llvm-6502/lib/Target/X86/X86Instr64bit.td
Dan Gohman 74feef261a Define patterns for shld and shrd that match immediate
shift counts, and patterns that match dynamic shift counts
when the subtract is obscured by a truncate node.

Add DAGCombiner support for recognizing rotate patterns
when the shift counts are defined by truncate nodes.

Fix and simplify the code for commuting shld and shrd
instructions to work even when the given instruction doesn't
have a parent, and when the caller needs a new instruction.

These changes allow LLVM to use the shld, shrd, rol, and ror
instructions on x86 to replace equivalent code using two
shifts and an or in many more cases.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57662 91177308-0d34-0410-b5e6-96231b3b80d8
2008-10-17 01:23:35 +00:00

1532 lines
75 KiB
TableGen

//====- X86Instr64bit.td - Describe X86-64 Instructions ----*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86-64 instruction set, defining the instructions,
// and properties of the instructions which are needed for code generation,
// machine code emission, and analysis.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Operand Definitions.
//
// 64-bits but only 32 bits are significant.
def i64i32imm : Operand<i64>;
// 64-bits but only 8 bits are significant.
def i64i8imm : Operand<i64>;
def lea64mem : Operand<i64> {
let PrintMethod = "printi64mem";
let MIOperandInfo = (ops GR64, i8imm, GR64, i32imm);
}
def lea64_32mem : Operand<i32> {
let PrintMethod = "printlea64_32mem";
let MIOperandInfo = (ops GR32, i8imm, GR32, i32imm);
}
//===----------------------------------------------------------------------===//
// Complex Pattern Definitions.
//
def lea64addr : ComplexPattern<i64, 4, "SelectLEAAddr",
[add, mul, shl, or, frameindex, X86Wrapper],
[]>;
//===----------------------------------------------------------------------===//
// Pattern fragments.
//
def i64immSExt32 : PatLeaf<(i64 imm), [{
// i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
// sign extended field.
return (int64_t)N->getZExtValue() == (int32_t)N->getZExtValue();
}]>;
def i64immZExt32 : PatLeaf<(i64 imm), [{
// i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit
// unsignedsign extended field.
return (uint64_t)N->getZExtValue() == (uint32_t)N->getZExtValue();
}]>;
def i64immSExt8 : PatLeaf<(i64 imm), [{
// i64immSExt8 predicate - True if the 64-bit immediate fits in a 8-bit
// sign extended field.
return (int64_t)N->getZExtValue() == (int8_t)N->getZExtValue();
}]>;
def i64immFFFFFFFF : PatLeaf<(i64 imm), [{
// i64immFFFFFFFF - True if this is a specific constant we can't write in
// tblgen files.
return N->getZExtValue() == 0x00000000FFFFFFFFULL;
}]>;
def sextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>;
def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>;
def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>;
def zextloadi64i1 : PatFrag<(ops node:$ptr), (i64 (zextloadi1 node:$ptr))>;
def zextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>;
def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>;
def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>;
def extloadi64i1 : PatFrag<(ops node:$ptr), (i64 (extloadi1 node:$ptr))>;
def extloadi64i8 : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>;
def extloadi64i16 : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>;
def extloadi64i32 : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>;
//===----------------------------------------------------------------------===//
// Instruction list...
//
// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber EFLAGS.
let Defs = [RSP, EFLAGS], Uses = [RSP] in {
def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
"#ADJCALLSTACKDOWN",
[(X86callseq_start timm:$amt)]>,
Requires<[In64BitMode]>;
def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
"#ADJCALLSTACKUP",
[(X86callseq_end timm:$amt1, timm:$amt2)]>,
Requires<[In64BitMode]>;
}
//===----------------------------------------------------------------------===//
// Call Instructions...
//
let isCall = 1 in
// All calls clobber the non-callee saved registers. RSP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead. Uses for argument
// registers are added manually.
let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
Uses = [RSP] in {
def CALL64pcrel32 : I<0xE8, RawFrm, (outs), (ins i64imm:$dst, variable_ops),
"call\t${dst:call}", []>;
def CALL64r : I<0xFF, MRM2r, (outs), (ins GR64:$dst, variable_ops),
"call\t{*}$dst", [(X86call GR64:$dst)]>;
def CALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst, variable_ops),
"call\t{*}$dst", [(X86call (loadi64 addr:$dst))]>;
}
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in
def TCRETURNdi64 : I<0, Pseudo, (outs), (ins i64imm:$dst, i32imm:$offset, variable_ops),
"#TC_RETURN $dst $offset",
[]>;
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in
def TCRETURNri64 : I<0, Pseudo, (outs), (ins GR64:$dst, i32imm:$offset, variable_ops),
"#TC_RETURN $dst $offset",
[]>;
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in
def TAILJMPr64 : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst # TAILCALL",
[]>;
// Branches
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
def JMP64r : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
[(brind GR64:$dst)]>;
def JMP64m : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
[(brind (loadi64 addr:$dst))]>;
}
//===----------------------------------------------------------------------===//
// EH Pseudo Instructions
//
let isTerminator = 1, isReturn = 1, isBarrier = 1,
hasCtrlDep = 1 in {
def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
"ret\t#eh_return, addr: $addr",
[(X86ehret GR64:$addr)]>;
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions...
//
let Defs = [RBP,RSP], Uses = [RBP,RSP], mayLoad = 1, neverHasSideEffects = 1 in
def LEAVE64 : I<0xC9, RawFrm,
(outs), (ins), "leave", []>;
let Defs = [RSP], Uses = [RSP], neverHasSideEffects=1 in {
let mayLoad = 1 in
def POP64r : I<0x58, AddRegFrm,
(outs GR64:$reg), (ins), "pop{q}\t$reg", []>;
let mayStore = 1 in
def PUSH64r : I<0x50, AddRegFrm,
(outs), (ins GR64:$reg), "push{q}\t$reg", []>;
}
let Defs = [RSP, EFLAGS], Uses = [RSP], mayLoad = 1 in
def POPFQ : I<0x9D, RawFrm, (outs), (ins), "popf", []>, REX_W;
let Defs = [RSP], Uses = [RSP, EFLAGS], mayStore = 1 in
def PUSHFQ : I<0x9C, RawFrm, (outs), (ins), "pushf", []>;
def LEA64_32r : I<0x8D, MRMSrcMem,
(outs GR32:$dst), (ins lea64_32mem:$src),
"lea{l}\t{$src|$dst}, {$dst|$src}",
[(set GR32:$dst, lea32addr:$src)]>, Requires<[In64BitMode]>;
let isReMaterializable = 1 in
def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src),
"lea{q}\t{$src|$dst}, {$dst|$src}",
[(set GR64:$dst, lea64addr:$src)]>;
let isTwoAddress = 1 in
def BSWAP64r : RI<0xC8, AddRegFrm, (outs GR64:$dst), (ins GR64:$src),
"bswap{q}\t$dst",
[(set GR64:$dst, (bswap GR64:$src))]>, TB;
// Bit scan instructions.
let Defs = [EFLAGS] in {
def BSF64rr : RI<0xBC, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"bsf{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (X86bsf GR64:$src)), (implicit EFLAGS)]>, TB;
def BSF64rm : RI<0xBC, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"bsf{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (X86bsf (loadi64 addr:$src))),
(implicit EFLAGS)]>, TB;
def BSR64rr : RI<0xBD, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
"bsr{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (X86bsr GR64:$src)), (implicit EFLAGS)]>, TB;
def BSR64rm : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"bsr{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (X86bsr (loadi64 addr:$src))),
(implicit EFLAGS)]>, TB;
} // Defs = [EFLAGS]
// Repeat string ops
let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI] in
def REP_MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
[(X86rep_movs i64)]>, REP;
let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI] in
def REP_STOSQ : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
[(X86rep_stos i64)]>, REP;
//===----------------------------------------------------------------------===//
// Move Instructions...
