCompatible - Check to see if the specified types are
/// "physically" compatible. If so, return true, else return false. We only
/// have to check the fields in T1: T2 may be larger than T1. If AllowLargerT1
/// is true, then we also allow a larger T1.
///
static bool ElementTypesAreCompatible(const Type *T1, const Type *T2,
bool AllowLargerT1, const TargetData &TD){
TypeElementWalker T1W(T1, TD), T2W(T2, TD);
while (!T1W.isDone() && !T2W.isDone()) {
if (T1W.getCurrentOffset() != T2W.getCurrentOffset())
return false;
const Type *T1 = T1W.getCurrentType();
const Type *T2 = T2W.getCurrentType();
if (T1 != T2 && !T1->isLosslesslyConvertibleTo(T2))
return false;
T1W.StepToNextType();
T2W.StepToNextType();
}
return AllowLargerT1 || T1W.isDone();
}
/// mergeTypeInfo - This method merges the specified type into the current node
/// at the specified offset. This may update the current node's type record if
/// this gives more information to the node, it may do nothing to the node if
/// this information is already known, or it may merge the node completely (and
/// return true) if the information is incompatible with what is already known.
///
/// This method returns true if the node is completely folded, otherwise false.
///
bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset,
bool FoldIfIncompatible) {
DEBUG(std::cerr << "merging " << *NewTy << " at " << Offset
<< " with " << *Ty << "\n");
const TargetData &TD = getTargetData();
// Check to make sure the Size member is up-to-date. Size can be one of the
// following:
// Size = 0, Ty = Void: Nothing is known about this node.
// Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero
// Size = 1, Ty = Void, Array = 1: The node is collapsed
// Otherwise, sizeof(Ty) = Size
//
assert(((Size == 0 && Ty == Type::VoidTy && !isArray()) ||
(Size == 0 && !Ty->isSized() && !isArray()) ||
(Size == 1 && Ty == Type::VoidTy && isArray()) ||
(Size == 0 && !Ty->isSized() && !isArray()) ||
(TD.getTypeSize(Ty) == Size)) &&
"Size member of DSNode doesn't match the type structure!");
assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!");
if (Offset == 0 && NewTy == Ty)
return false; // This should be a common case, handle it efficiently
// Return true immediately if the node is completely folded.
if (isNodeCompletelyFolded()) return true;
// If this is an array type, eliminate the outside arrays because they won't
// be used anyway. This greatly reduces the size of large static arrays used
// as global variables, for example.
//
bool WillBeArray = false;
while (const ArrayType *AT = dyn_cast<ArrayType>(NewTy)) {
// FIXME: we might want to keep small arrays, but must be careful about
// things like: [2 x [10000 x int*]]
NewTy = AT->getElementType();
WillBeArray = true;
}
// Figure out how big the new type we're merging in is...
unsigned NewTySize = NewTy->isSized() ? (unsigned)TD.getTypeSize(NewTy) : 0;
// Otherwise check to see if we can fold this type into the current node. If
// we can't, we fold the node completely, if we can, we potentially update our
// internal state.
//
if (Ty == Type::VoidTy) {
// If this is the first type that this node has seen, just accept it without
// question....
assert(Offset == 0 && !isArray() &&
"Cannot have an offset into a void node!");
// If this node would have to have an unreasonable number of fields, just
// collapse it. This can occur for fortran common blocks, which have stupid
// things like { [100000000 x double], [1000000 x double] }.
unsigned NumFields = (NewTySize+DS::PointerSize-1) >> DS::PointerShift;
if (NumFields > DSAFieldLimit) {
foldNodeCompletely();
return true;
}
Ty = NewTy;
NodeType &= ~Array;
if (WillBeArray) NodeType |= Array;
Size = NewTySize;
// Calculate the number of outgoing links from this node.
Links.resize(NumFields);
return false;
}
// Handle node expansion case here...
if (Offset+NewTySize > Size) {
// It is illegal to grow this node if we have treated it as an array of
// objects...
if (isArray()) {
if (FoldIfIncompatible) foldNodeCompletely();
return true;
}
// If this node would have to have an unreasonable number of fields, just
// collapse it. This can occur for fortran common blocks, which have stupid
// things like { [100000000 x double], [1000000 x double] }.
unsigned NumFields = (NewTySize+Offset+DS::PointerSize-1) >> DS::PointerShift;
if (NumFields > DSAFieldLimit) {
foldNodeCompletely();
return true;
}
if (Offset) {
//handle some common cases:
// Ty: struct { t1, t2, t3, t4, ..., tn}
// NewTy: struct { offset, stuff...}
// try merge with NewTy: struct {t1, t2, stuff...} if offset lands exactly on a field in Ty
if (isa<StructType>(NewTy) && isa<StructType>(Ty)) {
DEBUG(std::cerr << "Ty: " << *Ty << "\nNewTy: " << *NewTy << "@" << Offset << "\n");
const StructType *STy = cast<StructType>(Ty);
const StructLayout &SL = *TD.getStructLayout(STy);
unsigned i = SL.getElementContainingOffset(Offset);
//Either we hit it exactly or give up
if (SL.MemberOffsets[i] != Offset) {
if (FoldIfIncompatible) foldNodeCompletely();
return true;
}
std::vector<const Type*> nt;
for (unsigned x = 0; x < i; ++x)
nt.push_back(STy->getElementType(x));
STy = cast<StructType>(NewTy);
nt.insert(nt.end(), STy->element_begin(), STy->element_end());
//and merge
STy = StructType::get(nt);
DEBUG(std::cerr << "Trying with: " << *STy << "\n");
return mergeTypeInfo(STy, 0);
}
//Ty: struct { t1, t2, t3 ... tn}
//NewTy T offset x
//try merge with NewTy: struct : {t1, t2, T} if offset lands on a field in Ty
if (isa<StructType>(Ty)) {
DEBUG(std::cerr << "Ty: " << *Ty << "\nNewTy: " << *NewTy << "@" << Offset << "\n");
const StructType *STy = cast<StructType>(Ty);
const StructLayout &SL = *TD.getStructLayout(STy);
unsigned i = SL.getElementContainingOffset(Offset);
//Either we hit it exactly or give up
if (SL.MemberOffsets[i] != Offset) {
if (FoldIfIncompatible) foldNodeCompletely();
return true;
}
std::vector<const Type*> nt;
for (unsigned x = 0; x < i; ++x)
nt.push_back(STy->getElementType(x));
nt.push_back(NewTy);
//and merge
STy = StructType::get(nt);
DEBUG(std::cerr << "Trying with: " << *STy << "\n");
return mergeTypeInfo(STy, 0);
}
std::cerr << "UNIMP: Trying to merge a growth type into "
<< "offset != 0: Collapsing!\n";
abort();
if (FoldIfIncompatible) foldNodeCompletely();
return true;
}
// Okay, the situation is nice and simple, we are trying to merge a type in
// at offset 0 that is bigger than our current type. Implement this by
// switching to the new type and then merge in the smaller one, which should
// hit the other code path here. If the other code path decides it's not
// ok, it will collapse the node as appropriate.
//
const Type *OldTy = Ty;
Ty = NewTy;
NodeType &= ~Array;
if (WillBeArray) NodeType |= Array;
Size = NewTySize;
// Must grow links to be the appropriate size...
Links.resize(NumFields);
// Merge in the old type now... which is guaranteed to be smaller than the
// "current" type.
return mergeTypeInfo(OldTy, 0);
}
assert(Offset <= Size &&
"Cannot merge something into a part of our type that doesn't exist!");
// Find the section of Ty that NewTy overlaps with... first we find the
// type that starts at offset Offset.
//
unsigned O = 0;
const Type *SubType = Ty;
while (O < Offset) {
assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!");
switch (SubType->getTypeID()) {
case Type::StructTyID: {
const StructType *STy = cast<StructType>(SubType);
const StructLayout &SL = *TD.getStructLayout(STy);
unsigned i = SL.getElementContainingOffset(Offset-O);
// The offset we are looking for must be in the i'th element...
SubType = STy->getElementType(i);
O += (unsigned)SL.MemberOffsets[i];
break;
}
case Type::ArrayTyID: {
SubType = cast<ArrayType>(SubType)->getElementType();
unsigned ElSize = (unsigned)TD.getTypeSize(SubType);
unsigned Remainder = (Offset-O) % ElSize;
O = Offset-Remainder;
break;
}
default:
if (FoldIfIncompatible) foldNodeCompletely();
return true;
}
}
assert(O == Offset && "Could not achieve the correct offset!");
// If we found our type exactly, early exit
if (SubType == NewTy) return false;
// Differing function types don't require us to merge. They are not values
// anyway.
if (isa<FunctionType>(SubType) &&
isa<FunctionType>(NewTy)) return false;
unsigned SubTypeSize = SubType->isSized() ?
(unsigned)TD.getTypeSize(SubType) : 0;
// Ok, we are getting desperate now. Check for physical subtyping, where we
// just require each element in the node to be compatible.
if (NewTySize <= SubTypeSize && NewTySize && NewTySize < 256 &&
SubTypeSize && SubTypeSize < 256 &&
ElementTypesAreCompatible(NewTy, SubType, !isArray(), TD))
return false;
// Okay, so we found the leader type at the offset requested. Search the list
// of types that starts at this offset. If SubType is currently an array or
// structure, the type desired may actually be the first element of the
// composite type...