//
let neverHasSideEffects = 1 in
def MOV64rr : RI<0x89, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
"mov{q}\t{$src, $dst|$dst, $src}", []>;
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def MOV64ri : RIi64<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64imm:$src),
"movabs{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, imm:$src)]>;
def MOV64ri32 : RIi32<0xC7, MRM0r, (outs GR64:$dst), (ins i64i32imm:$src),
"mov{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, i64immSExt32:$src)]>;
}
let isSimpleLoad = 1 in
def MOV64rm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
"mov{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (load addr:$src))]>;
def MOV64mr : RI<0x89, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
"mov{q}\t{$src, $dst|$dst, $src}",
[(store GR64:$src, addr:$dst)]>;
def MOV64mi32 : RIi32<0xC7, MRM0m, (outs), (ins i64mem:$dst, i64i32imm:$src),
"mov{q}\t{$src, $dst|$dst, $src}",
[(store i64immSExt32:$src, addr:$dst)]>;
// Sign/Zero extenders
def MOVSX64rr8 : RI<0xBE, MRMSrcReg, (outs GR64:$dst), (ins GR8 :$src),
"movs{bq|x}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sext GR8:$src))]>, TB;
def MOVSX64rm8 : RI<0xBE, MRMSrcMem, (outs GR64:$dst), (ins i8mem :$src),
"movs{bq|x}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sextloadi64i8 addr:$src))]>, TB;
def MOVSX64rr16: RI<0xBF, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
"movs{wq|x}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sext GR16:$src))]>, TB;
def MOVSX64rm16: RI<0xBF, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
"movs{wq|x}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sextloadi64i16 addr:$src))]>, TB;
def MOVSX64rr32: RI<0x63, MRMSrcReg, (outs GR64:$dst), (ins GR32:$src),
"movs{lq|xd}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sext GR32:$src))]>;
def MOVSX64rm32: RI<0x63, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src),
"movs{lq|xd}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (sextloadi64i32 addr:$src))]>;
// Use movzbl instead of movzbq when the destination is a register; it's
// equivalent due to implicit zero-extending, and it has a smaller encoding.
def MOVZX64rr8 : I<0xB6, MRMSrcReg, (outs GR64:$dst), (ins GR8 :$src),
"movz{bl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
[(set GR64:$dst, (zext GR8:$src))]>, TB;
def MOVZX64rm8 : I<0xB6, MRMSrcMem, (outs GR64:$dst), (ins i8mem :$src),
"movz{bl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
[(set GR64:$dst, (zextloadi64i8 addr:$src))]>, TB;
// Use movzwl instead of movzwq when the destination is a register; it's
// equivalent due to implicit zero-extending, and it has a smaller encoding.
def MOVZX64rr16: I<0xB7, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
"movz{wl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
[(set GR64:$dst, (zext GR16:$src))]>, TB;
def MOVZX64rm16: I<0xB7, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
"movz{wl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
[(set GR64:$dst, (zextloadi64i16 addr:$src))]>, TB;
// There's no movzlq instruction, but movl can be used for this purpose, using
// implicit zero-extension. We need this because the seeming alternative for
// implementing zext from 32 to 64, an EXTRACT_SUBREG/SUBREG_TO_REG pair, isn't
// safe because both instructions could be optimized away in the
// register-to-register case, leaving nothing behind to do the zero extension.
def MOVZX64rr32 : I<0x89, MRMDestReg, (outs GR64:$dst), (ins GR32:$src),
"mov{l}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
[(set GR64:$dst, (zext GR32:$src))]>;
def MOVZX64rm32 : I<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src),
"mov{l}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
[(set GR64:$dst, (zextloadi64i32 addr:$src))]>;
let neverHasSideEffects = 1 in {
let Defs = [RAX], Uses = [EAX] in
def CDQE : RI<0x98, RawFrm, (outs), (ins),
"{cltq|cdqe}", []>; // RAX = signext(EAX)
let Defs = [RAX,RDX], Uses = [RAX] in
def CQO : RI<0x99, RawFrm, (outs), (ins),
"{cqto|cqo}", []>; // RDX:RAX = signext(RAX)
}
//===----------------------------------------------------------------------===//
// Arithmetic Instructions...
//
let Defs = [EFLAGS] in {
let isTwoAddress = 1 in {
let isConvertibleToThreeAddress = 1 in {
let isCommutable = 1 in
def ADD64rr : RI<0x01, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"add{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (add GR64:$src1, GR64:$src2))]>;
def ADD64ri32 : RIi32<0x81, MRM0r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"add{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (add GR64:$src1, i64immSExt32:$src2))]>;
def ADD64ri8 : RIi8<0x83, MRM0r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
"add{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (add GR64:$src1, i64immSExt8:$src2))]>;
} // isConvertibleToThreeAddress
def ADD64rm : RI<0x03, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"add{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (add GR64:$src1, (load addr:$src2)))]>;
} // isTwoAddress
def ADD64mr : RI<0x01, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
"add{q}\t{$src2, $dst|$dst, $src2}",
[(store (add (load addr:$dst), GR64:$src2), addr:$dst)]>;
def ADD64mi32 : RIi32<0x81, MRM0m, (outs), (ins i64mem:$dst, i64i32imm :$src2),
"add{q}\t{$src2, $dst|$dst, $src2}",
[(store (add (load addr:$dst), i64immSExt32:$src2), addr:$dst)]>;
def ADD64mi8 : RIi8<0x83, MRM0m, (outs), (ins i64mem:$dst, i64i8imm :$src2),
"add{q}\t{$src2, $dst|$dst, $src2}",
[(store (add (load addr:$dst), i64immSExt8:$src2), addr:$dst)]>;
let Uses = [EFLAGS] in {
let isTwoAddress = 1 in {
let isCommutable = 1 in
def ADC64rr : RI<0x11, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"adc{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (adde GR64:$src1, GR64:$src2))]>;
def ADC64rm : RI<0x13, MRMSrcMem , (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"adc{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (adde GR64:$src1, (load addr:$src2)))]>;
def ADC64ri32 : RIi32<0x81, MRM2r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"adc{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (adde GR64:$src1, i64immSExt32:$src2))]>;
def ADC64ri8 : RIi8<0x83, MRM2r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
"adc{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (adde GR64:$src1, i64immSExt8:$src2))]>;
} // isTwoAddress
def ADC64mr : RI<0x11, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
"adc{q}\t{$src2, $dst|$dst, $src2}",
[(store (adde (load addr:$dst), GR64:$src2), addr:$dst)]>;
def ADC64mi32 : RIi32<0x81, MRM2m, (outs), (ins i64mem:$dst, i64i32imm:$src2),
"adc{q}\t{$src2, $dst|$dst, $src2}",
[(store (adde (load addr:$dst), i64immSExt8:$src2), addr:$dst)]>;
def ADC64mi8 : RIi8<0x83, MRM2m, (outs), (ins i64mem:$dst, i64i8imm :$src2),
"adc{q}\t{$src2, $dst|$dst, $src2}",
[(store (adde (load addr:$dst), i64immSExt8:$src2), addr:$dst)]>;
} // Uses = [EFLAGS]
let isTwoAddress = 1 in {
def SUB64rr : RI<0x29, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"sub{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (sub GR64:$src1, GR64:$src2))]>;
def SUB64rm : RI<0x2B, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"sub{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (sub GR64:$src1, (load addr:$src2)))]>;
def SUB64ri32 : RIi32<0x81, MRM5r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"sub{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (sub GR64:$src1, i64immSExt32:$src2))]>;
def SUB64ri8 : RIi8<0x83, MRM5r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
"sub{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (sub GR64:$src1, i64immSExt8:$src2))]>;
} // isTwoAddress
def SUB64mr : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
"sub{q}\t{$src2, $dst|$dst, $src2}",
[(store (sub (load addr:$dst), GR64:$src2), addr:$dst)]>;
def SUB64mi32 : RIi32<0x81, MRM5m, (outs), (ins i64mem:$dst, i64i32imm:$src2),
"sub{q}\t{$src2, $dst|$dst, $src2}",
[(store (sub (load addr:$dst), i64immSExt32:$src2), addr:$dst)]>;
def SUB64mi8 : RIi8<0x83, MRM5m, (outs), (ins i64mem:$dst, i64i8imm :$src2),
"sub{q}\t{$src2, $dst|$dst, $src2}",
[(store (sub (load addr:$dst), i64immSExt8:$src2), addr:$dst)]>;
let Uses = [EFLAGS] in {
let isTwoAddress = 1 in {
def SBB64rr : RI<0x19, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"sbb{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (sube GR64:$src1, GR64:$src2))]>;
def SBB64rm : RI<0x1B, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"sbb{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (sube GR64:$src1, (load addr:$src2)))]>;
def SBB64ri32 : RIi32<0x81, MRM3r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"sbb{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (sube GR64:$src1, i64immSExt32:$src2))]>;
def SBB64ri8 : RIi8<0x83, MRM3r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
"sbb{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (sube GR64:$src1, i64immSExt8:$src2))]>;
} // isTwoAddress
def SBB64mr : RI<0x19, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
"sbb{q}\t{$src2, $dst|$dst, $src2}",
[(store (sube (load addr:$dst), GR64:$src2), addr:$dst)]>;
def SBB64mi32 : RIi32<0x81, MRM3m, (outs), (ins i64mem:$dst, i64i32imm:$src2),
"sbb{q}\t{$src2, $dst|$dst, $src2}",
[(store (sube (load addr:$dst), i64immSExt32:$src2), addr:$dst)]>;
def SBB64mi8 : RIi8<0x83, MRM3m, (outs), (ins i64mem:$dst, i64i8imm :$src2),
"sbb{q}\t{$src2, $dst|$dst, $src2}",
[(store (sube (load addr:$dst), i64immSExt8:$src2), addr:$dst)]>;
} // Uses = [EFLAGS]
} // Defs = [EFLAGS]
// Unsigned multiplication
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in {
def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src),
"mul{q}\t$src", []>; // RAX,RDX = RAX*GR64
let mayLoad = 1 in
def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src),
"mul{q}\t$src", []>; // RAX,RDX = RAX*[mem64]
// Signed multiplication
def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src),
"imul{q}\t$src", []>; // RAX,RDX = RAX*GR64
let mayLoad = 1 in
def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src),
"imul{q}\t$src", []>; // RAX,RDX = RAX*[mem64]
}
let Defs = [EFLAGS] in {
let isTwoAddress = 1 in {
let isCommutable = 1 in
def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"imul{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (mul GR64:$src1, GR64:$src2))]>, TB;
def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"imul{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (mul GR64:$src1, (load addr:$src2)))]>, TB;
} // isTwoAddress
// Suprisingly enough, these are not two address instructions!
def IMUL64rri32 : RIi32<0x69, MRMSrcReg, // GR64 = GR64*I32
(outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR64:$dst, (mul GR64:$src1, i64immSExt32:$src2))]>;
def IMUL64rri8 : RIi8<0x6B, MRMSrcReg, // GR64 = GR64*I8
(outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
"imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR64:$dst, (mul GR64:$src1, i64immSExt8:$src2))]>;
def IMUL64rmi32 : RIi32<0x69, MRMSrcMem, // GR64 = [mem64]*I32
(outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2),
"imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR64:$dst, (mul (load addr:$src1), i64immSExt32:$src2))]>;
def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem, // GR64 = [mem64]*I8
(outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2),
"imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
[(set GR64:$dst, (mul (load addr:$src1), i64immSExt8:$src2))]>;
} // Defs = [EFLAGS]
// Unsigned division / remainder
let neverHasSideEffects = 1 in {
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in {
def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src), // RDX:RAX/r64 = RAX,RDX
"div{q}\t$src", []>;
// Signed division / remainder
def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src), // RDX:RAX/r64 = RAX,RDX
"idiv{q}\t$src", []>;
let mayLoad = 1 in {
def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src), // RDX:RAX/[mem64] = RAX,RDX
"div{q}\t$src", []>;
def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src), // RDX:RAX/[mem64] = RAX,RDX
"idiv{q}\t$src", []>;
}
}
}
// Unary instructions
let Defs = [EFLAGS], CodeSize = 2 in {
let isTwoAddress = 1 in
def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src), "neg{q}\t$dst",
[(set GR64:$dst, (ineg GR64:$src))]>;
def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst",
[(store (ineg (loadi64 addr:$dst)), addr:$dst)]>;
let isTwoAddress = 1, isConvertibleToThreeAddress = 1 in
def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src), "inc{q}\t$dst",
[(set GR64:$dst, (add GR64:$src, 1))]>;
def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst",
[(store (add (loadi64 addr:$dst), 1), addr:$dst)]>;
let isTwoAddress = 1, isConvertibleToThreeAddress = 1 in
def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src), "dec{q}\t$dst",
[(set GR64:$dst, (add GR64:$src, -1))]>;
def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
[(store (add (loadi64 addr:$dst), -1), addr:$dst)]>;
// In 64-bit mode, single byte INC and DEC cannot be encoded.
let isTwoAddress = 1, isConvertibleToThreeAddress = 1 in {
// Can transform into LEA.
def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src), "inc{w}\t$dst",
[(set GR16:$dst, (add GR16:$src, 1))]>,
OpSize, Requires<[In64BitMode]>;
def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src), "inc{l}\t$dst",
[(set GR32:$dst, (add GR32:$src, 1))]>,
Requires<[In64BitMode]>;
def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src), "dec{w}\t$dst",
[(set GR16:$dst, (add GR16:$src, -1))]>,
OpSize, Requires<[In64BitMode]>;
def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src), "dec{l}\t$dst",
[(set GR32:$dst, (add GR32:$src, -1))]>,
Requires<[In64BitMode]>;
} // isConvertibleToThreeAddress
// These are duplicates of their 32-bit counterparts. Only needed so X86 knows
// how to unfold them.
let isTwoAddress = 0, CodeSize = 2 in {
def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
[(store (add (loadi16 addr:$dst), 1), addr:$dst)]>,
OpSize, Requires<[In64BitMode]>;
def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
[(store (add (loadi32 addr:$dst), 1), addr:$dst)]>,
Requires<[In64BitMode]>;
def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
[(store (add (loadi16 addr:$dst), -1), addr:$dst)]>,
OpSize, Requires<[In64BitMode]>;
def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
[(store (add (loadi32 addr:$dst), -1), addr:$dst)]>,
Requires<[In64BitMode]>;
}
} // Defs = [EFLAGS], CodeSize
let Defs = [EFLAGS] in {
// Shift instructions
let isTwoAddress = 1 in {
let Uses = [CL] in
def SHL64rCL : RI<0xD3, MRM4r, (outs GR64:$dst), (ins GR64:$src),
"shl{q}\t{%cl, $dst|$dst, %CL}",
[(set GR64:$dst, (shl GR64:$src, CL))]>;
let isConvertibleToThreeAddress = 1 in // Can transform into LEA.
def SHL64ri : RIi8<0xC1, MRM4r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2),
"shl{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (shl GR64:$src1, (i8 imm:$src2)))]>;
// NOTE: We don't use shifts of a register by one, because 'add reg,reg' is
// cheaper.