//
unsigned PadSize = SubTypeSize; // Size, including pad memory which is ignored
while (SubType != NewTy) {
const Type *NextSubType = 0;
unsigned NextSubTypeSize = 0;
unsigned NextPadSize = 0;
switch (SubType->getTypeID()) {
case Type::StructTyID: {
const StructType *STy = cast<StructType>(SubType);
const StructLayout &SL = *TD.getStructLayout(STy);
if (SL.MemberOffsets.size() > 1)
NextPadSize = (unsigned)SL.MemberOffsets[1];
else
NextPadSize = SubTypeSize;
NextSubType = STy->getElementType(0);
NextSubTypeSize = (unsigned)TD.getTypeSize(NextSubType);
break;
}
case Type::ArrayTyID:
NextSubType = cast<ArrayType>(SubType)->getElementType();
NextSubTypeSize = (unsigned)TD.getTypeSize(NextSubType);
NextPadSize = NextSubTypeSize;
break;
default: ;
// fall out
}
if (NextSubType == 0)
break; // In the default case, break out of the loop
if (NextPadSize < NewTySize)
break; // Don't allow shrinking to a smaller type than NewTySize
SubType = NextSubType;
SubTypeSize = NextSubTypeSize;
PadSize = NextPadSize;
}
// If we found the type exactly, return it...
if (SubType == NewTy)
return false;
// Check to see if we have a compatible, but different type...
if (NewTySize == SubTypeSize) {
// Check to see if this type is obviously convertible... int -> uint f.e.
if (NewTy->isLosslesslyConvertibleTo(SubType))
return false;
// Check to see if we have a pointer & integer mismatch going on here,
// loading a pointer as a long, for example.
//
if (SubType->isInteger() && isa<PointerType>(NewTy) ||
NewTy->isInteger() && isa<PointerType>(SubType))
return false;
} else if (NewTySize > SubTypeSize && NewTySize <= PadSize) {
// We are accessing the field, plus some structure padding. Ignore the
// structure padding.
return false;
}
Module *M = 0;
if (getParentGraph()->retnodes_begin() != getParentGraph()->retnodes_end())
M = getParentGraph()->retnodes_begin()->first->getParent();
DEBUG(std::cerr << "MergeTypeInfo Folding OrigTy: ";
WriteTypeSymbolic(std::cerr, Ty, M) << "\n due to:";
WriteTypeSymbolic(std::cerr, NewTy, M) << " @ " << Offset << "!\n"
<< "SubType: ";
WriteTypeSymbolic(std::cerr, SubType, M) << "\n\n");
if (FoldIfIncompatible) foldNodeCompletely();
return true;
}
/// addEdgeTo - Add an edge from the current node to the specified node. This
/// can cause merging of nodes in the graph.
///
void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) {
if (NH.isNull()) return; // Nothing to do
if (isNodeCompletelyFolded())
Offset = 0;
DSNodeHandle &ExistingEdge = getLink(Offset);
if (!ExistingEdge.isNull()) {
// Merge the two nodes...
ExistingEdge.mergeWith(NH);
} else { // No merging to perform...
setLink(Offset, NH); // Just force a link in there...
}
}
/// MergeSortedVectors - Efficiently merge a vector into another vector where
/// duplicates are not allowed and both are sorted. This assumes that 'T's are
/// efficiently copyable and have sane comparison semantics.
///
static void MergeSortedVectors(std::vector<GlobalValue*> &Dest,
const std::vector<GlobalValue*> &Src) {
// By far, the most common cases will be the simple ones. In these cases,
// avoid having to allocate a temporary vector...
//
if (Src.empty()) { // Nothing to merge in...
return;
} else if (Dest.empty()) { // Just copy the result in...
Dest = Src;
} else if (Src.size() == 1) { // Insert a single element...
const GlobalValue *V = Src[0];
std::vector<GlobalValue*>::iterator I =
std::lower_bound(Dest.begin(), Dest.end(), V);
if (I == Dest.end() || *I != Src[0]) // If not already contained...
Dest.insert(I, Src[0]);
} else if (Dest.size() == 1) {
GlobalValue *Tmp = Dest[0]; // Save value in temporary...
Dest = Src; // Copy over list...
std::vector<GlobalValue*>::iterator I =
std::lower_bound(Dest.begin(), Dest.end(), Tmp);
if (I == Dest.end() || *I != Tmp) // If not already contained...
Dest.insert(I, Tmp);
} else {
// Make a copy to the side of Dest...
std::vector<GlobalValue*> Old(Dest);
// Make space for all of the type entries now...
Dest.resize(Dest.size()+Src.size());
// Merge the two sorted ranges together... into Dest.
std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin());
// Now erase any duplicate entries that may have accumulated into the
// vectors (because they were in both of the input sets)
Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end());
}
}
void DSNode::mergeGlobals(const std::vector<GlobalValue*> &RHS) {
MergeSortedVectors(Globals, RHS);
}
// MergeNodes - Helper function for DSNode::mergeWith().
// This function does the hard work of merging two nodes, CurNodeH
// and NH after filtering out trivial cases and making sure that
// CurNodeH.offset >= NH.offset.
//
// ***WARNING***
// Since merging may cause either node to go away, we must always
// use the node-handles to refer to the nodes. These node handles are
// automatically updated during merging, so will always provide access
// to the correct node after a merge.
//
void DSNode::MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH) {
assert(CurNodeH.getOffset() >= NH.getOffset() &&
"This should have been enforced in the caller.");
assert(CurNodeH.getNode()->getParentGraph()==NH.getNode()->getParentGraph() &&
"Cannot merge two nodes that are not in the same graph!");
// Now we know that Offset >= NH.Offset, so convert it so our "Offset" (with
// respect to NH.Offset) is now zero. NOffset is the distance from the base
// of our object that N starts from.
//
unsigned NOffset = CurNodeH.getOffset()-NH.getOffset();
unsigned NSize = NH.getNode()->getSize();
// If the two nodes are of different size, and the smaller node has the array
// bit set, collapse!
if (NSize != CurNodeH.getNode()->getSize()) {
#if COLLAPSE_ARRAYS_AGGRESSIVELY
if (NSize < CurNodeH.getNode()->getSize()) {
if (NH.getNode()->isArray())
NH.getNode()->foldNodeCompletely();
} else if (CurNodeH.getNode()->isArray()) {
NH.getNode()->foldNodeCompletely();
}
#endif
}
// Merge the type entries of the two nodes together...
if (NH.getNode()->Ty != Type::VoidTy)
CurNodeH.getNode()->mergeTypeInfo(NH.getNode()->Ty, NOffset);
assert(!CurNodeH.getNode()->isDeadNode());
// If we are merging a node with a completely folded node, then both nodes are
// now completely folded.
//
if (CurNodeH.getNode()->isNodeCompletelyFolded()) {
if (!NH.getNode()->isNodeCompletelyFolded()) {
NH.getNode()->foldNodeCompletely();
assert(NH.getNode() && NH.getOffset() == 0 &&
"folding did not make offset 0?");
NOffset = NH.getOffset();
NSize = NH.getNode()->getSize();
assert(NOffset == 0 && NSize == 1);
}
} else if (NH.getNode()->isNodeCompletelyFolded()) {
CurNodeH.getNode()->foldNodeCompletely();
assert(CurNodeH.getNode() && CurNodeH.getOffset() == 0 &&
"folding did not make offset 0?");
NSize = NH.getNode()->getSize();
NOffset = NH.getOffset();
assert(NOffset == 0 && NSize == 1);
}
DSNode *N = NH.getNode();
if (CurNodeH.getNode() == N || N == 0) return;
assert(!CurNodeH.getNode()->isDeadNode());
// Merge the NodeType information.
CurNodeH.getNode()->NodeType |= N->NodeType;
// Start forwarding to the new node!
N->forwardNode(CurNodeH.getNode(), NOffset);
assert(!CurNodeH.getNode()->isDeadNode());
// Make all of the outgoing links of N now be outgoing links of CurNodeH.
//
for (unsigned i = 0; i < N->getNumLinks(); ++i) {
DSNodeHandle &Link = N->getLink(i << DS::PointerShift);
if (Link.getNode()) {
// Compute the offset into the current node at which to
// merge this link. In the common case, this is a linear
// relation to the offset in the original node (with
// wrapping), but if the current node gets collapsed due to
// recursive merging, we must make sure to merge in all remaining
// links at offset zero.
unsigned MergeOffset = 0;
DSNode *CN = CurNodeH.getNode();
if (CN->Size != 1)
MergeOffset = ((i << DS::PointerShift)+NOffset) % CN->getSize();
CN->addEdgeTo(MergeOffset, Link);
}
}
// Now that there are no outgoing edges, all of the Links are dead.
N->Links.clear();
// Merge the globals list...
if (!N->Globals.empty()) {
CurNodeH.getNode()->mergeGlobals(N->Globals);
// Delete the globals from the old node...
std::vector<GlobalValue*>().swap(N->Globals);
}
}
/// mergeWith - Merge this node and the specified node, moving all links to and
/// from the argument node into the current node, deleting the node argument.
/// Offset indicates what offset the specified node is to be merged into the
/// current node.
///
/// The specified node may be a null pointer (in which case, we update it to
/// point to this node).
///
void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
DSNode *N = NH.getNode();
if (N == this && NH.getOffset() == Offset)
return; // Noop
// If the RHS is a null node, make it point to this node!
if (N == 0) {
NH.mergeWith(DSNodeHandle(this, Offset));
return;
}
assert(!N->isDeadNode() && !isDeadNode());
assert(!hasNoReferrers() && "Should not try to fold a useless node!");
if (N == this) {
// We cannot merge two pieces of the same node together, collapse the node
// completely.
DEBUG(std::cerr << "Attempting to merge two chunks of"
<< " the same node together!\n");
foldNodeCompletely();
return;
}
// If both nodes are not at offset 0, make sure that we are merging the node
// at an later offset into the node with the zero offset.
//
if (Offset < NH.getOffset()) {
N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
return;
} else if (Offset == NH.getOffset() && getSize() < N->getSize()) {
// If the offsets are the same, merge the smaller node into the bigger node
N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
return;
}
// Ok, now we can merge the two nodes. Use a static helper that works with
// two node handles, since "this" may get merged away at intermediate steps.