} // isTwoAddress
let Uses = [CL] in
def SHL64mCL : RI<0xD3, MRM4m, (outs), (ins i64mem:$dst),
"shl{q}\t{%cl, $dst|$dst, %CL}",
[(store (shl (loadi64 addr:$dst), CL), addr:$dst)]>;
def SHL64mi : RIi8<0xC1, MRM4m, (outs), (ins i64mem:$dst, i8imm:$src),
"shl{q}\t{$src, $dst|$dst, $src}",
[(store (shl (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def SHL64m1 : RI<0xD1, MRM4m, (outs), (ins i64mem:$dst),
"shl{q}\t$dst",
[(store (shl (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;
let isTwoAddress = 1 in {
let Uses = [CL] in
def SHR64rCL : RI<0xD3, MRM5r, (outs GR64:$dst), (ins GR64:$src),
"shr{q}\t{%cl, $dst|$dst, %CL}",
[(set GR64:$dst, (srl GR64:$src, CL))]>;
def SHR64ri : RIi8<0xC1, MRM5r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2),
"shr{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (srl GR64:$src1, (i8 imm:$src2)))]>;
def SHR64r1 : RI<0xD1, MRM5r, (outs GR64:$dst), (ins GR64:$src1),
"shr{q}\t$dst",
[(set GR64:$dst, (srl GR64:$src1, (i8 1)))]>;
} // isTwoAddress
let Uses = [CL] in
def SHR64mCL : RI<0xD3, MRM5m, (outs), (ins i64mem:$dst),
"shr{q}\t{%cl, $dst|$dst, %CL}",
[(store (srl (loadi64 addr:$dst), CL), addr:$dst)]>;
def SHR64mi : RIi8<0xC1, MRM5m, (outs), (ins i64mem:$dst, i8imm:$src),
"shr{q}\t{$src, $dst|$dst, $src}",
[(store (srl (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def SHR64m1 : RI<0xD1, MRM5m, (outs), (ins i64mem:$dst),
"shr{q}\t$dst",
[(store (srl (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;
let isTwoAddress = 1 in {
let Uses = [CL] in
def SAR64rCL : RI<0xD3, MRM7r, (outs GR64:$dst), (ins GR64:$src),
"sar{q}\t{%cl, $dst|$dst, %CL}",
[(set GR64:$dst, (sra GR64:$src, CL))]>;
def SAR64ri : RIi8<0xC1, MRM7r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2),
"sar{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (sra GR64:$src1, (i8 imm:$src2)))]>;
def SAR64r1 : RI<0xD1, MRM7r, (outs GR64:$dst), (ins GR64:$src1),
"sar{q}\t$dst",
[(set GR64:$dst, (sra GR64:$src1, (i8 1)))]>;
} // isTwoAddress
let Uses = [CL] in
def SAR64mCL : RI<0xD3, MRM7m, (outs), (ins i64mem:$dst),
"sar{q}\t{%cl, $dst|$dst, %CL}",
[(store (sra (loadi64 addr:$dst), CL), addr:$dst)]>;
def SAR64mi : RIi8<0xC1, MRM7m, (outs), (ins i64mem:$dst, i8imm:$src),
"sar{q}\t{$src, $dst|$dst, $src}",
[(store (sra (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def SAR64m1 : RI<0xD1, MRM7m, (outs), (ins i64mem:$dst),
"sar{q}\t$dst",
[(store (sra (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;
// Rotate instructions
let isTwoAddress = 1 in {
let Uses = [CL] in
def ROL64rCL : RI<0xD3, MRM0r, (outs GR64:$dst), (ins GR64:$src),
"rol{q}\t{%cl, $dst|$dst, %CL}",
[(set GR64:$dst, (rotl GR64:$src, CL))]>;
def ROL64ri : RIi8<0xC1, MRM0r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2),
"rol{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (rotl GR64:$src1, (i8 imm:$src2)))]>;
def ROL64r1 : RI<0xD1, MRM0r, (outs GR64:$dst), (ins GR64:$src1),
"rol{q}\t$dst",
[(set GR64:$dst, (rotl GR64:$src1, (i8 1)))]>;
} // isTwoAddress
let Uses = [CL] in
def ROL64mCL : I<0xD3, MRM0m, (outs), (ins i64mem:$dst),
"rol{q}\t{%cl, $dst|$dst, %CL}",
[(store (rotl (loadi64 addr:$dst), CL), addr:$dst)]>;
def ROL64mi : RIi8<0xC1, MRM0m, (outs), (ins i64mem:$dst, i8imm:$src),
"rol{q}\t{$src, $dst|$dst, $src}",
[(store (rotl (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def ROL64m1 : RI<0xD1, MRM0m, (outs), (ins i64mem:$dst),
"rol{q}\t$dst",
[(store (rotl (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;
let isTwoAddress = 1 in {
let Uses = [CL] in
def ROR64rCL : RI<0xD3, MRM1r, (outs GR64:$dst), (ins GR64:$src),
"ror{q}\t{%cl, $dst|$dst, %CL}",
[(set GR64:$dst, (rotr GR64:$src, CL))]>;
def ROR64ri : RIi8<0xC1, MRM1r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2),
"ror{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (rotr GR64:$src1, (i8 imm:$src2)))]>;
def ROR64r1 : RI<0xD1, MRM1r, (outs GR64:$dst), (ins GR64:$src1),
"ror{q}\t$dst",
[(set GR64:$dst, (rotr GR64:$src1, (i8 1)))]>;
} // isTwoAddress
let Uses = [CL] in
def ROR64mCL : RI<0xD3, MRM1m, (outs), (ins i64mem:$dst),
"ror{q}\t{%cl, $dst|$dst, %CL}",
[(store (rotr (loadi64 addr:$dst), CL), addr:$dst)]>;
def ROR64mi : RIi8<0xC1, MRM1m, (outs), (ins i64mem:$dst, i8imm:$src),
"ror{q}\t{$src, $dst|$dst, $src}",
[(store (rotr (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def ROR64m1 : RI<0xD1, MRM1m, (outs), (ins i64mem:$dst),
"ror{q}\t$dst",
[(store (rotr (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;
// Double shift instructions (generalizations of rotate)
let isTwoAddress = 1 in {
let Uses = [CL] in {
def SHLD64rrCL : RI<0xA5, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"shld{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}",
[(set GR64:$dst, (X86shld GR64:$src1, GR64:$src2, CL))]>, TB;
def SHRD64rrCL : RI<0xAD, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"shrd{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}",
[(set GR64:$dst, (X86shrd GR64:$src1, GR64:$src2, CL))]>, TB;
}
let isCommutable = 1 in { // FIXME: Update X86InstrInfo::commuteInstruction
def SHLD64rri8 : RIi8<0xA4, MRMDestReg,
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2, i8imm:$src3),
"shld{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set GR64:$dst, (X86shld GR64:$src1, GR64:$src2,
(i8 imm:$src3)))]>,
TB;
def SHRD64rri8 : RIi8<0xAC, MRMDestReg,
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2, i8imm:$src3),
"shrd{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(set GR64:$dst, (X86shrd GR64:$src1, GR64:$src2,
(i8 imm:$src3)))]>,
TB;
} // isCommutable
} // isTwoAddress
let Uses = [CL] in {
def SHLD64mrCL : RI<0xA5, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
"shld{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}",
[(store (X86shld (loadi64 addr:$dst), GR64:$src2, CL),
addr:$dst)]>, TB;
def SHRD64mrCL : RI<0xAD, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
"shrd{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}",
[(store (X86shrd (loadi64 addr:$dst), GR64:$src2, CL),
addr:$dst)]>, TB;
}
def SHLD64mri8 : RIi8<0xA4, MRMDestMem,
(outs), (ins i64mem:$dst, GR64:$src2, i8imm:$src3),
"shld{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(store (X86shld (loadi64 addr:$dst), GR64:$src2,
(i8 imm:$src3)), addr:$dst)]>,
TB;
def SHRD64mri8 : RIi8<0xAC, MRMDestMem,
(outs), (ins i64mem:$dst, GR64:$src2, i8imm:$src3),
"shrd{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
[(store (X86shrd (loadi64 addr:$dst), GR64:$src2,
(i8 imm:$src3)), addr:$dst)]>,
TB;
} // Defs = [EFLAGS]
//===----------------------------------------------------------------------===//
// Logical Instructions...
//
let isTwoAddress = 1 in
def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src), "not{q}\t$dst",
[(set GR64:$dst, (not GR64:$src))]>;
def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst",
[(store (not (loadi64 addr:$dst)), addr:$dst)]>;
let Defs = [EFLAGS] in {
let isTwoAddress = 1 in {
let isCommutable = 1 in
def AND64rr : RI<0x21, MRMDestReg,
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"and{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, GR64:$src2))]>;
def AND64rm : RI<0x23, MRMSrcMem,
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"and{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, (load addr:$src2)))]>;
def AND64ri32 : RIi32<0x81, MRM4r,
(outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"and{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, i64immSExt32:$src2))]>;
def AND64ri8 : RIi8<0x83, MRM4r,
(outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
"and{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (and GR64:$src1, i64immSExt8:$src2))]>;
} // isTwoAddress
def AND64mr : RI<0x21, MRMDestMem,
(outs), (ins i64mem:$dst, GR64:$src),
"and{q}\t{$src, $dst|$dst, $src}",
[(store (and (load addr:$dst), GR64:$src), addr:$dst)]>;
def AND64mi32 : RIi32<0x81, MRM4m,
(outs), (ins i64mem:$dst, i64i32imm:$src),
"and{q}\t{$src, $dst|$dst, $src}",
[(store (and (loadi64 addr:$dst), i64immSExt32:$src), addr:$dst)]>;
def AND64mi8 : RIi8<0x83, MRM4m,
(outs), (ins i64mem:$dst, i64i8imm :$src),
"and{q}\t{$src, $dst|$dst, $src}",
[(store (and (load addr:$dst), i64immSExt8:$src), addr:$dst)]>;
let isTwoAddress = 1 in {
let isCommutable = 1 in
def OR64rr : RI<0x09, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"or{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (or GR64:$src1, GR64:$src2))]>;
def OR64rm : RI<0x0B, MRMSrcMem , (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"or{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (or GR64:$src1, (load addr:$src2)))]>;
def OR64ri32 : RIi32<0x81, MRM1r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"or{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (or GR64:$src1, i64immSExt32:$src2))]>;
def OR64ri8 : RIi8<0x83, MRM1r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
"or{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (or GR64:$src1, i64immSExt8:$src2))]>;
} // isTwoAddress
def OR64mr : RI<0x09, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
"or{q}\t{$src, $dst|$dst, $src}",
[(store (or (load addr:$dst), GR64:$src), addr:$dst)]>;
def OR64mi32 : RIi32<0x81, MRM1m, (outs), (ins i64mem:$dst, i64i32imm:$src),
"or{q}\t{$src, $dst|$dst, $src}",
[(store (or (loadi64 addr:$dst), i64immSExt32:$src), addr:$dst)]>;
def OR64mi8 : RIi8<0x83, MRM1m, (outs), (ins i64mem:$dst, i64i8imm:$src),
"or{q}\t{$src, $dst|$dst, $src}",
[(store (or (load addr:$dst), i64immSExt8:$src), addr:$dst)]>;
let isTwoAddress = 1 in {
let isCommutable = 1 in
def XOR64rr : RI<0x31, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"xor{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (xor GR64:$src1, GR64:$src2))]>;
def XOR64rm : RI<0x33, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"xor{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (xor GR64:$src1, (load addr:$src2)))]>;
def XOR64ri32 : RIi32<0x81, MRM6r,
(outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"xor{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (xor GR64:$src1, i64immSExt32:$src2))]>;
def XOR64ri8 : RIi8<0x83, MRM6r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
"xor{q}\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (xor GR64:$src1, i64immSExt8:$src2))]>;
} // isTwoAddress
def XOR64mr : RI<0x31, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
"xor{q}\t{$src, $dst|$dst, $src}",
[(store (xor (load addr:$dst), GR64:$src), addr:$dst)]>;
def XOR64mi32 : RIi32<0x81, MRM6m, (outs), (ins i64mem:$dst, i64i32imm:$src),
"xor{q}\t{$src, $dst|$dst, $src}",
[(store (xor (loadi64 addr:$dst), i64immSExt32:$src), addr:$dst)]>;
def XOR64mi8 : RIi8<0x83, MRM6m, (outs), (ins i64mem:$dst, i64i8imm :$src),
"xor{q}\t{$src, $dst|$dst, $src}",
[(store (xor (load addr:$dst), i64immSExt8:$src), addr:$dst)]>;
} // Defs = [EFLAGS]
//===----------------------------------------------------------------------===//
// Comparison Instructions...
//
// Integer comparison
let Defs = [EFLAGS] in {
let isCommutable = 1 in
def TEST64rr : RI<0x85, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
"test{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp (and GR64:$src1, GR64:$src2), 0),
(implicit EFLAGS)]>;
def TEST64rm : RI<0x85, MRMSrcMem, (outs), (ins GR64:$src1, i64mem:$src2),
"test{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp (and GR64:$src1, (loadi64 addr:$src2)), 0),
(implicit EFLAGS)]>;
def TEST64ri32 : RIi32<0xF7, MRM0r, (outs),
(ins GR64:$src1, i64i32imm:$src2),
"test{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp (and GR64:$src1, i64immSExt32:$src2), 0),
(implicit EFLAGS)]>;
def TEST64mi32 : RIi32<0xF7, MRM0m, (outs),
(ins i64mem:$src1, i64i32imm:$src2),
"test{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp (and (loadi64 addr:$src1), i64immSExt32:$src2), 0),
(implicit EFLAGS)]>;
def CMP64rr : RI<0x39, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
"cmp{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp GR64:$src1, GR64:$src2),
(implicit EFLAGS)]>;
def CMP64mr : RI<0x39, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
"cmp{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp (loadi64 addr:$src1), GR64:$src2),
(implicit EFLAGS)]>;
def CMP64rm : RI<0x3B, MRMSrcMem, (outs), (ins GR64:$src1, i64mem:$src2),
"cmp{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp GR64:$src1, (loadi64 addr:$src2)),
(implicit EFLAGS)]>;
def CMP64ri32 : RIi32<0x81, MRM7r, (outs), (ins GR64:$src1, i64i32imm:$src2),
"cmp{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp GR64:$src1, i64immSExt32:$src2),
(implicit EFLAGS)]>;
def CMP64mi32 : RIi32<0x81, MRM7m, (outs),
(ins i64mem:$src1, i64i32imm:$src2),
"cmp{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp (loadi64 addr:$src1), i64immSExt32:$src2),
(implicit EFLAGS)]>;
def CMP64mi8 : RIi8<0x83, MRM7m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
"cmp{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp (loadi64 addr:$src1), i64immSExt8:$src2),
(implicit EFLAGS)]>;
def CMP64ri8 : RIi8<0x83, MRM7r, (outs), (ins GR64:$src1, i64i8imm:$src2),
"cmp{q}\t{$src2, $src1|$src1, $src2}",
[(X86cmp GR64:$src1, i64immSExt8:$src2),
(implicit EFLAGS)]>;
} // Defs = [EFLAGS]
// Conditional moves
let Uses = [EFLAGS], isTwoAddress = 1 in {
let isCommutable = 1 in {
def CMOVB64rr : RI<0x42, MRMSrcReg, // if <u, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovb\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_B, EFLAGS))]>, TB;
def CMOVAE64rr: RI<0x43, MRMSrcReg, // if >=u, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovae\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_AE, EFLAGS))]>, TB;
def CMOVE64rr : RI<0x44, MRMSrcReg, // if ==, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmove\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_E, EFLAGS))]>, TB;
def CMOVNE64rr: RI<0x45, MRMSrcReg, // if !=, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovne\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_NE, EFLAGS))]>, TB;
def CMOVBE64rr: RI<0x46, MRMSrcReg, // if <=u, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovbe\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_BE, EFLAGS))]>, TB;
def CMOVA64rr : RI<0x47, MRMSrcReg, // if >u, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmova\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_A, EFLAGS))]>, TB;
def CMOVL64rr : RI<0x4C, MRMSrcReg, // if <s, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovl\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_L, EFLAGS))]>, TB;
def CMOVGE64rr: RI<0x4D, MRMSrcReg, // if >=s, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovge\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_GE, EFLAGS))]>, TB;
def CMOVLE64rr: RI<0x4E, MRMSrcReg, // if <=s, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovle\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_LE, EFLAGS))]>, TB;
def CMOVG64rr : RI<0x4F, MRMSrcReg, // if >s, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovg\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_G, EFLAGS))]>, TB;
def CMOVS64rr : RI<0x48, MRMSrcReg, // if signed, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovs\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_S, EFLAGS))]>, TB;
def CMOVNS64rr: RI<0x49, MRMSrcReg, // if !signed, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovns\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_NS, EFLAGS))]>, TB;
def CMOVP64rr : RI<0x4A, MRMSrcReg, // if parity, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovp\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_P, EFLAGS))]>, TB;
def CMOVNP64rr : RI<0x4B, MRMSrcReg, // if !parity, GR64 = GR64
(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"cmovnp\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
X86_COND_NP, EFLAGS))]>, TB;
} // isCommutable = 1
def CMOVB64rm : RI<0x42, MRMSrcMem, // if <u, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovb\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_B, EFLAGS))]>, TB;
def CMOVAE64rm: RI<0x43, MRMSrcMem, // if >=u, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovae\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_AE, EFLAGS))]>, TB;
def CMOVE64rm : RI<0x44, MRMSrcMem, // if ==, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmove\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_E, EFLAGS))]>, TB;
def CMOVNE64rm: RI<0x45, MRMSrcMem, // if !=, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovne\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_NE, EFLAGS))]>, TB;
def CMOVBE64rm: RI<0x46, MRMSrcMem, // if <=u, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovbe\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_BE, EFLAGS))]>, TB;
def CMOVA64rm : RI<0x47, MRMSrcMem, // if >u, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmova\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_A, EFLAGS))]>, TB;
def CMOVL64rm : RI<0x4C, MRMSrcMem, // if <s, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovl\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_L, EFLAGS))]>, TB;
def CMOVGE64rm: RI<0x4D, MRMSrcMem, // if >=s, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovge\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_GE, EFLAGS))]>, TB;
def CMOVLE64rm: RI<0x4E, MRMSrcMem, // if <=s, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovle\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_LE, EFLAGS))]>, TB;
def CMOVG64rm : RI<0x4F, MRMSrcMem, // if >s, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovg\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_G, EFLAGS))]>, TB;
def CMOVS64rm : RI<0x48, MRMSrcMem, // if signed, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovs\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_S, EFLAGS))]>, TB;
def CMOVNS64rm: RI<0x49, MRMSrcMem, // if !signed, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovns\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_NS, EFLAGS))]>, TB;
def CMOVP64rm : RI<0x4A, MRMSrcMem, // if parity, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovp\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_P, EFLAGS))]>, TB;
def CMOVNP64rm : RI<0x4B, MRMSrcMem, // if !parity, GR64 = [mem64]
(outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
"cmovnp\t{$src2, $dst|$dst, $src2}",
[(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
X86_COND_NP, EFLAGS))]>, TB;
} // isTwoAddress
//===----------------------------------------------------------------------===//
// Conversion Instructions...