DSNodeHandle CurNodeH(this, Offset);
DSNodeHandle NHCopy(NH);
if (CurNodeH.getOffset() >= NHCopy.getOffset())
DSNode::MergeNodes(CurNodeH, NHCopy);
else
DSNode::MergeNodes(NHCopy, CurNodeH);
}
//===----------------------------------------------------------------------===//
// ReachabilityCloner Implementation
//===----------------------------------------------------------------------===//
DSNodeHandle ReachabilityCloner::getClonedNH(const DSNodeHandle &SrcNH) {
if (SrcNH.isNull()) return DSNodeHandle();
const DSNode *SN = SrcNH.getNode();
DSNodeHandle &NH = NodeMap[SN];
if (!NH.isNull()) { // Node already mapped?
DSNode *NHN = NH.getNode();
return DSNodeHandle(NHN, NH.getOffset()+SrcNH.getOffset());
}
// If SrcNH has globals and the destination graph has one of the same globals,
// merge this node with the destination node, which is much more efficient.
if (SN->globals_begin() != SN->globals_end()) {
DSScalarMap &DestSM = Dest.getScalarMap();
for (DSNode::globals_iterator I = SN->globals_begin(),E = SN->globals_end();
I != E; ++I) {
GlobalValue *GV = *I;
DSScalarMap::iterator GI = DestSM.find(GV);
if (GI != DestSM.end() && !GI->second.isNull()) {
// We found one, use merge instead!
merge(GI->second, Src.getNodeForValue(GV));
assert(!NH.isNull() && "Didn't merge node!");
DSNode *NHN = NH.getNode();
return DSNodeHandle(NHN, NH.getOffset()+SrcNH.getOffset());
}
}
}
DSNode *DN = new DSNode(*SN, &Dest, true /* Null out all links */);
DN->maskNodeTypes(BitsToKeep);
NH = DN;
// Next, recursively clone all outgoing links as necessary. Note that
// adding these links can cause the node to collapse itself at any time, and
// the current node may be merged with arbitrary other nodes. For this
// reason, we must always go through NH.
DN = 0;
for (unsigned i = 0, e = SN->getNumLinks(); i != e; ++i) {
const DSNodeHandle &SrcEdge = SN->getLink(i << DS::PointerShift);
if (!SrcEdge.isNull()) {
const DSNodeHandle &DestEdge = getClonedNH(SrcEdge);
// Compute the offset into the current node at which to
// merge this link. In the common case, this is a linear
// relation to the offset in the original node (with
// wrapping), but if the current node gets collapsed due to
// recursive merging, we must make sure to merge in all remaining
// links at offset zero.
unsigned MergeOffset = 0;
DSNode *CN = NH.getNode();
if (CN->getSize() != 1)
MergeOffset = ((i << DS::PointerShift)+NH.getOffset()) % CN->getSize();
CN->addEdgeTo(MergeOffset, DestEdge);
}
}
// If this node contains any globals, make sure they end up in the scalar
// map with the correct offset.
for (DSNode::globals_iterator I = SN->globals_begin(), E = SN->globals_end();
I != E; ++I) {
GlobalValue *GV = *I;
const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV);
DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()];
assert(DestGNH.getNode() == NH.getNode() &&"Global mapping inconsistent");
Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(),
DestGNH.getOffset()+SrcGNH.getOffset()));
}
NH.getNode()->mergeGlobals(SN->getGlobalsList());
return DSNodeHandle(NH.getNode(), NH.getOffset()+SrcNH.getOffset());
}
void ReachabilityCloner::merge(const DSNodeHandle &NH,
const DSNodeHandle &SrcNH) {
if (SrcNH.isNull()) return; // Noop
if (NH.isNull()) {
// If there is no destination node, just clone the source and assign the
// destination node to be it.
NH.mergeWith(getClonedNH(SrcNH));
return;
}
// Okay, at this point, we know that we have both a destination and a source
// node that need to be merged. Check to see if the source node has already
// been cloned.
const DSNode *SN = SrcNH.getNode();
DSNodeHandle &SCNH = NodeMap[SN]; // SourceClonedNodeHandle
if (!SCNH.isNull()) { // Node already cloned?
DSNode *SCNHN = SCNH.getNode();
NH.mergeWith(DSNodeHandle(SCNHN,
SCNH.getOffset()+SrcNH.getOffset()));
return; // Nothing to do!
}
// Okay, so the source node has not already been cloned. Instead of creating
// a new DSNode, only to merge it into the one we already have, try to perform
// the merge in-place. The only case we cannot handle here is when the offset
// into the existing node is less than the offset into the virtual node we are
// merging in. In this case, we have to extend the existing node, which
// requires an allocation anyway.
DSNode *DN = NH.getNode(); // Make sure the Offset is up-to-date
if (NH.getOffset() >= SrcNH.getOffset()) {
if (!DN->isNodeCompletelyFolded()) {
// Make sure the destination node is folded if the source node is folded.
if (SN->isNodeCompletelyFolded()) {
DN->foldNodeCompletely();
DN = NH.getNode();
} else if (SN->getSize() != DN->getSize()) {
// If the two nodes are of different size, and the smaller node has the
// array bit set, collapse!
#if COLLAPSE_ARRAYS_AGGRESSIVELY
if (SN->getSize() < DN->getSize()) {
if (SN->isArray()) {
DN->foldNodeCompletely();
DN = NH.getNode();
}
} else if (DN->isArray()) {
DN->foldNodeCompletely();
DN = NH.getNode();
}
#endif
}
// Merge the type entries of the two nodes together...
if (SN->getType() != Type::VoidTy && !DN->isNodeCompletelyFolded()) {
DN->mergeTypeInfo(SN->getType(), NH.getOffset()-SrcNH.getOffset());
DN = NH.getNode();
}
}
assert(!DN->isDeadNode());
// Merge the NodeType information.
DN->mergeNodeFlags(SN->getNodeFlags() & BitsToKeep);
// Before we start merging outgoing links and updating the scalar map, make
// sure it is known that this is the representative node for the src node.
SCNH = DSNodeHandle(DN, NH.getOffset()-SrcNH.getOffset());
// If the source node contains any globals, make sure they end up in the
// scalar map with the correct offset.
if (SN->globals_begin() != SN->globals_end()) {
// Update the globals in the destination node itself.
DN->mergeGlobals(SN->getGlobalsList());
// Update the scalar map for the graph we are merging the source node
// into.
for (DSNode::globals_iterator I = SN->globals_begin(),
E = SN->globals_end(); I != E; ++I) {
GlobalValue *GV = *I;
const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV);
DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()];
assert(DestGNH.getNode()==NH.getNode() &&"Global mapping inconsistent");
Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(),
DestGNH.getOffset()+SrcGNH.getOffset()));
}
NH.getNode()->mergeGlobals(SN->getGlobalsList());
}
} else {
// We cannot handle this case without allocating a temporary node. Fall
// back on being simple.
DSNode *NewDN = new DSNode(*SN, &Dest, true /* Null out all links */);
NewDN->maskNodeTypes(BitsToKeep);
unsigned NHOffset = NH.getOffset();
NH.mergeWith(DSNodeHandle(NewDN, SrcNH.getOffset()));
assert(NH.getNode() &&
(NH.getOffset() > NHOffset ||
(NH.getOffset() == 0 && NH.getNode()->isNodeCompletelyFolded())) &&
"Merging did not adjust the offset!");
// Before we start merging outgoing links and updating the scalar map, make
// sure it is known that this is the representative node for the src node.
SCNH = DSNodeHandle(NH.getNode(), NH.getOffset()-SrcNH.getOffset());
// If the source node contained any globals, make sure to create entries
// in the scalar map for them!
for (DSNode::globals_iterator I = SN->globals_begin(),
E = SN->globals_end(); I != E; ++I) {
GlobalValue *GV = *I;
const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV);
DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()];
assert(DestGNH.getNode()==NH.getNode() &&"Global mapping inconsistent");
assert(SrcGNH.getNode() == SN && "Global mapping inconsistent");
Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(),
DestGNH.getOffset()+SrcGNH.getOffset()));
}
}
// Next, recursively merge all outgoing links as necessary. Note that
// adding these links can cause the destination node to collapse itself at
// any time, and the current node may be merged with arbitrary other nodes.
// For this reason, we must always go through NH.
DN = 0;
for (unsigned i = 0, e = SN->getNumLinks(); i != e; ++i) {
const DSNodeHandle &SrcEdge = SN->getLink(i << DS::PointerShift);
if (!SrcEdge.isNull()) {
// Compute the offset into the current node at which to
// merge this link. In the common case, this is a linear
// relation to the offset in the original node (with
// wrapping), but if the current node gets collapsed due to
// recursive merging, we must make sure to merge in all remaining
// links at offset zero.