//
// f64 -> signed i64
def Int_CVTSD2SI64rr: RSDI<0x2D, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
"cvtsd2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst,
(int_x86_sse2_cvtsd2si64 VR128:$src))]>;
def Int_CVTSD2SI64rm: RSDI<0x2D, MRMSrcMem, (outs GR64:$dst), (ins f128mem:$src),
"cvtsd2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (int_x86_sse2_cvtsd2si64
(load addr:$src)))]>;
def CVTTSD2SI64rr: RSDI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins FR64:$src),
"cvttsd2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (fp_to_sint FR64:$src))]>;
def CVTTSD2SI64rm: RSDI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f64mem:$src),
"cvttsd2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (fp_to_sint (loadf64 addr:$src)))]>;
def Int_CVTTSD2SI64rr: RSDI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
"cvttsd2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst,
(int_x86_sse2_cvttsd2si64 VR128:$src))]>;
def Int_CVTTSD2SI64rm: RSDI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f128mem:$src),
"cvttsd2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst,
(int_x86_sse2_cvttsd2si64
(load addr:$src)))]>;
// Signed i64 -> f64
def CVTSI2SD64rr: RSDI<0x2A, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src),
"cvtsi2sd{q}\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (sint_to_fp GR64:$src))]>;
def CVTSI2SD64rm: RSDI<0x2A, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src),
"cvtsi2sd{q}\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (sint_to_fp (loadi64 addr:$src)))]>;
let isTwoAddress = 1 in {
def Int_CVTSI2SD64rr: RSDI<0x2A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, GR64:$src2),
"cvtsi2sd{q}\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(int_x86_sse2_cvtsi642sd VR128:$src1,
GR64:$src2))]>;
def Int_CVTSI2SD64rm: RSDI<0x2A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i64mem:$src2),
"cvtsi2sd{q}\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(int_x86_sse2_cvtsi642sd VR128:$src1,
(loadi64 addr:$src2)))]>;
} // isTwoAddress
// Signed i64 -> f32
def CVTSI2SS64rr: RSSI<0x2A, MRMSrcReg, (outs FR32:$dst), (ins GR64:$src),
"cvtsi2ss{q}\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (sint_to_fp GR64:$src))]>;
def CVTSI2SS64rm: RSSI<0x2A, MRMSrcMem, (outs FR32:$dst), (ins i64mem:$src),
"cvtsi2ss{q}\t{$src, $dst|$dst, $src}",
[(set FR32:$dst, (sint_to_fp (loadi64 addr:$src)))]>;
let isTwoAddress = 1 in {
def Int_CVTSI2SS64rr : RSSI<0x2A, MRMSrcReg,
(outs VR128:$dst), (ins VR128:$src1, GR64:$src2),
"cvtsi2ss{q}\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(int_x86_sse_cvtsi642ss VR128:$src1,
GR64:$src2))]>;
def Int_CVTSI2SS64rm : RSSI<0x2A, MRMSrcMem,
(outs VR128:$dst), (ins VR128:$src1, i64mem:$src2),
"cvtsi2ss{q}\t{$src2, $dst|$dst, $src2}",
[(set VR128:$dst,
(int_x86_sse_cvtsi642ss VR128:$src1,
(loadi64 addr:$src2)))]>;
}
// f32 -> signed i64
def Int_CVTSS2SI64rr: RSSI<0x2D, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
"cvtss2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst,
(int_x86_sse_cvtss2si64 VR128:$src))]>;
def Int_CVTSS2SI64rm: RSSI<0x2D, MRMSrcMem, (outs GR64:$dst), (ins f32mem:$src),
"cvtss2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (int_x86_sse_cvtss2si64
(load addr:$src)))]>;
def CVTTSS2SI64rr: RSSI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins FR32:$src),
"cvttss2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (fp_to_sint FR32:$src))]>;
def CVTTSS2SI64rm: RSSI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f32mem:$src),
"cvttss2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (fp_to_sint (loadf32 addr:$src)))]>;
def Int_CVTTSS2SI64rr: RSSI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
"cvttss2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst,
(int_x86_sse_cvttss2si64 VR128:$src))]>;
def Int_CVTTSS2SI64rm: RSSI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f32mem:$src),
"cvttss2si{q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst,
(int_x86_sse_cvttss2si64 (load addr:$src)))]>;
//===----------------------------------------------------------------------===//
// Alias Instructions
//===----------------------------------------------------------------------===//
// Alias instructions that map movr0 to xor. Use xorl instead of xorq; it's
// equivalent due to implicit zero-extending, and it sometimes has a smaller
// encoding.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
// FIXME: AddedComplexity gives MOV64r0 a higher priority than MOV64ri32. Remove
// when we have a better way to specify isel priority.
let Defs = [EFLAGS], AddedComplexity = 1,
isReMaterializable = 1, isAsCheapAsAMove = 1 in
def MOV64r0 : I<0x31, MRMInitReg, (outs GR64:$dst), (ins),
"xor{l}\t${dst:subreg32}, ${dst:subreg32}",
[(set GR64:$dst, 0)]>;
// Materialize i64 constant where top 32-bits are zero.
let AddedComplexity = 1, isReMaterializable = 1 in
def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
"mov{l}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
[(set GR64:$dst, i64immZExt32:$src)]>;
//===----------------------------------------------------------------------===//
// Thread Local Storage Instructions
//===----------------------------------------------------------------------===//
def TLS_addr64 : I<0, Pseudo, (outs GR64:$dst), (ins i64imm:$sym),
".byte\t0x66; leaq\t${sym:mem}(%rip), $dst; .word\t0x6666; rex64",
[(set GR64:$dst, (X86tlsaddr tglobaltlsaddr:$sym))]>;
//===----------------------------------------------------------------------===//
// Atomic Instructions
//===----------------------------------------------------------------------===//
let Defs = [RAX, EFLAGS], Uses = [RAX] in {
def LCMPXCHG64 : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$ptr, GR64:$swap),
"lock\n\tcmpxchgq\t$swap,$ptr",
[(X86cas addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
}
let Constraints = "$val = $dst" in {
let Defs = [EFLAGS] in
def LXADD64 : RI<0xC1, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$ptr,GR64:$val),
"lock\n\txadd\t$val, $ptr",
[(set GR64:$dst, (atomic_load_add_64 addr:$ptr, GR64:$val))]>,
TB, LOCK;
def XCHG64rm : RI<0x87, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$ptr,GR64:$val),
"xchg\t$val, $ptr",
[(set GR64:$dst, (atomic_swap_64 addr:$ptr, GR64:$val))]>;
}
// Atomic exchange, and, or, xor
let Constraints = "$val = $dst", Defs = [EFLAGS],
usesCustomDAGSchedInserter = 1 in {
def ATOMAND64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
"#ATOMAND64 PSUEDO!",
[(set GR64:$dst, (atomic_load_and_64 addr:$ptr, GR64:$val))]>;
def ATOMOR64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
"#ATOMOR64 PSUEDO!",
[(set GR64:$dst, (atomic_load_or_64 addr:$ptr, GR64:$val))]>;
def ATOMXOR64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
"#ATOMXOR64 PSUEDO!",
[(set GR64:$dst, (atomic_load_xor_64 addr:$ptr, GR64:$val))]>;
def ATOMNAND64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
"#ATOMNAND64 PSUEDO!",
[(set GR64:$dst, (atomic_load_nand_64 addr:$ptr, GR64:$val))]>;
def ATOMMIN64: I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$ptr, GR64:$val),
"#ATOMMIN64 PSUEDO!",
[(set GR64:$dst, (atomic_load_min_64 addr:$ptr, GR64:$val))]>;
def ATOMMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
"#ATOMMAX64 PSUEDO!",
[(set GR64:$dst, (atomic_load_max_64 addr:$ptr, GR64:$val))]>;
def ATOMUMIN64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
"#ATOMUMIN64 PSUEDO!",
[(set GR64:$dst, (atomic_load_umin_64 addr:$ptr, GR64:$val))]>;
def ATOMUMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
"#ATOMUMAX64 PSUEDO!",
[(set GR64:$dst, (atomic_load_umax_64 addr:$ptr, GR64:$val))]>;
}
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
(MOV64ri tconstpool :$dst)>, Requires<[NotSmallCode]>;
def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
(MOV64ri tjumptable :$dst)>, Requires<[NotSmallCode]>;
def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
(MOV64ri tglobaladdr :$dst)>, Requires<[NotSmallCode]>;
def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
(MOV64ri texternalsym:$dst)>, Requires<[NotSmallCode]>;
def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
(MOV64mi32 addr:$dst, tconstpool:$src)>,
Requires<[SmallCode, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
(MOV64mi32 addr:$dst, tjumptable:$src)>,
Requires<[SmallCode, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
(MOV64mi32 addr:$dst, tglobaladdr:$src)>,
Requires<[SmallCode, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
(MOV64mi32 addr:$dst, texternalsym:$src)>,
Requires<[SmallCode, IsStatic]>;
// Calls
// Direct PC relative function call for small code model. 32-bit displacement
// sign extended to 64-bit.
def : Pat<(X86call (i64 tglobaladdr:$dst)),
(CALL64pcrel32 tglobaladdr:$dst)>;
def : Pat<(X86call (i64 texternalsym:$dst)),
(CALL64pcrel32 texternalsym:$dst)>;
def : Pat<(X86tailcall (i64 tglobaladdr:$dst)),
(CALL64pcrel32 tglobaladdr:$dst)>;
def : Pat<(X86tailcall (i64 texternalsym:$dst)),
(CALL64pcrel32 texternalsym:$dst)>;
def : Pat<(X86tailcall GR64:$dst),
(CALL64r GR64:$dst)>;
// tailcall stuff
def : Pat<(X86tailcall GR32:$dst),
(TAILCALL)>;
def : Pat<(X86tailcall (i64 tglobaladdr:$dst)),
(TAILCALL)>;
def : Pat<(X86tailcall (i64 texternalsym:$dst)),
(TAILCALL)>;
def : Pat<(X86tcret GR64:$dst, imm:$off),
(TCRETURNri64 GR64:$dst, imm:$off)>;
def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
(TCRETURNdi64 texternalsym:$dst, imm:$off)>;
def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
(TCRETURNdi64 texternalsym:$dst, imm:$off)>;
// Comparisons.
// TEST R,R is smaller than CMP R,0
def : Pat<(parallel (X86cmp GR64:$src1, 0), (implicit EFLAGS)),
(TEST64rr GR64:$src1, GR64:$src1)>;
// Zero-extension
def : Pat<(i64 (zext GR32:$src)),
(SUBREG_TO_REG (i64 0), GR32:$src, x86_subreg_32bit)>;
// zextload bool -> zextload byte
def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
// extload
// When extloading from 16-bit and smaller memory locations into 64-bit registers,
// use zero-extending loads so that the entire 64-bit register is defined, avoiding
// partial-register updates.
def : Pat<(extloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
def : Pat<(extloadi64i8 addr:$src), (MOVZX64rm8 addr:$src)>;
def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
// For other extloads, use subregs, since the high contents of the register are
// defined after an extload.
def : Pat<(extloadi64i32 addr:$src),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), (MOV32rm addr:$src),
x86_subreg_32bit)>;
def : Pat<(extloadi16i1 addr:$src),
(INSERT_SUBREG (i16 (IMPLICIT_DEF)), (MOV8rm addr:$src),
x86_subreg_8bit)>,
Requires<[In64BitMode]>;
def : Pat<(extloadi16i8 addr:$src),
(INSERT_SUBREG (i16 (IMPLICIT_DEF)), (MOV8rm addr:$src),
x86_subreg_8bit)>,
Requires<[In64BitMode]>;
// anyext
def : Pat<(i64 (anyext GR8:$src)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src, x86_subreg_8bit)>;
def : Pat<(i64 (anyext GR16:$src)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR16:$src, x86_subreg_16bit)>;
def : Pat<(i64 (anyext GR32:$src)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, x86_subreg_32bit)>;
def : Pat<(i16 (anyext GR8:$src)),
(INSERT_SUBREG (i16 (IMPLICIT_DEF)), GR8:$src, x86_subreg_8bit)>,
Requires<[In64BitMode]>;
def : Pat<(i32 (anyext GR8:$src)),
(INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src, x86_subreg_8bit)>,
Requires<[In64BitMode]>;
//===----------------------------------------------------------------------===//
// Some peepholes
//===----------------------------------------------------------------------===//
// r & (2^32-1) ==> movz
def : Pat<(and GR64:$src, i64immFFFFFFFF),
(MOVZX64rr32 (i32 (EXTRACT_SUBREG GR64:$src, x86_subreg_32bit)))>;
// r & (2^16-1) ==> movz
def : Pat<(and GR64:$src, 0xffff),
(MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, x86_subreg_16bit)))>;
// r & (2^8-1) ==> movz
def : Pat<(and GR64:$src, 0xff),
(MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, x86_subreg_8bit)))>;