DSNode *CN = SCNH.getNode();
unsigned MergeOffset =
((i << DS::PointerShift)+SCNH.getOffset()) % CN->getSize();
DSNodeHandle Tmp = CN->getLink(MergeOffset);
if (!Tmp.isNull()) {
// Perform the recursive merging. Make sure to create a temporary NH,
// because the Link can disappear in the process of recursive merging.
merge(Tmp, SrcEdge);
} else {
Tmp.mergeWith(getClonedNH(SrcEdge));
// Merging this could cause all kinds of recursive things to happen,
// culminating in the current node being eliminated. Since this is
// possible, make sure to reaquire the link from 'CN'.
unsigned MergeOffset = 0;
CN = SCNH.getNode();
MergeOffset = ((i << DS::PointerShift)+SCNH.getOffset()) %CN->getSize();
CN->getLink(MergeOffset).mergeWith(Tmp);
}
}
}
}
/// mergeCallSite - Merge the nodes reachable from the specified src call
/// site into the nodes reachable from DestCS.
void ReachabilityCloner::mergeCallSite(DSCallSite &DestCS,
const DSCallSite &SrcCS) {
merge(DestCS.getRetVal(), SrcCS.getRetVal());
unsigned MinArgs = DestCS.getNumPtrArgs();
if (SrcCS.getNumPtrArgs() < MinArgs) MinArgs = SrcCS.getNumPtrArgs();
for (unsigned a = 0; a != MinArgs; ++a)
merge(DestCS.getPtrArg(a), SrcCS.getPtrArg(a));
for (unsigned a = MinArgs, e = SrcCS.getNumPtrArgs(); a != e; ++a)
DestCS.addPtrArg(getClonedNH(SrcCS.getPtrArg(a)));
}
//===----------------------------------------------------------------------===//
// DSCallSite Implementation
//===----------------------------------------------------------------------===//
// Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h
Function &DSCallSite::getCaller() const {
return *Site.getInstruction()->getParent()->getParent();
}
void DSCallSite::InitNH(DSNodeHandle &NH, const DSNodeHandle &Src,
ReachabilityCloner &RC) {
NH = RC.getClonedNH(Src);
}
//===----------------------------------------------------------------------===//
// DSGraph Implementation
//===----------------------------------------------------------------------===//
/// getFunctionNames - Return a space separated list of the name of the
/// functions in this graph (if any)
std::string DSGraph::getFunctionNames() const {
switch (getReturnNodes().size()) {
case 0: return "Globals graph";
case 1: return retnodes_begin()->first->getName();
default:
std::string Return;
for (DSGraph::retnodes_iterator I = retnodes_begin();
I != retnodes_end(); ++I)
Return += I->first->getName() + " ";
Return.erase(Return.end()-1, Return.end()); // Remove last space character
return Return;
}
}
DSGraph::DSGraph(const DSGraph &G, EquivalenceClasses<GlobalValue*> &ECs,
unsigned CloneFlags)
: GlobalsGraph(0), ScalarMap(ECs), TD(G.TD) {
PrintAuxCalls = false;
cloneInto(G, CloneFlags);
}
DSGraph::~DSGraph() {
FunctionCalls.clear();
AuxFunctionCalls.clear();
ScalarMap.clear();
ReturnNodes.clear();
// Drop all intra-node references, so that assertions don't fail...
for (node_iterator NI = node_begin(), E = node_end(); NI != E; ++NI)
NI->dropAllReferences();
// Free all of the nodes.
Nodes.clear();
}
// dump - Allow inspection of graph in a debugger.
void DSGraph::dump() const { print(std::cerr); }
/// remapLinks - Change all of the Links in the current node according to the
/// specified mapping.
///
void DSNode::remapLinks(DSGraph::NodeMapTy &OldNodeMap) {
for (unsigned i = 0, e = Links.size(); i != e; ++i)
if (DSNode *N = Links[i].getNode()) {
DSGraph::NodeMapTy::const_iterator ONMI = OldNodeMap.find(N);
if (ONMI != OldNodeMap.end()) {
DSNode *ONMIN = ONMI->second.getNode();
Links[i].setTo(ONMIN, Links[i].getOffset()+ONMI->second.getOffset());
}
}
}
/// addObjectToGraph - This method can be used to add global, stack, and heap
/// objects to the graph. This can be used when updating DSGraphs due to the
/// introduction of new temporary objects. The new object is not pointed to
/// and does not point to any other objects in the graph.
DSNode *DSGraph::addObjectToGraph(Value *Ptr, bool UseDeclaredType) {
assert(isa<PointerType>(Ptr->getType()) && "Ptr is not a pointer!");
const Type *Ty = cast<PointerType>(Ptr->getType())->getElementType();
DSNode *N = new DSNode(UseDeclaredType ? Ty : 0, this);
assert(ScalarMap[Ptr].isNull() && "Object already in this graph!");
ScalarMap[Ptr] = N;
if (GlobalValue *GV = dyn_cast<GlobalValue>(Ptr)) {
N->addGlobal(GV);
} else if (isa<MallocInst>(Ptr)) {
N->setHeapNodeMarker();
} else if (isa<AllocaInst>(Ptr)) {
N->setAllocaNodeMarker();
} else {
assert(0 && "Illegal memory object input!");
}
return N;
}
/// cloneInto - Clone the specified DSGraph into the current graph. The
/// translated ScalarMap for the old function is filled into the ScalarMap
/// for the graph, and the translated ReturnNodes map is returned into
/// ReturnNodes.
///
/// The CloneFlags member controls various aspects of the cloning process.
///
void DSGraph::cloneInto(const DSGraph &G, unsigned CloneFlags) {
TIME_REGION(X, "cloneInto");
assert(&G != this && "Cannot clone graph into itself!");
NodeMapTy OldNodeMap;
// Remove alloca or mod/ref bits as specified...
unsigned BitsToClear = ((CloneFlags & StripAllocaBit)? DSNode::AllocaNode : 0)
| ((CloneFlags & StripModRefBits)? (DSNode::Modified | DSNode::Read) : 0)
| ((CloneFlags & StripIncompleteBit)? DSNode::Incomplete : 0);
BitsToClear |= DSNode::DEAD; // Clear dead flag...
for (node_const_iterator I = G.node_begin(), E = G.node_end(); I != E; ++I) {
assert(!I->isForwarding() &&
"Forward nodes shouldn't be in node list!");
DSNode *New = new DSNode(*I, this);
New->maskNodeTypes(~BitsToClear);
OldNodeMap[I] = New;
}
#ifndef NDEBUG
Timer::addPeakMemoryMeasurement();
#endif
// Rewrite the links in the new nodes to point into the current graph now.
// Note that we don't loop over the node's list to do this. The problem is
// that remaping links can cause recursive merging to happen, which means
// that node_iterator's can get easily invalidated! Because of this, we
// loop over the OldNodeMap, which contains all of the new nodes as the
// .second element of the map elements. Also note that if we remap a node
// more than once, we won't break anything.
for (NodeMapTy::iterator I = OldNodeMap.begin(), E = OldNodeMap.end();
I != E; ++I)
I->second.getNode()->remapLinks(OldNodeMap);
// Copy the scalar map... merging all of the global nodes...
for (DSScalarMap::const_iterator I = G.ScalarMap.begin(),
E = G.ScalarMap.end(); I != E; ++I) {
DSNodeHandle &MappedNode = OldNodeMap[I->second.getNode()];
DSNodeHandle &H = ScalarMap.getRawEntryRef(I->first);
DSNode *MappedNodeN = MappedNode.getNode();
H.mergeWith(DSNodeHandle(MappedNodeN,
I->second.getOffset()+MappedNode.getOffset()));
}
if (!(CloneFlags & DontCloneCallNodes)) {
// Copy the function calls list.
for (fc_iterator I = G.fc_begin(), E = G.fc_end(); I != E; ++I)
FunctionCalls.push_back(DSCallSite(*I, OldNodeMap));
}
if (!(CloneFlags & DontCloneAuxCallNodes)) {
// Copy the auxiliary function calls list.
for (afc_iterator I = G.afc_begin(), E = G.afc_end(); I != E; ++I)
AuxFunctionCalls.push_back(DSCallSite(*I, OldNodeMap));
}
// Map the return node pointers over...
for (retnodes_iterator I = G.retnodes_begin(),
E = G.retnodes_end(); I != E; ++I) {
const DSNodeHandle &Ret = I->second;
DSNodeHandle &MappedRet = OldNodeMap[Ret.getNode()];
DSNode *MappedRetN = MappedRet.getNode();
ReturnNodes.insert(std::make_pair(I->first,
DSNodeHandle(MappedRetN,
MappedRet.getOffset()+Ret.getOffset())));
}
}
/// spliceFrom - Logically perform the operation of cloning the RHS graph into
/// this graph, then clearing the RHS graph. Instead of performing this as
/// two seperate operations, do it as a single, much faster, one.
///
void DSGraph::spliceFrom(DSGraph &RHS) {
// Change all of the nodes in RHS to think we are their parent.
for (NodeListTy::iterator I = RHS.Nodes.begin(), E = RHS.Nodes.end();
I != E; ++I)
I->setParentGraph(this);
// Take all of the nodes.
Nodes.splice(Nodes.end(), RHS.Nodes);
// Take all of the calls.
FunctionCalls.splice(FunctionCalls.end(), RHS.FunctionCalls);
AuxFunctionCalls.splice(AuxFunctionCalls.end(), RHS.AuxFunctionCalls);
// Take all of the return nodes.
if (ReturnNodes.empty()) {
ReturnNodes.swap(RHS.ReturnNodes);
} else {
ReturnNodes.insert(RHS.ReturnNodes.begin(), RHS.ReturnNodes.end());
RHS.ReturnNodes.clear();
}
// Merge the scalar map in.
ScalarMap.spliceFrom(RHS.ScalarMap);
}
/// spliceFrom - Copy all entries from RHS, then clear RHS.