// r & (2^8-1) ==> movz
def : Pat<(and GR32:$src1, 0xff),
(MOVZX32rr8 (i8 (EXTRACT_SUBREG GR32:$src1, x86_subreg_8bit)))>,
Requires<[In64BitMode]>;
// r & (2^8-1) ==> movz
def : Pat<(and GR16:$src1, 0xff),
(MOVZX16rr8 (i8 (EXTRACT_SUBREG GR16:$src1, x86_subreg_8bit)))>,
Requires<[In64BitMode]>;
// sext_inreg patterns
def : Pat<(sext_inreg GR64:$src, i32),
(MOVSX64rr32 (i32 (EXTRACT_SUBREG GR64:$src, x86_subreg_32bit)))>;
def : Pat<(sext_inreg GR64:$src, i16),
(MOVSX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, x86_subreg_16bit)))>;
def : Pat<(sext_inreg GR64:$src, i8),
(MOVSX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, x86_subreg_8bit)))>;
def : Pat<(sext_inreg GR32:$src, i8),
(MOVSX32rr8 (i8 (EXTRACT_SUBREG GR32:$src, x86_subreg_8bit)))>,
Requires<[In64BitMode]>;
def : Pat<(sext_inreg GR16:$src, i8),
(MOVSX16rr8 (i8 (EXTRACT_SUBREG GR16:$src, x86_subreg_8bit)))>,
Requires<[In64BitMode]>;
// trunc patterns
def : Pat<(i32 (trunc GR64:$src)),
(i32 (EXTRACT_SUBREG GR64:$src, x86_subreg_32bit))>;
def : Pat<(i16 (trunc GR64:$src)),
(i16 (EXTRACT_SUBREG GR64:$src, x86_subreg_16bit))>;
def : Pat<(i8 (trunc GR64:$src)),
(i8 (EXTRACT_SUBREG GR64:$src, x86_subreg_8bit))>;
def : Pat<(i8 (trunc GR32:$src)),
(i8 (EXTRACT_SUBREG GR32:$src, x86_subreg_8bit))>,
Requires<[In64BitMode]>;
def : Pat<(i8 (trunc GR16:$src)),
(i8 (EXTRACT_SUBREG GR16:$src, x86_subreg_8bit))>,
Requires<[In64BitMode]>;
// (shl x, 1) ==> (add x, x)
def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
// (shl x (and y, 63)) ==> (shl x, y)
def : Pat<(shl GR64:$src1, (and CL:$amt, 63)),
(SHL64rCL GR64:$src1)>;
def : Pat<(store (shl (loadi64 addr:$dst), (and CL:$amt, 63)), addr:$dst),
(SHL64mCL addr:$dst)>;
def : Pat<(srl GR64:$src1, (and CL:$amt, 63)),
(SHR64rCL GR64:$src1)>;
def : Pat<(store (srl (loadi64 addr:$dst), (and CL:$amt, 63)), addr:$dst),
(SHR64mCL addr:$dst)>;
def : Pat<(sra GR64:$src1, (and CL:$amt, 63)),
(SAR64rCL GR64:$src1)>;
def : Pat<(store (sra (loadi64 addr:$dst), (and CL:$amt, 63)), addr:$dst),
(SAR64mCL addr:$dst)>;
// (or (x >> c) | (y << (64 - c))) ==> (shrd64 x, y, c)
def : Pat<(or (srl GR64:$src1, CL:$amt),
(shl GR64:$src2, (sub 64, CL:$amt))),
(SHRD64rrCL GR64:$src1, GR64:$src2)>;
def : Pat<(store (or (srl (loadi64 addr:$dst), CL:$amt),
(shl GR64:$src2, (sub 64, CL:$amt))), addr:$dst),
(SHRD64mrCL addr:$dst, GR64:$src2)>;
def : Pat<(or (srl GR64:$src1, (i8 (trunc RCX:$amt))),
(shl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))),
(SHRD64rrCL GR64:$src1, GR64:$src2)>;
def : Pat<(store (or (srl (loadi64 addr:$dst), (i8 (trunc RCX:$amt))),
(shl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))),
addr:$dst),
(SHRD64mrCL addr:$dst, GR64:$src2)>;
def : Pat<(shrd GR64:$src1, (i8 imm:$amt1), GR64:$src2, (i8 imm:$amt2)),
(SHRD64rri8 GR64:$src1, GR64:$src2, (i8 imm:$amt1))>;
def : Pat<(store (shrd (loadi64 addr:$dst), (i8 imm:$amt1),
GR64:$src2, (i8 imm:$amt2)), addr:$dst),
(SHRD64mri8 addr:$dst, GR64:$src2, (i8 imm:$amt1))>;
// (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
def : Pat<(or (shl GR64:$src1, CL:$amt),
(srl GR64:$src2, (sub 64, CL:$amt))),
(SHLD64rrCL GR64:$src1, GR64:$src2)>;
def : Pat<(store (or (shl (loadi64 addr:$dst), CL:$amt),
(srl GR64:$src2, (sub 64, CL:$amt))), addr:$dst),
(SHLD64mrCL addr:$dst, GR64:$src2)>;
def : Pat<(or (shl GR64:$src1, (i8 (trunc RCX:$amt))),
(srl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))),
(SHLD64rrCL GR64:$src1, GR64:$src2)>;
def : Pat<(store (or (shl (loadi64 addr:$dst), (i8 (trunc RCX:$amt))),
(srl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))),
addr:$dst),
(SHLD64mrCL addr:$dst, GR64:$src2)>;
def : Pat<(shld GR64:$src1, (i8 imm:$amt1), GR64:$src2, (i8 imm:$amt2)),
(SHLD64rri8 GR64:$src1, GR64:$src2, (i8 imm:$amt1))>;
def : Pat<(store (shld (loadi64 addr:$dst), (i8 imm:$amt1),
GR64:$src2, (i8 imm:$amt2)), addr:$dst),
(SHLD64mri8 addr:$dst, GR64:$src2, (i8 imm:$amt1))>;
// X86 specific add which produces a flag.
def : Pat<(addc GR64:$src1, GR64:$src2),
(ADD64rr GR64:$src1, GR64:$src2)>;
def : Pat<(addc GR64:$src1, (load addr:$src2)),
(ADD64rm GR64:$src1, addr:$src2)>;
def : Pat<(addc GR64:$src1, i64immSExt32:$src2),
(ADD64ri32 GR64:$src1, imm:$src2)>;
def : Pat<(addc GR64:$src1, i64immSExt8:$src2),
(ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(subc GR64:$src1, GR64:$src2),
(SUB64rr GR64:$src1, GR64:$src2)>;
def : Pat<(subc GR64:$src1, (load addr:$src2)),
(SUB64rm GR64:$src1, addr:$src2)>;
def : Pat<(subc GR64:$src1, imm:$src2),
(SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
def : Pat<(subc GR64:$src1, i64immSExt8:$src2),
(SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
//===----------------------------------------------------------------------===//
// X86-64 SSE Instructions
//===----------------------------------------------------------------------===//
// Move instructions...
def MOV64toPQIrr : RPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}",
[(set VR128:$dst,
(v2i64 (scalar_to_vector GR64:$src)))]>;
def MOVPQIto64rr : RPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (vector_extract (v2i64 VR128:$src),
(iPTR 0)))]>;
def MOV64toSDrr : RPDI<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (bitconvert GR64:$src))]>;
def MOV64toSDrm : RPDI<0x6E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src),
"movq\t{$src, $dst|$dst, $src}",
[(set FR64:$dst, (bitconvert (loadi64 addr:$src)))]>;
def MOVSDto64rr : RPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src),
"mov{d|q}\t{$src, $dst|$dst, $src}",
[(set GR64:$dst, (bitconvert FR64:$src))]>;
def MOVSDto64mr : RPDI<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src),
"movq\t{$src, $dst|$dst, $src}",
[(store (i64 (bitconvert FR64:$src)), addr:$dst)]>;
//===----------------------------------------------------------------------===//
// X86-64 SSE4.1 Instructions
//===----------------------------------------------------------------------===//
/// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination
multiclass SS41I_extract64<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs GR64:$dst),
(ins VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(set GR64:$dst,
(extractelt (v2i64 VR128:$src1), imm:$src2))]>, OpSize, REX_W;
def mr : SS4AIi8<opc, MRMDestMem, (outs),
(ins i64mem:$dst, VR128:$src1, i32i8imm:$src2),
!strconcat(OpcodeStr,
"\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[(store (extractelt (v2i64 VR128:$src1), imm:$src2),
addr:$dst)]>, OpSize, REX_W;
}
defm PEXTRQ : SS41I_extract64<0x16, "pextrq">;
let isTwoAddress = 1 in {
multiclass SS41I_insert64<bits<8> opc, string OpcodeStr> {
def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
(ins VR128:$src1, GR64:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst,
(v2i64 (insertelt VR128:$src1, GR64:$src2, imm:$src3)))]>,
OpSize, REX_W;
def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, i64mem:$src2, i32i8imm:$src3),
!strconcat(OpcodeStr,
"\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
[(set VR128:$dst,
(v2i64 (insertelt VR128:$src1, (loadi64 addr:$src2),
imm:$src3)))]>, OpSize, REX_W;
}
}
defm PINSRQ : SS41I_insert64<0x22, "pinsrq">;