///
void DSScalarMap::spliceFrom(DSScalarMap &RHS) {
// Special case if this is empty.
if (ValueMap.empty()) {
ValueMap.swap(RHS.ValueMap);
GlobalSet.swap(RHS.GlobalSet);
} else {
GlobalSet.insert(RHS.GlobalSet.begin(), RHS.GlobalSet.end());
for (ValueMapTy::iterator I = RHS.ValueMap.begin(), E = RHS.ValueMap.end();
I != E; ++I)
ValueMap[I->first].mergeWith(I->second);
RHS.ValueMap.clear();
}
}
/// getFunctionArgumentsForCall - Given a function that is currently in this
/// graph, return the DSNodeHandles that correspond to the pointer-compatible
/// function arguments. The vector is filled in with the return value (or
/// null if it is not pointer compatible), followed by all of the
/// pointer-compatible arguments.
void DSGraph::getFunctionArgumentsForCall(Function *F,
std::vector<DSNodeHandle> &Args) const {
Args.push_back(getReturnNodeFor(*F));
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
AI != E; ++AI)
if (isPointerType(AI->getType())) {
Args.push_back(getNodeForValue(AI));
assert(!Args.back().isNull() && "Pointer argument w/o scalarmap entry!?");
}
}
namespace {
// HackedGraphSCCFinder - This is used to find nodes that have a path from the
// node to a node cloned by the ReachabilityCloner object contained. To be
// extra obnoxious it ignores edges from nodes that are globals, and truncates
// search at RC marked nodes. This is designed as an object so that
// intermediate results can be memoized across invocations of
// PathExistsToClonedNode.
struct HackedGraphSCCFinder {
ReachabilityCloner &RC;
unsigned CurNodeId;
std::vector<const DSNode*> SCCStack;
std::map<const DSNode*, std::pair<unsigned, bool> > NodeInfo;
HackedGraphSCCFinder(ReachabilityCloner &rc) : RC(rc), CurNodeId(1) {
// Remove null pointer as a special case.
NodeInfo[0] = std::make_pair(0, false);
}
std::pair<unsigned, bool> &VisitForSCCs(const DSNode *N);
bool PathExistsToClonedNode(const DSNode *N) {
return VisitForSCCs(N).second;
}
bool PathExistsToClonedNode(const DSCallSite &CS) {
if (PathExistsToClonedNode(CS.getRetVal().getNode()))
return true;
for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i)
if (PathExistsToClonedNode(CS.getPtrArg(i).getNode()))
return true;
return false;
}
};
}
std::pair<unsigned, bool> &HackedGraphSCCFinder::
VisitForSCCs(const DSNode *N) {
std::map<const DSNode*, std::pair<unsigned, bool> >::iterator
NodeInfoIt = NodeInfo.lower_bound(N);
if (NodeInfoIt != NodeInfo.end() && NodeInfoIt->first == N)
return NodeInfoIt->second;
unsigned Min = CurNodeId++;
unsigned MyId = Min;
std::pair<unsigned, bool> &ThisNodeInfo =
NodeInfo.insert(NodeInfoIt,
std::make_pair(N, std::make_pair(MyId, false)))->second;
// Base case: if we find a global, this doesn't reach the cloned graph
// portion.
if (N->isGlobalNode()) {
ThisNodeInfo.second = false;
return ThisNodeInfo;
}
// Base case: if this does reach the cloned graph portion... it does. :)
if (RC.hasClonedNode(N)) {
ThisNodeInfo.second = true;
return ThisNodeInfo;
}
SCCStack.push_back(N);
// Otherwise, check all successors.
bool AnyDirectSuccessorsReachClonedNodes = false;
for (DSNode::const_edge_iterator EI = N->edge_begin(), EE = N->edge_end();
EI != EE; ++EI)
if (DSNode *Succ = EI->getNode()) {
std::pair<unsigned, bool> &SuccInfo = VisitForSCCs(Succ);
if (SuccInfo.first < Min) Min = SuccInfo.first;
AnyDirectSuccessorsReachClonedNodes |= SuccInfo.second;
}
if (Min != MyId)
return ThisNodeInfo; // Part of a large SCC. Leave self on stack.
if (SCCStack.back() == N) { // Special case single node SCC.
SCCStack.pop_back();
ThisNodeInfo.second = AnyDirectSuccessorsReachClonedNodes;
return ThisNodeInfo;
}
// Find out if any direct successors of any node reach cloned nodes.
if (!AnyDirectSuccessorsReachClonedNodes)
for (unsigned i = SCCStack.size()-1; SCCStack[i] != N; --i)
for (DSNode::const_edge_iterator EI = N->edge_begin(), EE = N->edge_end();
EI != EE; ++EI)
if (DSNode *N = EI->getNode())
if (NodeInfo[N].second) {
AnyDirectSuccessorsReachClonedNodes = true;
goto OutOfLoop;
}
OutOfLoop:
// If any successor reaches a cloned node, mark all nodes in this SCC as
// reaching the cloned node.
if (AnyDirectSuccessorsReachClonedNodes)
while (SCCStack.back() != N) {
NodeInfo[SCCStack.back()].second = true;
SCCStack.pop_back();
}
SCCStack.pop_back();
ThisNodeInfo.second = true;
return ThisNodeInfo;
}
/// mergeInCallFromOtherGraph - This graph merges in the minimal number of
/// nodes from G2 into 'this' graph, merging the bindings specified by the
/// call site (in this graph) with the bindings specified by the vector in G2.
/// The two DSGraphs must be different.
///
void DSGraph::mergeInGraph(const DSCallSite &CS,
std::vector<DSNodeHandle> &Args,
const DSGraph &Graph, unsigned CloneFlags) {
TIME_REGION(X, "mergeInGraph");
assert((CloneFlags & DontCloneCallNodes) &&
"Doesn't support copying of call nodes!");
// If this is not a recursive call, clone the graph into this graph...
if (&Graph == this) {
// Merge the return value with the return value of the context.
Args[0].mergeWith(CS.getRetVal());
// Resolve all of the function arguments.
for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) {
if (i == Args.size()-1)
break;
// Add the link from the argument scalar to the provided value.
Args[i+1].mergeWith(CS.getPtrArg(i));
}
return;
}
// Clone the callee's graph into the current graph, keeping track of where
// scalars in the old graph _used_ to point, and of the new nodes matching
// nodes of the old graph.
ReachabilityCloner RC(*this, Graph, CloneFlags);
// Map the return node pointer over.
if (!CS.getRetVal().isNull())
RC.merge(CS.getRetVal(), Args[0]);
// Map over all of the arguments.
for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) {
if (i == Args.size()-1)
break;
// Add the link from the argument scalar to the provided value.
RC.merge(CS.getPtrArg(i), Args[i+1]);
}
// We generally don't want to copy global nodes or aux calls from the callee
// graph to the caller graph. However, we have to copy them if there is a
// path from the node to a node we have already copied which does not go
// through another global. Compute the set of node that can reach globals and
// aux call nodes to copy over, then do it.
std::vector<const DSCallSite*> AuxCallToCopy;
std::vector<GlobalValue*> GlobalsToCopy;
// NodesReachCopiedNodes - Memoize results for efficiency. Contains a
// true/false value for every visited node that reaches a copied node without
// going through a global.
HackedGraphSCCFinder SCCFinder(RC);
if (!(CloneFlags & DontCloneAuxCallNodes))
for (afc_iterator I = Graph.afc_begin(), E = Graph.afc_end(); I!=E; ++I)
if (SCCFinder.PathExistsToClonedNode(*I))
AuxCallToCopy.push_back(&*I);
// else if (I->isIndirectCall()){
// //If the call node doesn't have any callees, clone it
// std::vector< Function *> List;
// I->getCalleeNode()->addFullFunctionList(List);
// if (!List.size())
// AuxCallToCopy.push_back(&*I);
// }
const DSScalarMap &GSM = Graph.getScalarMap();
for (DSScalarMap::global_iterator GI = GSM.global_begin(),
E = GSM.global_end(); GI != E; ++GI) {
DSNode *GlobalNode = Graph.getNodeForValue(*GI).getNode();
for (DSNode::edge_iterator EI = GlobalNode->edge_begin(),
EE = GlobalNode->edge_end(); EI != EE; ++EI)
if (SCCFinder.PathExistsToClonedNode(EI->getNode())) {
GlobalsToCopy.push_back(*GI);
break;
}
}
// Copy aux calls that are needed.
for (unsigned i = 0, e = AuxCallToCopy.size(); i != e; ++i)
AuxFunctionCalls.push_back(DSCallSite(*AuxCallToCopy[i], RC));
// Copy globals that are needed.
for (unsigned i = 0, e = GlobalsToCopy.size(); i != e; ++i)
RC.getClonedNH(Graph.getNodeForValue(GlobalsToCopy[i]));
}
/// mergeInGraph - The method is used for merging graphs together. If the
/// argument graph is not *this, it makes a clone of the specified graph, then
/// merges the nodes specified in the call site with the formal arguments in the
/// graph.
///
void DSGraph::mergeInGraph(const DSCallSite &CS, Function &F,
const DSGraph &Graph, unsigned CloneFlags) {
// Set up argument bindings.
std::vector<DSNodeHandle> Args;
Graph.getFunctionArgumentsForCall(&F, Args);
mergeInGraph(CS, Args, Graph, CloneFlags);
}
/// getCallSiteForArguments - Get the arguments and return value bindings for
/// the specified function in the current graph.
///
DSCallSite DSGraph::getCallSiteForArguments(Function &F) const {
std::vector<DSNodeHandle> Args;
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
if (isPointerType(I->getType()))
Args.push_back(getNodeForValue(I));
return DSCallSite(CallSite(), getReturnNodeFor(F), &F, Args);
}
/// getDSCallSiteForCallSite - Given an LLVM CallSite object that is live in
/// the context of this graph, return the DSCallSite for it.
DSCallSite DSGraph::getDSCallSiteForCallSite(CallSite CS) const {
DSNodeHandle RetVal;
Instruction *I = CS.getInstruction();
if (isPointerType(I->getType()))
RetVal = getNodeForValue(I);
std::vector<DSNodeHandle> Args;
Args.reserve(CS.arg_end()-CS.arg_begin());
// Calculate the arguments vector...
for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I)
if (isPointerType((*I)->getType()))
if (isa<ConstantPointerNull>(*I))
Args.push_back(DSNodeHandle());
else
Args.push_back(getNodeForValue(*I));
// Add a new function call entry...
if (Function *F = CS.getCalledFunction())
return DSCallSite(CS, RetVal, F, Args);
else
return DSCallSite(CS, RetVal,
getNodeForValue(CS.getCalledValue()).getNode(), Args);
}
// markIncompleteNodes - Mark the specified node as having contents that are not
// known with the current analysis we have performed. Because a node makes all
// of the nodes it can reach incomplete if the node itself is incomplete, we
// must recursively traverse the data structure graph, marking all reachable
// nodes as incomplete.
//
static void markIncompleteNode(DSNode *N) {
// Stop recursion if no node, or if node already marked...
if (N == 0 || N->isIncomplete()) return;
// Actually mark the node
N->setIncompleteMarker();
// Recursively process children...
for (DSNode::edge_iterator I = N->edge_begin(),E = N->edge_end(); I != E; ++I)
if (DSNode *DSN = I->getNode())
markIncompleteNode(DSN);
}
static void markIncomplete(DSCallSite &Call) {
// Then the return value is certainly incomplete!
markIncompleteNode(Call.getRetVal().getNode());
// All objects pointed to by function arguments are incomplete!
for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i)
markIncompleteNode(Call.getPtrArg(i).getNode());
}
// markIncompleteNodes - Traverse the graph, identifying nodes that may be
// modified by other functions that have not been resolved yet. This marks
// nodes that are reachable through three sources of "unknownness":
//
// Global Variables, Function Calls, and Incoming Arguments
//
// For any node that may have unknown components (because something outside the
// scope of current analysis may have modified it), the 'Incomplete' flag is
// added to the NodeType.
//
void DSGraph::markIncompleteNodes(unsigned Flags) {
// Mark any incoming arguments as incomplete.
if (Flags & DSGraph::MarkFormalArgs)
for (ReturnNodesTy::iterator FI = ReturnNodes.begin(), E =ReturnNodes.end();
FI != E; ++FI) {
Function &F = *FI->first;
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
I != E; ++I)
if (isPointerType(I->getType()))
markIncompleteNode(getNodeForValue(I).getNode());
markIncompleteNode(FI->second.getNode());
}
// Mark stuff passed into functions calls as being incomplete.
if (!shouldPrintAuxCalls())
for (std::list<DSCallSite>::iterator I = FunctionCalls.begin(),
E = FunctionCalls.end(); I != E; ++I)
markIncomplete(*I);
else
for (std::list<DSCallSite>::iterator I = AuxFunctionCalls.begin(),
E = AuxFunctionCalls.end(); I != E; ++I)
markIncomplete(*I);
// Mark all global nodes as incomplete.
for (DSScalarMap::global_iterator I = ScalarMap.global_begin(),
E = ScalarMap.global_end(); I != E; ++I)
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(*I))
if (!GV->hasInitializer() || // Always mark external globals incomp.
(!GV->isConstant() && (Flags & DSGraph::IgnoreGlobals) == 0))
markIncompleteNode(ScalarMap[GV].getNode());
}
static inline void killIfUselessEdge(DSNodeHandle &Edge) {
if (DSNode *N = Edge.getNode()) // Is there an edge?
if (N->getNumReferrers() == 1) // Does it point to a lonely node?
// No interesting info?
if ((N->getNodeFlags() & ~DSNode::Incomplete) == 0 &&
N->getType() == Type::VoidTy && !N->isNodeCompletelyFolded())
Edge.setTo(0, 0); // Kill the edge!
}
static inline bool nodeContainsExternalFunction(const DSNode *N) {
std::vector<Function*> Funcs;
N->addFullFunctionList(Funcs);
for (unsigned i = 0, e = Funcs.size(); i != e; ++i)
if (Funcs[i]->isExternal()) return true;
return false;
}
static void removeIdenticalCalls(std::list<DSCallSite> &Calls) {
// Remove trivially identical function calls
Calls.sort(); // Sort by callee as primary key!
// Scan the call list cleaning it up as necessary...
DSNodeHandle LastCalleeNode;
#if 0
Function *LastCalleeFunc = 0;
unsigned NumDuplicateCalls = 0;
#endif
bool LastCalleeContainsExternalFunction = false;
unsigned NumDeleted = 0;
for (std::list<DSCallSite>::iterator I = Calls.begin(), E = Calls.end();
I != E;) {
DSCallSite &CS = *I;
std::list<DSCallSite>::iterator OldIt = I++;
if (!CS.isIndirectCall()) {
LastCalleeNode = 0;
} else {
DSNode *Callee = CS.getCalleeNode();
// If the Callee is a useless edge, this must be an unreachable call site,
// eliminate it.
if (Callee->getNumReferrers() == 1 && Callee->isComplete() &&
Callee->getGlobalsList().empty()) { // No useful info?
#ifndef NDEBUG
std::cerr << "WARNING: Useless call site found.\n";
#endif
Calls.erase(OldIt);
++NumDeleted;
continue;
}
// If the last call site in the list has the same callee as this one, and
// if the callee contains an external function, it will never be
// resolvable, just merge the call sites.
if (!LastCalleeNode.isNull() && LastCalleeNode.getNode() == Callee) {
LastCalleeContainsExternalFunction =
nodeContainsExternalFunction(Callee);
std::list<DSCallSite>::iterator PrevIt = OldIt;
--PrevIt;
PrevIt->mergeWith(CS);
// No need to keep this call anymore.
Calls.erase(OldIt);
++NumDeleted;
continue;
} else {
LastCalleeNode = Callee;
}
}
// If the return value or any arguments point to a void node with no
// information at all in it, and the call node is the only node to point
// to it, remove the edge to the node (killing the node).
//
killIfUselessEdge(CS.getRetVal());
for (unsigned a = 0, e = CS.getNumPtrArgs(); a != e; ++a)
killIfUselessEdge(CS.getPtrArg(a));
#if 0
// If this call site calls the same function as the last call site, and if
// the function pointer contains an external function, this node will
// never be resolved. Merge the arguments of the call node because no
// information will be lost.
//
if ((CS.isDirectCall() && CS.getCalleeFunc() == LastCalleeFunc) ||
(CS.isIndirectCall() && CS.getCalleeNode() == LastCalleeNode)) {
++NumDuplicateCalls;
if (NumDuplicateCalls == 1) {
if (LastCalleeNode)
LastCalleeContainsExternalFunction =
nodeContainsExternalFunction(LastCalleeNode);
else
LastCalleeContainsExternalFunction = LastCalleeFunc->isExternal();
}
// It is not clear why, but enabling this code makes DSA really
// sensitive to node forwarding. Basically, with this enabled, DSA
// performs different number of inlinings based on which nodes are
// forwarding or not. This is clearly a problem, so this code is
// disabled until this can be resolved.
#if 1
if (LastCalleeContainsExternalFunction
#if 0
||
// This should be more than enough context sensitivity!
// FIXME: Evaluate how many times this is tripped!
NumDuplicateCalls > 20
#endif
) {
std::list<DSCallSite>::iterator PrevIt = OldIt;
--PrevIt;
PrevIt->mergeWith(CS);
// No need to keep this call anymore.
Calls.erase(OldIt);
++NumDeleted;
continue;
}
#endif
} else {
if (CS.isDirectCall()) {
LastCalleeFunc = CS.getCalleeFunc();
LastCalleeNode = 0;
} else {
LastCalleeNode = CS.getCalleeNode();
LastCalleeFunc = 0;
}
NumDuplicateCalls = 0;
}
#endif
if (I != Calls.end() && CS == *I) {
LastCalleeNode = 0;
Calls.erase(OldIt);
++NumDeleted;
continue;
}
}
// Resort now that we simplified things.
Calls.sort();
// Now that we are in sorted order, eliminate duplicates.
std::list<DSCallSite>::iterator CI = Calls.begin(), CE = Calls.end();
if (CI != CE)
while (1) {
std::list<DSCallSite>::iterator OldIt = CI++;
if (CI == CE) break;
// If this call site is now the same as the previous one, we can delete it
// as a duplicate.
if (*OldIt == *CI) {
Calls.erase(CI);
CI = OldIt;
++NumDeleted;
}
}
//Calls.erase(std::unique(Calls.begin(), Calls.end()), Calls.end());
// Track the number of call nodes merged away...
NumCallNodesMerged += NumDeleted;
DEBUG(if (NumDeleted)
std::cerr << "Merged " << NumDeleted << " call nodes.\n";);
}
// removeTriviallyDeadNodes - After the graph has been constructed, this method
// removes all unreachable nodes that are created because they got merged with
// other nodes in the graph. These nodes will all be trivially unreachable, so
// we don't have to perform any non-trivial analysis here.
//
void DSGraph::removeTriviallyDeadNodes() {
TIME_REGION(X, "removeTriviallyDeadNodes");
#if 0
/// NOTE: This code is disabled. This slows down DSA on 177.mesa
/// substantially!
// Loop over all of the nodes in the graph, calling getNode on each field.
// This will cause all nodes to update their forwarding edges, causing
// forwarded nodes to be delete-able.
{ TIME_REGION(X, "removeTriviallyDeadNodes:node_iterate");
for (node_iterator NI = node_begin(), E = node_end(); NI != E; ++NI) {
DSNode &N = *NI;
for (unsigned l = 0, e = N.getNumLinks(); l != e; ++l)
N.getLink(l*N.getPointerSize()).getNode();
}
}
// NOTE: This code is disabled. Though it should, in theory, allow us to
// remove more nodes down below, the scan of the scalar map is incredibly
// expensive for certain programs (with large SCCs). In the future, if we can
// make the scalar map scan more efficient, then we can reenable this.
{ TIME_REGION(X, "removeTriviallyDeadNodes:scalarmap");
// Likewise, forward any edges from the scalar nodes. While we are at it,
// clean house a bit.
for (DSScalarMap::iterator I = ScalarMap.begin(),E = ScalarMap.end();I != E;){
I->second.getNode();
++I;
}
}
#endif
bool isGlobalsGraph = !GlobalsGraph;
for (NodeListTy::iterator NI = Nodes.begin(), E = Nodes.end(); NI != E; ) {
DSNode &Node = *NI;
// Do not remove *any* global nodes in the globals graph.
// This is a special case because such nodes may not have I, M, R flags set.
if (Node.isGlobalNode() && isGlobalsGraph) {
++NI;
continue;
}
if (Node.isComplete() && !Node.isModified() && !Node.isRead()) {
// This is a useless node if it has no mod/ref info (checked above),
// outgoing edges (which it cannot, as it is not modified in this
// context), and it has no incoming edges. If it is a global node it may
// have all of these properties and still have incoming edges, due to the
// scalar map, so we check those now.
//
if (Node.getNumReferrers() == Node.getGlobalsList().size()) {
const std::vector<GlobalValue*> &Globals = Node.getGlobalsList();
// Loop through and make sure all of the globals are referring directly
// to the node...
for (unsigned j = 0, e = Globals.size(); j != e; ++j) {
DSNode *N = getNodeForValue(Globals[j]).getNode();
assert(N == &Node && "ScalarMap doesn't match globals list!");
}
// Make sure NumReferrers still agrees, if so, the node is truly dead.
if (Node.getNumReferrers() == Globals.size()) {
for (unsigned j = 0, e = Globals.size(); j != e; ++j)
ScalarMap.erase(Globals[j]);
Node.makeNodeDead();
++NumTrivialGlobalDNE;
}
}
}
if (Node.getNodeFlags() == 0 && Node.hasNoReferrers()) {
// This node is dead!
NI = Nodes.erase(NI); // Erase & remove from node list.
++NumTrivialDNE;
} else {
++NI;
}
}
removeIdenticalCalls(FunctionCalls);
removeIdenticalCalls(AuxFunctionCalls);
}
/// markReachableNodes - This method recursively traverses the specified
/// DSNodes, marking any nodes which are reachable. All reachable nodes it adds
/// to the set, which allows it to only traverse visited nodes once.
///
void DSNode::markReachableNodes(hash_set<const DSNode*> &ReachableNodes) const {
if (this == 0) return;
assert(getForwardNode() == 0 && "Cannot mark a forwarded node!");
if (ReachableNodes.insert(this).second) // Is newly reachable?
for (DSNode::const_edge_iterator I = edge_begin(), E = edge_end();
I != E; ++I)
I->getNode()->markReachableNodes(ReachableNodes);
}
void DSCallSite::markReachableNodes(hash_set<const DSNode*> &Nodes) const {
getRetVal().getNode()->markReachableNodes(Nodes);
if (isIndirectCall()) getCalleeNode()->markReachableNodes(Nodes);
for (unsigned i = 0, e = getNumPtrArgs(); i != e; ++i)
getPtrArg(i).getNode()->markReachableNodes(Nodes);
}
// CanReachAliveNodes - Simple graph walker that recursively traverses the graph
// looking for a node that is marked alive. If an alive node is found, return
// true, otherwise return false. If an alive node is reachable, this node is
// marked as alive...
//
static bool CanReachAliveNodes(DSNode *N, hash_set<const DSNode*> &Alive,
hash_set<const DSNode*> &Visited,
bool IgnoreGlobals) {
if (N == 0) return false;
assert(N->getForwardNode() == 0 && "Cannot mark a forwarded node!");
// If this is a global node, it will end up in the globals graph anyway, so we
// don't need to worry about it.
if (IgnoreGlobals && N->isGlobalNode()) return false;
// If we know that this node is alive, return so!
if (Alive.count(N)) return true;
// Otherwise, we don't think the node is alive yet, check for infinite
// recursion.
if (Visited.count(N)) return false; // Found a cycle
Visited.insert(N); // No recursion, insert into Visited...
for (DSNode::edge_iterator I = N->edge_begin(),E = N->edge_end(); I != E; ++I)
if (CanReachAliveNodes(I->getNode(), Alive, Visited, IgnoreGlobals)) {
N->markReachableNodes(Alive);
return true;
}
return false;
}
// CallSiteUsesAliveArgs - Return true if the specified call site can reach any
// alive nodes.
//
static bool CallSiteUsesAliveArgs(const DSCallSite &CS,
hash_set<const DSNode*> &Alive,
hash_set<const DSNode*> &Visited,
bool IgnoreGlobals) {
if (CanReachAliveNodes(CS.getRetVal().getNode(), Alive, Visited,
IgnoreGlobals))
return true;
if (CS.isIndirectCall() &&
CanReachAliveNodes(CS.getCalleeNode(), Alive, Visited, IgnoreGlobals))
return true;
for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i)
if (CanReachAliveNodes(CS.getPtrArg(i).getNode(), Alive, Visited,
IgnoreGlobals))
return true;
return false;
}
// removeDeadNodes - Use a more powerful reachability analysis to eliminate
// subgraphs that are unreachable. This often occurs because the data
// structure doesn't "escape" into it's caller, and thus should be eliminated
// from the caller's graph entirely. This is only appropriate to use when
// inlining graphs.
//
void DSGraph::removeDeadNodes(unsigned Flags) {
DEBUG(AssertGraphOK(); if (GlobalsGraph) GlobalsGraph->AssertGraphOK());
// Reduce the amount of work we have to do... remove dummy nodes left over by
// merging...
removeTriviallyDeadNodes();
TIME_REGION(X, "removeDeadNodes");
// FIXME: Merge non-trivially identical call nodes...
// Alive - a set that holds all nodes found to be reachable/alive.
hash_set<const DSNode*> Alive;
std::vector<std::pair<Value*, DSNode*> > GlobalNodes;
// Copy and merge all information about globals to the GlobalsGraph if this is
// not a final pass (where unreachable globals are removed).
//
// Strip all alloca bits since the current function is only for the BU pass.
// Strip all incomplete bits since they are short-lived properties and they
// will be correctly computed when rematerializing nodes into the functions.
//
ReachabilityCloner GGCloner(*GlobalsGraph, *this, DSGraph::StripAllocaBit |
DSGraph::StripIncompleteBit);
// Mark all nodes reachable by (non-global) scalar nodes as alive...
{ TIME_REGION(Y, "removeDeadNodes:scalarscan");
for (DSScalarMap::iterator I = ScalarMap.begin(), E = ScalarMap.end();
I != E; ++I)
if (isa<GlobalValue>(I->first)) { // Keep track of global nodes
assert(!I->second.isNull() && "Null global node?");
assert(I->second.getNode()->isGlobalNode() && "Should be a global node!");
GlobalNodes.push_back(std::make_pair(I->first, I->second.getNode()));
// Make sure that all globals are cloned over as roots.
if (!(Flags & DSGraph::RemoveUnreachableGlobals) && GlobalsGraph) {
DSGraph::ScalarMapTy::iterator SMI =
GlobalsGraph->getScalarMap().find(I->first);
if (SMI != GlobalsGraph->getScalarMap().end())
GGCloner.merge(SMI->second, I->second);
else
GGCloner.getClonedNH(I->second);
}
} else {
I->second.getNode()->markReachableNodes(Alive);
}
}
// The return values are alive as well.
for (ReturnNodesTy::iterator I = ReturnNodes.begin(), E = ReturnNodes.end();
I != E; ++I)
I->second.getNode()->markReachableNodes(Alive);
// Mark any nodes reachable by primary calls as alive...
for (fc_iterator I = fc_begin(), E = fc_end(); I != E; ++I)
I->markReachableNodes(Alive);
// Now find globals and aux call nodes that are already live or reach a live
// value (which makes them live in turn), and continue till no more are found.
//
bool Iterate;
hash_set<const DSNode*> Visited;
hash_set<const DSCallSite*> AuxFCallsAlive;
do {
Visited.clear();
// If any global node points to a non-global that is "alive", the global is
// "alive" as well... Remove it from the GlobalNodes list so we only have
// unreachable globals in the list.
//
Iterate = false;
if (!(Flags & DSGraph::RemoveUnreachableGlobals))
for (unsigned i = 0; i != GlobalNodes.size(); ++i)
if (CanReachAliveNodes(GlobalNodes[i].second, Alive, Visited,
Flags & DSGraph::RemoveUnreachableGlobals)) {
std::swap(GlobalNodes[i--], GlobalNodes.back()); // Move to end to...
GlobalNodes.pop_back(); // erase efficiently
Iterate = true;
}
// Mark only unresolvable call nodes for moving to the GlobalsGraph since
// call nodes that get resolved will be difficult to remove from that graph.
// The final unresolved call nodes must be handled specially at the end of
// the BU pass (i.e., in main or other roots of the call graph).
for (afc_iterator CI = afc_begin(), E = afc_end(); CI != E; ++CI)
if (!AuxFCallsAlive.count(&*CI) &&
(CI->isIndirectCall()
|| CallSiteUsesAliveArgs(*CI, Alive, Visited,
Flags & DSGraph::RemoveUnreachableGlobals))) {
CI->markReachableNodes(Alive);
AuxFCallsAlive.insert(&*CI);
Iterate = true;
}
} while (Iterate);
// Move dead aux function calls to the end of the list
for (std::list<DSCallSite>::iterator CI = AuxFunctionCalls.begin(),
E = AuxFunctionCalls.end(); CI != E; )
if (AuxFCallsAlive.count(&*CI))
++CI;
else {
// Copy and merge global nodes and dead aux call nodes into the
// GlobalsGraph, and all nodes reachable from those nodes. Update their
// target pointers using the GGCloner.
//
if (!(Flags & DSGraph::RemoveUnreachableGlobals))
GlobalsGraph->AuxFunctionCalls.push_back(DSCallSite(*CI, GGCloner));
AuxFunctionCalls.erase(CI++);
}
// We are finally done with the GGCloner so we can destroy it.
GGCloner.destroy();
// At this point, any nodes which are visited, but not alive, are nodes
// which can be removed. Loop over all nodes, eliminating completely
// unreachable nodes.
//
std::vector<DSNode*> DeadNodes;
DeadNodes.reserve(Nodes.size());
for (NodeListTy::iterator NI = Nodes.begin(), E = Nodes.end(); NI != E;) {
DSNode *N = NI++;
assert(!N->isForwarding() && "Forwarded node in nodes list?");
if (!Alive.count(N)) {
Nodes.remove(N);
assert(!N->isForwarding() && "Cannot remove a forwarding node!");
DeadNodes.push_back(N);
N->dropAllReferences();
++NumDNE;
}
}
// Remove all unreachable globals from the ScalarMap.
// If flag RemoveUnreachableGlobals is set, GlobalNodes has only dead nodes.
// In either case, the dead nodes will not be in the set Alive.
for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i)
if (!Alive.count(GlobalNodes[i].second))
ScalarMap.erase(GlobalNodes[i].first);
else
assert((Flags & DSGraph::RemoveUnreachableGlobals) && "non-dead global");
// Delete all dead nodes now since their referrer counts are zero.
for (unsigned i = 0, e = DeadNodes.size(); i != e; ++i)
delete DeadNodes[i];
DEBUG(AssertGraphOK(); GlobalsGraph->AssertGraphOK());
}
void DSGraph::AssertNodeContainsGlobal(const DSNode *N, GlobalValue *GV) const {
assert(std::find(N->globals_begin(),N->globals_end(), GV) !=
N->globals_end() && "Global value not in node!");
}
void DSGraph::AssertCallSiteInGraph(const DSCallSite &CS) const {
if (CS.isIndirectCall()) {
AssertNodeInGraph(CS.getCalleeNode());
#if 0
if (CS.getNumPtrArgs() && CS.getCalleeNode() == CS.getPtrArg(0).getNode() &&
CS.getCalleeNode() && CS.getCalleeNode()->getGlobals().empty())
std::cerr << "WARNING: WEIRD CALL SITE FOUND!\n";
#endif
}
AssertNodeInGraph(CS.getRetVal().getNode());
for (unsigned j = 0, e = CS.getNumPtrArgs(); j != e; ++j)
AssertNodeInGraph(CS.getPtrArg(j).getNode());
}
void DSGraph::AssertCallNodesInGraph() const {
for (fc_iterator I = fc_begin(), E = fc_end(); I != E; ++I)
AssertCallSiteInGraph(*I);
}
void DSGraph::AssertAuxCallNodesInGraph() const {
for (afc_iterator I = afc_begin(), E = afc_end(); I != E; ++I)
AssertCallSiteInGraph(*I);
}
void DSGraph::AssertGraphOK() const {
for (node_const_iterator NI = node_begin(), E = node_end(); NI != E; ++NI)
NI->assertOK();
for (ScalarMapTy::const_iterator I = ScalarMap.begin(),
E = ScalarMap.end(); I != E; ++I) {
assert(!I->second.isNull() && "Null node in scalarmap!");
AssertNodeInGraph(I->second.getNode());
if (GlobalValue *GV = dyn_cast<GlobalValue>(I->first)) {
assert(I->second.getNode()->isGlobalNode() &&
"Global points to node, but node isn't global?");
AssertNodeContainsGlobal(I->second.getNode(), GV);
}
}
AssertCallNodesInGraph();
AssertAuxCallNodesInGraph();
// Check that all pointer arguments to any functions in this graph have
// destinations.
for (ReturnNodesTy::const_iterator RI = ReturnNodes.begin(),
E = ReturnNodes.end();
RI != E; ++RI) {
Function &F = *RI->first;
for (Function::arg_iterator AI = F.arg_begin(); AI != F.arg_end(); ++AI)
if (isPointerType(AI->getType()))
assert(!getNodeForValue(AI).isNull() &&
"Pointer argument must be in the scalar map!");
}
}
/// computeNodeMapping - Given roots in two different DSGraphs, traverse the
/// nodes reachable from the two graphs, computing the mapping of nodes from the
/// first to the second graph. This mapping may be many-to-one (i.e. the first
/// graph may have multiple nodes representing one node in the second graph),
/// but it will not work if there is a one-to-many or many-to-many mapping.
///
void DSGraph::computeNodeMapping(const DSNodeHandle &NH1,
const DSNodeHandle &NH2, NodeMapTy &NodeMap,
bool StrictChecking) {
DSNode *N1 = NH1.getNode(), *N2 = NH2.getNode();
if (N1 == 0 || N2 == 0) return;
DSNodeHandle &Entry = NodeMap[N1];
if (!Entry.isNull()) {
// Termination of recursion!
if (StrictChecking) {
assert(Entry.getNode() == N2 && "Inconsistent mapping detected!");
assert((Entry.getOffset() == (NH2.getOffset()-NH1.getOffset()) ||
Entry.getNode()->isNodeCompletelyFolded()) &&
"Inconsistent mapping detected!");
}
return;
}
Entry.setTo(N2, NH2.getOffset()-NH1.getOffset());
// Loop over all of the fields that N1 and N2 have in common, recursively
// mapping the edges together now.
int N2Idx = NH2.getOffset()-NH1.getOffset();
unsigned N2Size = N2->getSize();
if (N2Size == 0) return; // No edges to map to.
for (unsigned i = 0, e = N1->getSize(); i < e; i += DS::PointerSize) {
const DSNodeHandle &N1NH = N1->getLink(i);
// Don't call N2->getLink if not needed (avoiding crash if N2Idx is not
// aligned right).
if (!N1NH.isNull()) {
if (unsigned(N2Idx)+i < N2Size)
computeNodeMapping(N1NH, N2->getLink(N2Idx+i), NodeMap);
else
computeNodeMapping(N1NH,
N2->getLink(unsigned(N2Idx+i) % N2Size), NodeMap);
}
}
}
/// computeGToGGMapping - Compute the mapping of nodes in the global graph to
/// nodes in this graph.
void DSGraph::computeGToGGMapping(NodeMapTy &NodeMap) {
DSGraph &GG = *getGlobalsGraph();
DSScalarMap &SM = getScalarMap();
for (DSScalarMap::global_iterator I = SM.global_begin(),
E = SM.global_end(); I != E; ++I)
DSGraph::computeNodeMapping(SM[*I], GG.getNodeForValue(*I), NodeMap);
}
/// computeGGToGMapping - Compute the mapping of nodes in the global graph to
/// nodes in this graph. Note that any uses of this method are probably bugs,
/// unless it is known that the globals graph has been merged into this graph!
void DSGraph::computeGGToGMapping(InvNodeMapTy &InvNodeMap) {
NodeMapTy NodeMap;
computeGToGGMapping(NodeMap);
while (!NodeMap.empty()) {
InvNodeMap.insert(std::make_pair(NodeMap.begin()->second,
NodeMap.begin()->first));
NodeMap.erase(NodeMap.begin());
}
}
/// computeCalleeCallerMapping - Given a call from a function in the current
/// graph to the 'Callee' function (which lives in 'CalleeGraph'), compute the
/// mapping of nodes from the callee to nodes in the caller.
void DSGraph::computeCalleeCallerMapping(DSCallSite CS, const Function &Callee,
DSGraph &CalleeGraph,
NodeMapTy &NodeMap) {
DSCallSite CalleeArgs =
CalleeGraph.getCallSiteForArguments(const_cast<Function&>(Callee));
computeNodeMapping(CalleeArgs.getRetVal(), CS.getRetVal(), NodeMap);
unsigned NumArgs = CS.getNumPtrArgs();
if (NumArgs > CalleeArgs.getNumPtrArgs())
NumArgs = CalleeArgs.getNumPtrArgs();
for (unsigned i = 0; i != NumArgs; ++i)
computeNodeMapping(CalleeArgs.getPtrArg(i), CS.getPtrArg(i), NodeMap);
// Map the nodes that are pointed to by globals.
DSScalarMap &CalleeSM = CalleeGraph.getScalarMap();
DSScalarMap &CallerSM = getScalarMap();
if (CalleeSM.global_size() >= CallerSM.global_size()) {
for (DSScalarMap::global_iterator GI = CallerSM.global_begin(),
E = CallerSM.global_end(); GI != E; ++GI)
if (CalleeSM.global_count(*GI))
computeNodeMapping(CalleeSM[*GI], CallerSM[*GI], NodeMap);
} else {
for (DSScalarMap::global_iterator GI = CalleeSM.global_begin(),
E = CalleeSM.global_end(); GI != E; ++GI)
if (CallerSM.global_count(*GI))
computeNodeMapping(CalleeSM[*GI], CallerSM[*GI], NodeMap);
}
}
/// updateFromGlobalGraph - This function rematerializes global nodes and
/// nodes reachable from them from the globals graph into the current graph.
///
void DSGraph::updateFromGlobalGraph() {
TIME_REGION(X, "updateFromGlobalGraph");
ReachabilityCloner RC(*this, *GlobalsGraph, 0);
// Clone the non-up-to-date global nodes into this graph.
for (DSScalarMap::global_iterator I = getScalarMap().global_begin(),
E = getScalarMap().global_end(); I != E; ++I) {
DSScalarMap::iterator It = GlobalsGraph->ScalarMap.find(*I);
if (It != GlobalsGraph->ScalarMap.end())
RC.merge(getNodeForValue(*I), It->second);
}
}